人教版九年级数学上册《中心对称》拓展练习
- 格式:docx
- 大小:239.58 KB
- 文档页数:16
23.2中心对称1.如图23—79所示的四组图形中,左边图形与右边图形成中心对称的有( )A.1组B.2组C.3组D.4组2.下列图形中,是中心对称图形,但不是轴对称图形的是( )A.平行四边形B.矩形C.菱形D.等腰梯形3.如图23—80所示的图形中,既是中心对称图形,又是轴对称图形的是( )4.如图23—81所示的图形中,是中心对称图形,但不是轴对称图形的是( )5.在线段、直线、角、等腰三角形、圆中,既是轴对称图形,又是中心对称图形的有( ) A.2个B.3个C.4个D.5个6.如图23—82所示的是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=1,则BB′的长为( )A.4 B.33C.233D.4337.已知|m-2|+(2n+3)2=O,则P(m,n)关于原点对称的点的坐标为.8.如图23—8 3所示,△ABO与△CDO都是等边三角形,已知△ABO绕点O逆时针旋转90°便到了△CDO的位置,则∠BOC= .9.如图23-84所示,哪些可以通过平移互相得到?哪些可以通过旋转互相得到?10.如图23-85所示,有一块长4 m、宽3 m的矩形园地,要在园地上开辟一个花坛,使花坛的面积是园地面积的一半,且使设计的图案既是中心对称图形,又是轴对称图形.11.(2009·安顺)△ABC在方格中的位置如图23-86所示.(1)请在方格纸上建立平面直角坐标系,使得A,B两点的坐标分别为(2,-1),(1,-4),并求C点的坐标;(2)作出△ABC关于横轴对称的△A1B1C1,再作出△ABC以坐标原点为旋转中心旋转180°后的△A2B2C2,并写出C1,C2两点的坐标.参考答案1.C2.A3.D4.C5.B6.D7.(一2,3 2 )8.30°9.解:(2)与(4)可以通过平移互相得到,(1)与(6),(3)与(5)可以通过旋转互相得到.10.解:如图23-87阴影部分所示,答案不唯一.11.提示:解题关键是建立平面直角坐标系.再解答.(1)建坐标系(略),C(3,-3) (2)画图(略),C1(3,3),C2(-3,3).。
23.2中心对称内容提要1.把一个图形绕着某一个定点旋转180︒,如果它能够和另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.2.中心对称的性质:(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)中心对称的两个图形是全等图形.3.中心对称作图的步骤:(1)首先确定对称中心和图形中的关键点;(2)作出关键点关于对称中心的对称点;(3)连接对应点部分,形成相应的图形.4.将一个图形绕着某个定点旋转180︒后能与自身重合,则这种图形叫做中心对称图形,这个定点叫做对称中心,常见的中心对称图形有:线段、平行四边形(包括:矩形、菱形、正方形)等.5.点(),--.P x y',P x y关于原点的对称点为()23.2.1中心对称基础训练1.下列说法中正确的是()A.全等的两个图形成中心对称B.成中心对称的两个图形必须重合C.成中心对称的两个图形全等D.旋转后能够重合的两个图形成中心对称2.如图,ABC∆关于点O成中心对称,则下列结论不成立的是()∆和'''A B CA.点A与点'A是对称点B.'=BO B OC.''∥AB A BD.'''∠=∠ACB C A B3.如下图是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()4.如图,ABC∆绕点O转了度到达∆和DEF∆关于点O中心对称,则ABCAO OD=.DEF∆,且:5.如图,把ABC∠=∆绕边AC的中点O旋转180︒到CDA∆的位置,则BC=,BAC ,ABC∆关于点O成对称.∆与CDA6.如图,直线EF经过平行四边形ABCD的对角线的交点,若3AE cm=,四边形AEFB的面积为215cm,则CF=,四边形EDCF的面积为.7.如图,已知ABC∆与ABC∆关于点P成中心对称.A B C∆,使'''∆和点P,画出'''A B C8.如图,ABC ∆和DEF ∆关于点O 成中心对称. (1)找出它们的对称中心O ;(2)若6AB =,5AC =,4BC =,求DEF ∆的周长;(3)连接AF ,CD ,试判断四边形ACDF 的形状,并说明理由.9.在平面直角坐标系中,ABC ∆的三个顶点坐标分别为()2,1A -,()3,3B -,()0,4C -. (1)画出ABC ∆关于原点O 成中心对称的111A B C ∆; (2)画出111A B C ∆关于y 轴对称的222A B C ∆.10.如图所示,已知ABC∆中,AD是中线,(1)画出以点D为对称中心,与ABD∆成中心对称的三角形;(2)猜想2AD与AB AC+的大小关系,并说明理由.23.2.2中心对称图形基础训练1.下列交通标志中,既是轴对称图形又是中心对称图形的是()2.如图,对于它的对称性表述正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形3.