用沿程阻力系数计算式57页PPT
- 格式:ppt
- 大小:5.38 MB
- 文档页数:57
管路沿程阻力计算1.摩擦阻力:在流体流动中,由于流体与管道壁之间的摩擦力,使得流体流动速度逐渐减小,产生摩擦阻力。
根据代表性的达西-魏泽巴赫公式,可以计算流体在管道中的摩擦阻力。
ΔP=λ(L/D)(ρV^2/2)其中,ΔP为单位管长上的摩擦阻力损失,λ为摩擦系数,L为管道长度,D为管道直径,ρ为流体密度,V为流速。
2.沿程局部阻力:在管道流动中,由于管道内部存在一些特殊设计或结构,导致流体流动时发生局部阻力。
根据达西-魏泽巴赫公式,可以计算管道局部阻力。
ΔP=K(ρV^2/2)其中,ΔP为单位管长上的沿程局部阻力损失,K为局部阻力系数,ρ为流体密度,V为流速。
3.管道弯曲阻力:在管道中,当流体流过弯曲部分时,会受到弯曲的影响,产生较大的阻力。
根据经验公式,可以计算管道弯曲阻力。
ΔP=K(ρV^2/2)其中,ΔP为单位管长上的弯曲阻力损失,K为弯曲阻力系数,ρ为流体密度,V为流速。
这些阻力形式在实际管道中经常同时存在,因此需要综合考虑计算总阻力。
通常采用经验公式、实验数据或数值模拟等方法进行计算。
在实际工程中,一般可以通过试验或计算得到相应的阻力系数,并且根据阻力计算公式,结合流体参数,来计算管路沿程阻力。
在实际应用中,管路沿程阻力的计算是非常重要的,它影响到管道系统的工作效率和输送能力。
为了降低阻力损失,有效节约能源,可以采取以下措施:优化管道布局,减少管道弯曲和局部阻力;选择合适的管道材料和直径,减小摩擦阻力;采用流体增压、注入润滑剂等方法来减小摩擦阻力。
总之,管路沿程阻力的计算是管道工程中的一个重要环节,通过合理地计算和设计,可以提高管道系统的效率和安全性,降低能源消耗。
沿程阻力系数λ计算公式(二)沿程阻力系数λ计算公式简介沿程阻力系数λ是流体力学中用来描述流体在管道中流动时受到的阻力的一个参数。
在工程领域广泛应用于管道、管线和管道系统的设计与计算中。
相关计算公式在计算沿程阻力系数λ时,常用的公式有以下几种:1. Darcy–Weisbach公式Darcy–Weisbach公式是一种常用的计算管道阻力的公式,表示为:λ = f * (L / D) * (V^2 / (2g))其中,λ为沿程阻力系数,f为摩阻系数,L为管道长度,D为管道直径,V为流体流速,g为重力加速度。
例如,当一条长度为100m,内径为的管道内流体流速为2m/s,摩阻系数为时,可以使用Darcy–Weisbach公式计算出该管道的沿程阻力系数λ:λ = * (100 / ) * (2^2 / (2 * )) =2. Colebrook–White公式Colebrook–White公式是一种用来计算光滑管道中的沿程阻力系数的经验公式,表示为:1 / sqrt(λ) = -2log((ε / ()) + ( / (Re * sqrt(λ))))其中,ε为管道壁面粗糙度,D为管道直径,Re为雷诺数。
例如,当一条内径为的管道,管壁粗糙度为,流体流速为/s时,可以使用Colebrook–White公式计算出该管道的沿程阻力系数λ。
(注意:Colebrook–White公式无法直接求解,需要通过迭代或数值方法计算得出)3. Hazen–Williams公式Hazen–Williams公式是一种常用于计算水流在管道中沿程阻力系数的经验公式,表示为:λ = C * (Q / (C * A))^h其中,λ为沿程阻力系数,C为Hazen–Williams系数,Q为流量,A为管道横截面积,h为水头损失指数。
例如,当一条直径为的管道内水流量为3m³/s,Hazen–Williams 系数为120时,可以使用Hazen–Williams公式计算出该管道的沿程阻力系数λ。
风管沿程阻力计算方法布质风管系统在沿管长方向上还有由于摩擦阻力和局部阻力造成的压力损失。
因为压力损失与风速成正比关系,当气流沿管长方向风速越来越小时,阻力损失也不断下降。
与此同时,风管个标准件以及出风口也存在局部阻力损失。
布质风管系统中以直管为主,系统中三通、弯头及变径很少,一般以沿程阻力损失为主,空气横断面形状不变的管道内流动时的沿程摩擦阻力按下式计算:—-摩擦阻力系数;——风管内空气的平均流速,m/s;—-空气的密度,kg/m3;——风管长度,m;——圆形风管直径(内径),m;摩擦阻力系数是一个不定值,它与空气在风管内的流动状态和风管管壁的粗糙度有关。
根据对纤维材料和布质风管系统的综合性研究得到摩擦阻力系数不大于0。
024(铁皮风管大约0.019),由于布质风管风管延长度方向上都有送风孔,管内平均风速就是风管入口速度的1/2.由此可见,布质风管风管的延程损失比传统铁皮风管要小的多。