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是()A.①B.②C.③D.④4.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.45.线段是中心对称图形,它的对称中心是;平行四边形是对称图形,它的对称中心是.6.正方形是轴对称图形,它的对称轴共有条.7.如图,在数轴上,A,P两点表示的数分别是1,2,1A,2A关于点O对称,2A,3A关于1点P对称,A,4A关于点O对称,4A,5A关于点P对称……依此规律,则点14A表示的数3是.8.如图,在44⨯的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形),再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形.9.图①、图②均为76⨯的正方形网格,点A,B,C在格点上.(1)在图①中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形(画一个即可);(2)在图②中确定格点E,并画出以A,B,C,E为顶点的四边形,使其为中心对称图形(画一个即可).10.如图,将正方形ABCD中的ABD∆的位置,EF交AB于M,GF∆绕对称中心O旋转至GEF交BD于N,请猜想BM与FN有怎样的数量关系?并证明你的结论.23.2.3 关于原点对称的点的坐标基础训练1.如图所示,已知平行四边形ABCD 的两条对角线AC 与BD 交于平面直角坐标系的原点,点A 的坐标为()2,3-,则点C 的坐标为( ) A .()3,2-B .()2,3--C .()3,2-D .()2,3-2.在平面直角坐标系中,点()3,4P -关于原点对称的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.如果点(),P x y 关于原点对称的点是'P ,则'P 的坐标是( ) A .(),x yB .(),x y -C .(),x y -D .(),x y --4.如图,点A ,B ,C 的坐标分别为()0,1-,()0,2,()3,0.从下面四个点()3,3M ,()3,3N -,()3,0P -,()3,1Q -中选择一个点,使以点A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( ) A .点MB .点NC .点PD .点Q5.点()2,3P -关于x 轴对称的点的坐标是 ,关于原点对称的点的坐标是 .6.以下各点中,()5,0A -,()0,2B ,()2,1C -,()2,0D ,()0,5E ,()2,1F -,()2,1G --,关于原点对称的两点是.7.点(),4A a 与点()3,B b 关于原点对称,则a =,b =.8.如图所示,PQR ∆是ABC ∆经过某种变换后得到的图形,如果ABC ∆中任意一点M 的坐标是(),a b ,那么它的对应点N 的坐标为.9.在下列网格图中,每个小正方形的边长均为1个单位,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =.(1)试在图中作出ABC ∆以A 为旋转中心,沿顺时针方向旋转90︒后的图形11AB C ∆; (2)若点B 的坐标为()3,5-,试在图中画出直角坐标系,并标出A ,C 两点的坐标; (3)根据(2)中的坐标系作出与ABC ∆关于原点对称的图形222A B C ∆,并标出2B ,2C 两点的坐标.10.直角坐标系第二象限内的点()22,3P x x +与另一点()2,Q x y +关于原点对称,试求2x y +的值.能力提高1.已知点()1,1A a -和()2,1B b -关于原点对称,则a b +的值为( ) A .1-B .0C .1D .3-2.如图,将ABC ∆绕点()0,1C 旋转180︒得到''A B C ∆,设点A 的坐标为(),a b ,则点'A 的坐标为( )A .(),a b --B .(),1a b ---C .(),1a b --+D .(),2a b --+3.下列命题:(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等图形;(3)两个全等的图形一定成中心对称.其中真命题的个数是( ) A .0个B .1个C .2个D .3个4.如图,顺次连接矩形ABCD 各边中点,得到菱形EFGH ,这个由矩形和菱形所组成的图形( )A .是轴对称图形但不是中心对称图形B .是中心对称图形但不是轴对称图形C .既是轴对称图形又是中心对称图形D .没有对称性5.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,过点O 作直线分别交AD ,BC 于点E ,F .如果四边形AEFB 的面积为8,则平行四边形ABCD 的面积是.6.已知0a <,则点()21,3P a a ---+关于原点对称的点'P 在第象限.7.如图所示,点A ,B ,C 的坐标分别是()2,4,()5,1,()3,1-.若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为.8.如图,将等腰三角形ABC 绕底边BC 的中点O 旋转180︒. (1)画出旋转后的图形.(2)旋转后得到的三角形与原三角形拼成什么图形?说明理由.(3)要使拼成的图形为正方形,那么ABC ∆还应满足什么条件?为什么?9.如图,ABC ∆三个顶点的坐标分别是()1,1A ,()4,2B ,()3,4C . (1)试画出ABC ∆向左平移5个单位长度后得到的111A B C ∆; (2)试画出ABC ∆关于原点对称的222A B C ∆;(3)在x 轴上求作一点P ,使PAB ∆周长最小,试画出PAB ∆,并直接写出点P 的坐标.拓展探究1.有一块如图所示的土地,请划出一条分界线,把这块土地平均分给两户农民.(在以下的几个图形中用三种方法进行分割)2.有两块形状完全相同的不规则的四边形木板,如图所示,两位木工师傅通过测量可知∠=∠=︒,AD CD=.现要将其拼成正方形,思考一段时间后,一位木工师傅说“我可B D90以将这两块木板拼成一个正方形.”另一位木工师傅说:“我可以将一块木板拼成一个正方形,两块木板拼成两个正方形.”两位师傅把每一块木板都只分割一次,你知道他们是怎么做的吗?画出图形,并说明理由.23.2 参考答案:23.2.1 中心对称 基础训练1.C 2.D 3.C 4.180 1:1 5.AD DCA ∠ 中心 6.3cm 215cm 7.略 8.(1)略 (2)15 (3)四边形ACDF 为平行四边形,因为它的对角线互相平分. 9.(1)111A B C ∆如图所示;(2)222A B C ∆如图所示. 10.(1)如图所示(2)2AD AB AC <+.理由:ABD ∆与ECD ∆成中心对称,ADB EDC ∴∆∆≌.CE AB ∴=. AE CE AC >+,2AD AB AC ∴<+.23.2.2 中心对称图形 基础训练1.D 2.B 3.B 4.B 5.线段的中点 中心 对角线的交点 6.4 7.25-8.答案不唯一,如图(1)、(2)、(3)、(4)中任何一个位置都行. 9.(1)如图(1);(2)如图(2).10.猜想:BM FN =.证明:在正方形ABCD 中,BD 为对角线,O 为对称中心,BO DO ∴=,45BDA DBA ∠=∠=︒.GEF ∆为ABD ∆绕O 点旋转所得,FO DO ∴=,F BDA ∠=∠,OB OF ∴=,OBM OFN ∠=∠,OBM OFN ∴∆∆≌,BM FN ∴=.23.2.3 关于原点对称的点的坐标 基础训练1.D 2.D 3.D 4.C 5.(2,3) (2,3)- 6.C 和F 7.3- 4- 8.(,)a b -- 9.如图所示的11AB C ∆;(2)建立如图所示的直角坐标系,点A 的坐标为(0,1),点C 的坐标为(3,1)-; (3)如图所示的222A B C ∆,点2B 的坐标为(3,5)-点2C 的坐标为(3,1)-.10.根据题意,得2(2)(2)0x x x +++=,3y =-.11x ∴=-,22x =-. 点P 在第二象限, 220x x ∴+<.1x ∴=-.27x y ∴+=-. 能力提高1.A 2.D 3.B 4.C 5.16 6.四 7.(0,1) 8.(1)略;(2)菱形,理由是它的四条边都相等; (3)90∠=︒,因为有一个角是直角的菱形是正方形.9.如图所示,A ,B C 向左平移5个单位后的坐标分别为(4,1)-,(1,2)-,(2,4)-,连接这三个点,得111A B C ∆.(2)如图所示,A ,B ,C 关于原点的对称点的坐标分别为(1,1)--,(4,2)--,(3,4)--连接这三个点,得222A B C ∆.(3)如图所示,(2,0)P .作点A 关于x 轴的对称点A ',连接A B '交x 轴于点P ,则点P 即为所求作的点.拓展探究1.如图2.如图(1),将两块四边形拼成正方形,连接BD ,将DBC ∆绕D 点顺时针旋转90度,即可得出B BD '∆,此时三角形BB D '是等腰直角三角形,同理可得到正方形B EBD '.如图(2)将一个四边形拼成正方形,过点D 作DE BC ⊥于点E ,过点D 作DF BA ⊥交BA 的延长线于点F ,90FDA ADE CDE ADE ∴∠+∠=∠+∠=︒,FDA CDE ∴∠=∠,(AAS)AFD CED ∴∆∆≌,FD DE ∴=.又90B F BED ∠=∠=∠=︒,∴四边形FBED 为正方形.。
人教版九年级数学上册《23.2中心对称》同步练习题(附答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.点关于原点的对称点坐标是()A.B.C.D.2.下列图形中,一定是中心对称但不一定是轴对称图形的是()A.菱形B.矩形C.等腰梯形D.平行四边形3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.若点的坐标为,为坐标原点,将绕点按顺时针方向旋转得到,则点的坐标是()A.B.C.D.5.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)6.如图,在平面直角坐标系中,经过中心对称变换得到,那么中心对称的坐标为().A.B.C.D.7.