部件局部压损计算当布质风管风管内气流通过弯头、变径、三通等等部件时,断面或流向发生了变化,同传统风管一样会产生相应的局部压力损失:Z:局部压力损失(pa)ξ:局部阻力系数(主要由试验测得,同传统风管中类似)ρ:空气密度(kg/m3)v:风速(m/s)为了减少布质风管系统的局部损失,我们通常进行一定的优化设计:1.综合多种因素选择管经,尽量降低管道内风速。
2.优化异形部件设计,避免流向改变过急、断面变化过快.根据实际工程经验,我们总结出各种布质风管部件的局部阻力值(风速=8m/s),如下表:弯头(曲率=1)等径三通变径(渐缩角30度)静压箱10 pa 12 pa 3 pa 46 pa例如:某超市压损计算说明对于该超市,AHU 空调箱风量为36000CMH,选取编号AHU-14号空调箱系统,主管尺寸为2000*610mm,共有5支支管,支管管径为559mm.选取最长不利环路25米主管+20。
6米支管作为计算依据;1,沿程阻力损失计算:主管:25米, 2000*610mm,当量直径,支管道:20。
第六章 流动阻力和水头损失学习要点:熟练地掌握水头损失的分类和计算、层流与紊流的判别及其流速分布规律;掌握流动阻力的分区划分、各个分区内沿程水头损失系数的影响因素,了解紊流脉动现象及其切应力的特征、人工加糙管道与工业管道实验结果的异同、沿程水头损失系数计算的经验公式、几种特殊的管路附件的局部水头损失系数等。
实际流体具有粘性,在通道内流动时,流体内部流层之间存在相对运动和流动阻力。
流动阻力做功,使流体的一部分机械能不可逆地转化为热能而散发,从流体具有的机械能来看是一种损失。
总流单位重量流体的平均机械能损失称为水头损失,只有解决了水头损失的计算问题,第四章得到的伯努利方程式才能真正用于解决实际工程问题。
第一节 水头损失及其分类流动阻力和水头损失的规律,因流体的流动状态和流动的边界条件而异,故应对流动阻力的水头损失进行分类研究。
一、水头损失分类流体在流动的过程中,在流动的方向、壁面的粗糙程度、过流断面的形状和尺寸均不变的均匀流段上产生的流动阻力称之为沿程阻力,或称为摩擦阻力。
沿程阻力的影响造成流体流动过程中能量的损失或水头损失(习惯上用单位重量流体的损失表示)。
沿程阻力均匀地分布在整个均匀流段上,与管段的长度成正比,一般用f h 表示。
另一类阻力是发生在流动边界有急变的流场中,能量的损失主要集中在该流场及附近流场,这种集中发生的能量损失或阻力称为局部阻力或局部损失,由局部阻力造成的水头损失称为局部水头损失。
通常在管道的进出口、变截面管道、管道的连接处等部位,都会发生局部水头损失,一般用j h 表示。
如图6—1所示的管道流动,其中,ab ,bc 和cd 各段只有沿程阻力,ab f h 、bc f h 、cd f h 是各段的沿程水头损失,管道入口、管截面突变及阀门处产生的局部水头损失,a j h 、bj h 、和c j h 是各处的局部水头损失。
整个管道的水头损失w h 等于各段的沿程损失和各处的局部损失的总和。
沿程阻力系数表
沿程阻力系数表
沿程阻力(Frictional Drag):流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比。
沿程阻力(直管阻力)损失的计算式中λ——摩擦系数,与雷诺数Re和管壁粗糙度ε有关,可实验测定,也可计算得出。
沿程阻力(Frictional Drag):流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比。
沿程阻力(直管阻力)损失的计算式中λ——摩擦系数,与雷诺数Re和管壁粗糙度ε有关,可实验测定,也可计算得出。
层流时:
2沿程阻力系数的确定方法
对于层流流动,可以严格地从理论推导出来。
对于紊流流动,工程上通过以下两种途径确定:一种是以紊流的半经验理论为基础,结合实验结果,整理成阻力系数的半经验公式;另一种是直接根据实验结果,综合成阻力系数的经验公式。
前者具有更为普遍的意义。
沿程阻力损失:Hf=λ×l/D×ρ×u2/2,其中λ为沿程阻力损失系数,与气体流态、管壁粗糙度、颗粒物含量等有关;l为管道的长度,m;D 为圆管的内直径或非圆管的当量直径,m;ρ为气体的密度,kg/m3;u 为气体的速度,m/s。
由以上参数的涵义可知,当气体中颗粒浓度发生变化时,l、D、ρ和u均不会发生变化,因此气体中的粉尘浓度主要影响的是λ,即沿程阻力损失系数。
为了区分含粉尘颗粒的气体沿程阻力损失系数与纯气体的差异,我们将含粉尘颗粒的气体沿程阻力损失即为λm。