如图,已知△ABC与△CDA关于点O中心对称,过点O任作直线分别交AD、BC于点M、N,下列结论:①点M和点N,点B和点D分别关于点O对称;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DMOC和四边形BNOA的面积相等;⑤△AOM和△CON成中心对称.其中正确的有()A.2个B.3个C.4个D.5个8.在平面坐标系中,已知直线与轴,轴分别交于点、,线段绕点顺时针方向旋转得线段,连接,则点坐标为()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b= .10.已知点M(﹣,3m)关于原点对称的点在第一象限,那么m的取值范围是.11.线段是中心对称图形,对称中心是;平行四边形也是中心对称图形,对称中心是.12.如图,△ABC和△DEF关于点O成中心对称,要得到△DEF,需要将△ABC绕点O旋转角是13.如图,直线垂直相交于点,曲线关于点成中心对称,点的对称点是点,于点,于点.若OB=3,OC=2,则阴影部分的面积之和为.三、解答题:(本题共5题,共45分)14.直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.15.如图,矩形ABCD与矩形AB′C′D′关于点A成中心对称,试判定四边形BDB′D′的形状,并说明你的理由.16.如图,已知△ABC中,BD是中线.(1)尺规作图:作出以D为对称中心,与△BCD成中心对称的△EAD.(2)猜想AB+BC与2BD的大小关系,并说明理由.17.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.(3)若点O的坐标为(0, 0),点B的坐标为(2, 3);写出△A1B1C1与△A2B2C2的对称中心的坐标。
九年级数学上册《中心对称》练习一、选择题(本大题共10道小题)1. 如图所示电视台的台标中,是中心对称图形的是()2. 如图,△DEF是由△ABC绕点O旋转180°得到的,则下列结论不成立的是()A.点A与点D是对称点B.BO=EOC.∠ACB=∠FDE D.AB∥DE3. 点(-1,2)关于原点的对称点坐标是()A.(-1,-2) B.(1,-2)C.(1,2) D.(2,-1)4. 如图,在△ABC中,AB=AC,△ABC与△FEC关于点C对称,连接AE,BF,当∠ACB=______时,四边形ABFE为矩形()A.90°B.60°C.45°D.30°5. 在平面直角坐标系中,点P(-3,m2+1)关于原点的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限6. 2019·长春德惠期末如图,△ABC与△A′B′C′关于点O中心对称,下列结论中不一定成立的是()A.∠ABC=∠A′C′B′ B.OA=OA′C.BC=B′C′ D.OC=OC′7. 如图,已知菱形ABCD与菱形EFGH关于直线BD上的某个点中心对称,则点B的对称点是()A.点E B.点FC.点G D.点H8. 2018·潍坊在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取一定点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP 的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP 的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,-300°)或P(3,420°)等,则与点P关于点O对称的点Q的极坐标表示不正确的是()A.Q(3,240°) B.Q(3,-120°)C.Q(3,600°) D.Q(3,-500°)9. 在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1对称,再作△B2A3B3与△B2A2B1关于点B2对称……如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n-1,3) B.(2n-1,3)C .(4n +1,3)D .(2n +1,3)10. 2020·河北模拟如图所示,A 1(1,3),A 2(32,32),A 3(2,3),A 4(3,0).作折线OA 1A 2A 3A 4关于点A 4中心对称的图形,得折线A 8A 7A 6A 5A 4,再作折线A 8A 7A 6A 5A 4关于点A 8中心对称的图形……以此类推,得到一个大的折线.现有一动点P 从原点O 出发,沿着折线以每秒1个单位长度的速度运动,设运动时间为t 秒.当t =2020时,点P 的坐标为( )A .(1010,3)B .(2020,32)C .(2016,0)D .(1010,32)二、填空题(本大题共7道小题)11.若点A (x +3,2y +1)与点A ′(y -5,1)关于原点对称,则点A 的坐标是________.12. 如图,已知BC 为等腰三角形纸片ABC 的底边,AD ⊥BC ,∠BAC ≠90°.将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角形拼成一个四边形,则能拼出______个中心对称图形.13. 如图所示,在△ABC 中,已知∠ACB =90°,AC =BC =2.若以AC 的中点O为旋转中心,将这个三角形旋转180°,点B 落在点B ′处,则BB ′=________.14. 若将等腰直角三角形AOB按图所示的方式放置,OB=2,则点A关于原点对称的点的坐标为________.15. 如图,点A,B,C的坐标分别为(2,4),(5,2),(3,-1).若以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标为________.16. 如图,将等边三角形AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是________.17. 如果将点P绕定点M旋转180°后与点Q重合,那么点P与点Q关于点M对称,定点M叫做对称中心,此时,M是线段PQ的中点.如图3,在平面直角坐标系中,△ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0),点P1,P2,P3,…中的相邻两点都关于△ABO的一个顶点对称,点P1与点P2关于点A 对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称……且这些对称中心依次循环.已知点P1的坐标是(1,1),则点P2020的坐标为________.三、作图题(本大题共2道小题)18. 图①②都是由边长为1的小等边三角形构成的网格,每个网格中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形;(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图①②中,均只需画出符合条件的一种情形)19. 探究题已知:如图①,四边形ABCD是中心对称图形,过对称中心O作直线EF分别交DC,AB于点E,F.(1)如图①,四边形AFED与四边形CEFB的形状________,大小________;(2)判断:经过中心对称图形的对称中心的任一条直线把这个图形分成面积相等的两个图形;()(3)你能否画一条直线,把图②中的平行四边形和圆同时分成形状相同、大小相等的两部分?四、解答题(本大题共4道小题)20. 如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称.已知A,D1,D 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B,C,B1,C1的坐标.21. 如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是不是等腰三角形,并说明理由;(2)在原图中画△FCE,使它与△BEC关于CE的中点O中心对称,此时四边形BCFE是什么特殊平行四边形?请说明理由.22. 如图,已知△ABC和点O.(1)在图中画出△A′B′C′,使△A′B′C′与△ABC关于点O对称;(2)点A,B,C,A′,B′,C′能组成哪几个平行四边形?请用符号表示出来. 23. 如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).(1)作出△ABC关于原点O成中心对称的△A1B1C1.(2)作出点A关于x轴的对称点A′.若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.人教版九年级数学上册23.2 中心对称同步课时练习-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】C[解析] 根据旋转的性质可知,点A与点D是对称点,BO=EO,AB∥DE,∠ACB=∠DFE≠∠FDE.故选C.3. 【答案】B4. 【答案】B[解析] ∵△ABC与△FEC关于点C对称,∴AC=FC,BC=EC,∴四边形ABFE是平行四边形.当AC=BC时,四边形ABFE是矩形,∴BC=AC=AB,∴∠ACB=60°.故选B.5. 【答案】D6. 【答案】A7. 【答案】D[解析] 由于点B,D,F,H在同一条直线上,根据中心对称的定义可知,只能是点B和点H是对称点,点F和点D是对称点.故选D.8. 【答案】D[解析] ∵P(3,60°)或P(3,-300°)或P(3,420°),由点Q与点P关于点O中心对称可得,点Q的极坐标为(3,240°)或(3,-120°)或(3,600°)等.9. 【答案】C[解析] A 1(1,3),A 2(3,-3),A 3(5,3),A 4(7,-3),…,∴点A n 的坐标为⎩⎨⎧(2n -1,3)(n 为奇数),(2n -1,-3)(n 为偶数).∵2n +1是奇数,∴点A 2n +1的坐标是(4n +1,3).故选C.10. 【答案】A二、填空题(本大题共7道小题)11. 【答案】(6,-1) [解析] 依题意,得⎩⎨⎧x +3=-(y -5),2y +1=-1,解得⎩⎨⎧x =3,y =-1.∴点A 的坐标为(6,-1).12. 【答案】3[解析] 在这里具有中心对称图形特征的是平行四边形,所以两个三角形中对应相等的两条边重合只能拼一个.因为三角形只有三条边,所以只有三种情况.13. 【答案】25 [解析] ∵△ABC 绕AC 的中点O 旋转了180°,∴OB =OB′,∴BB′=2OB. 又∵OC =OA =12AC =1,BC =2,∴在Rt △OBC 中,OB =OC 2+BC 2=12+22=5, ∴BB′=2OB =2 5.14. 【答案】(-1,-1)[解析] 如图,过点A 作AD ⊥OB 于点D.∵△AOB 是等腰直角三角形,OB =2,∴OD =AD =1,∴A(1,1),∴点A 关于原点对称的点的坐标为(-1,-1).15. 【答案】(0,1)16. 【答案】(-23,-2) [解析] 过点B 作BH ⊥y 轴于点H ,如图.∵△OAB为等边三角形,A(0,4),∴OH=AH=2,∠BOA=60°,∴BH=3OH=2 3,∴点B的坐标为(2 3,2).∵将△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(-2 3,-2).17. 【答案】(1,-3)[解析] 由题意可得点P2(1,-1),P3(-1,3),P4(1,-3),P5(1,3),P6(-1,-1),P7(1,1),可知6个点一个循环,2020÷6=336……4,故点P2020的坐标与点P4的坐标相同,为(1,-3).三、作图题(本大题共2道小题)18. 【答案】解:(1)答案不唯一,画出下列其中一种即可.(2)答案不唯一,画出下列其中一种即可.19. 【答案】(1)相同相等(2)√(3)能.作经过平行四边形对角线交点和圆心O的直线即可,作图略.四、解答题(本大题共4道小题)20. 【答案】解:(1)∵点D和点D1是对称点,∴对称中心是线段DD1的中点,∴对称中心的坐标是(0,5 2).(2)B(-2,4),C(-2,2),B1(2,1),C1(2,3).21. 【答案】解:(1)△BEC是等腰三角形.理由:∵在矩形ABCD中,AD∥BC,∴∠DEC=∠BCE.∵EC平分∠BED,∴∠DEC=∠BEC,∴∠BEC=∠BCE,∴BC=BE,∴△BEC是等腰三角形.(2)连接BO并延长至点F,使OF=OB,连接FE,FC,△FCE即为所求.四边形BCFE是菱形.理由:∵OB=OF,OE=OC,∴四边形BCFE是平行四边形.又∵BC=BE,∴▱BCFE是菱形.22. 【答案】解:(1)如图所示.(2)▱ABA′B′,▱BCB′C′,▱CA′C′A.23. 【答案】【思维教练】要作△ABC关于点O的中心对称图形,可先分别求出点A,B,C 关于点O 中心对称点,再顺次连接即可;(2)先作出点A′,再根据点A′在ΔA1B1C1,从而得出平移距离a满足A′A1<a<A′D(其中点D是A′A1与B1C1的交点).解:(1)如解图,△A1B1C1就是所求作的图形:(2分)(2)A′如图所示;(4分)a的取值范围是4<a<6.(6分)。
人教版九年级数学上册《23.2中心对称》同步练习题(附带答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.下列图形中,一定既是轴对称图形又是中心对称图形的是().A.等边三角形B.直角三角形C.平行四边形D.正方形2.下列手机手势解锁图案中,是中心对称图形的是()A.B.C.D.3.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.4.如图,在平面直角坐标系中,有一只蜗牛从点的位置沿着射线的方向爬行到另一象限的点,恰好,则点的坐标为()A.B.C.D.5.若P(x,3)与点Q(4,y)关于原点对称,则xy的值是( )A.12 B.﹣12 C.64 D.﹣646.在平面直角坐标系中,点A的坐标为(2,3),将点A绕原点逆时针旋转90°得到点A',则点A'的坐标为()A.(﹣3,2)B.(3,﹣2)C.(3,2)D.(﹣2,﹣3)7.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C.设点A′的坐标为(a,b),则点A的坐标为()A.(-a,-b) B.(-a,-b-1)C.(-a,-b+1) D.(-a,-b-2)8.如图,在平面直角坐标系中,的两条对角线,交于原点,平行轴,点的坐标是,点的坐标是,则点的坐标是()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.在等边三角形、正方形、直角三角形、等腰梯形中,既是轴对称图形,又是中心对称图形的是 . 10.已知m<0,则点P(m2,﹣m+3)关于原点的对称点Q在第象限.11.如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则AB′的长为12.在平面直角坐标系中,以原点为旋转中心,把A(3,4)逆时针旋转90°,得到点B,则点B的坐标为.13.如图,将绕点旋转得到,设点的坐标为,则点的坐标可表示为.三、解答题:(本题共5题,共45分)14.如图,点A坐标为(﹣2,3),将点A绕原点O顺时针旋转90°得点A′,求A′的坐标.15.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F,求证:点E,F关于AD的中心对称.16.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣5,1),B(﹣2,2),C (﹣1,4),请按下列要求画图:①将△ABC先向右平移4个单位长度、再向下平移1个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.17.如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.18.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,三点的坐标分别是(0,5),(0,1),(3,1).(1)求对称中心的坐标.(2)写出顶点D,B,的坐标.参考答案:1.D 2.B 3.A 4.B 5.A 6.A 7.D 8.A 9.正方形10.三11.212.(-4,3)13.(-a,4-b)14.解:作AB⊥y轴于B,A′B′⊥x轴于B′,如图∵点A坐标为(﹣2,3)∴AB=2,OB=3∵点A绕原点O顺时针旋转90°得点A′∴∠AOA′=90°,OA=OA′∵∠AOB+∠A′OB=90°,∠A′OB+∠A′OB′=90°∴∠AOB=∠A′OB′在△AOB和△A′OB′中∴△AOB≌△A′OB′∴OB=OB′=3,AB=A′B′=2∴点A′的坐标为(3,2).15.证明:如图,连接EF交于点O.∵DE∥AC交AB与E,DF∥AB交AC于F∴四边形AEDF是平行四边形∴点E,F关于AD的中心对称.16.解:如图所示:17.(1)解:在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,答案如图所示;(2)解:在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形,答案如图所示;18.(1)解:根据对称中心的性质,可得对称中心的坐标是B1B的中点∵A1(0,1),B1(3,1)∴∴正方形ABCD与正方形A1B1C1D1的边长为3∵A(0,5)∴B(-3,5)又B1(3,1)∴对称中心Q的坐标是(0,3).(2)解:∵A(0,5),B(-3,5),且AB=BC=CD=3 ∴点C的坐标为(-3.2)∴点D的坐标为(0,2)∵A1(0,1),B1(3,1),且正方形A1B1C1D1的边长为3 ∴∴。
九年级数学上册《中心对称》练习题及答案(人教版)1.如图,△DEF是由△ABC绕点O旋转180°得到的,则下列结论不成立的是()A.点A与点D是对应点B.BO=EOC.∠ACB=∠FED D.AB∥DE2.如图,将△ABC绕点C(0,﹣1)旋转180°得到△A′B′C,若点A的坐标为(﹣4,﹣3),则点A′的坐标为.3.下列图形中,是中心对称图形也是轴对称图形的是()A.B.C.D.4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.在平面直角坐标系中,若点A(x+1,2y+1)与点A'(y﹣2,x)关于原点O对称,则代数式x2﹣y2的值为.6.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.7.在平面直角坐标系中,点P(2,3)与点P′(2a+b,a+2b)关于原点对称,则a﹣b的值为.8.下列说法错误的是()A.成中心对称的两个图形的对称点到对称中心的距离相等B.在成中心对称的两个图形中,连接对称点的线段都经过对称中心C.如果两个图形的对应点连成的线段都经过某一点,那么两个图形一定关于这个一点成中心对称D.成中心对称的两个图形中的对应线段平行(或在同一条直线上)且相等,对应角也相等9.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF=CE,求证:FD=BE.10.如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD________∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是BD=CD+AD;(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=3 AD;(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明).11.如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E,交CD于点F.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.参考答案1.如图,△DEF是由△ABC绕点O旋转180°得到的,则下列结论不成立的是()A.点A与点D是对应点B.BO=EOC.∠ACB=∠FED D.AB∥DE【解答】解:根据旋转的性质可知点A与点D是对应点BO=EOAB∥DE∠ACB=∠DFE≠∠FDE.故选:C.2.如图,将△ABC绕点C(0,﹣1)旋转180°得到△A′B′C,若点A的坐标为(﹣4,﹣3),则点A′的坐标为(4,1).【解答】解:作A′E⊥y轴于点E,AD⊥y轴于点D,则∠A′EC=∠ADC∵∠A′CE=∠ACD,AC=A′C∴△A′EC≌△ADC(AAS)∴AD=A′E=4,CE=CD∵OD=3,OC=1∴CD=2∴CE=2∴OE=1∴点A′的坐标为(4,1).故答案为:(4,1).3.下列图形中,是中心对称图形也是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项符合题意;D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.故选:C.4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.5.在平面直角坐标系中,若点A(x+1,2y+1)与点A'(y﹣2,x)关于原点O对称,则代数式x2﹣y2的值为5.【解答】解:∵点A(x+1,2y+1)与点A'(y﹣2,x)关于原点O对称∴解得:故x2﹣y2=9﹣4=5.故答案为:5.6.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【解答】解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限∴点P(a﹣3,2﹣a)在第二象限∴解得:a<2.则a的取值范围在数轴上表示正确的是:.故选:C.7.在平面直角坐标系中,点P(2,3)与点P′(2a+b,a+2b)关于原点对称,则a﹣b的值为1.【解答】解:根据两个点关于原点对称,则横、纵坐标都是原数的相反数得:2a+b=﹣2,a+2b=﹣3解得:a=﹣,b=﹣,a﹣b=1.故答案为:1.8.下列说法错误的是()A.成中心对称的两个图形的对称点到对称中心的距离相等B.在成中心对称的两个图形中,连接对称点的线段都经过对称中心C.如果两个图形的对应点连成的线段都经过某一点,那么两个图形一定关于这个一点成中心对称D.成中心对称的两个图形中的对应线段平行(或在同一条直线上)且相等,对应角也相等【解答】C9.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF=CE,求证:FD=BE.【解答】证明:∵△ABO与△CDO关于O点中心对称∴BO=DO,AO=CO∵AF =CE∴AO ﹣AF =CO ﹣CE ∴FO =EO在△FOD 和△EOB 中∴△FOD ≌△EOB (SAS ) ∴DF =BE .10.如图1,在△ABC 中,AB=AC ,射线BP 从BA 所在位置开始绕点B 顺时针旋转,旋转角为α(0°<α<180°)(1)当∠BAC=60°时,将BP 旋转到图2位置,点D 在射线BP 上.若∠CDP=120°,则∠ACD________∠ABD (填“>”、“=”、“<”),线段BD 、CD 与AD 之间的数量关系是 BD=CD+AD ; (2)当∠BAC=120°时,将BP 旋转到图3位置,点D 在射线BP 上,若∠CDP=60°,求证:BD ﹣CD=3AD ;(3)将图3中的BP 继续旋转,当30°<α<180°时,点D 是直线BP 上一点(点P 不在线段BD 上),若∠CDP=120°,请直接写出线段BD 、CD 与AD 之间的数量关系(不必证明).【解答】(1)如图2,∵∠CDP=120° ∴∠CDB=60° ∵∠BAC=60°∴∠CDB=∠BAC=60° ∴A 、B 、C 、D 四点共圆 ∴∠ACD=∠ABD .在BP 上截取BE=CD ,连接AE . 在△DCA 与△EBA 中AC AB ACD ABE CD BE =⎧⎪∠=∠⎨⎪=⎩∴△DCA ≌△EBA (SAS ) ∴AD=AE ,∠DAC=∠EAB ∵∠CAB=∠CAE+∠EAB=60° ∴∠DAE=60°∴△ADE 是等边三角形 ∴DE=AD . ∵BD=BE+DE ∴BD=CD+AD .故答案为=,BD=CD+AD ;(2)如图3,设AC 与BD 相交于点O ,在BP 上截取BE=CD ,连接AE ,过A 作AF ⊥BD 于F . ∵∠CDP=60° ∴∠CDB=120°. ∵∠CAB=120° ∴∠CDB=∠CAB ∵∠DOC=∠AOB ∴△DOC ∽△AOB ∴∠DCA=∠EBA . 在△DCA 与△EBA 中AC AB ACD ABE CD BE =⎧⎪∠=∠⎨⎪=⎩∴△DCA ≌△EBA (SAS ) ∴AD=AE ,∠DAC=∠EAB . ∵∠CAB=∠CAE+∠EAB=120° ∴∠DAE=120°∴∠ADE=∠AED=1801202-=30°.∵在Rt △ADF 中,∠ADF=30°∴DF=32AD ∴DE=2DF=3AD∴BD=DE+BE=3AD+CD ∴BD ﹣CD=3AD ;(3)线段BD 、CD 与AD 之间的数量关系为BD+CD=3AD 或CD ﹣BD=3AD .11.如图,点P 是正方形ABCD 内的一点,连接CP ,将线段CP 绕点C 顺时针旋转90°,得到线段CQ ,连接BP ,DQ .(1)如图a ,求证:△BCP ≌△DCQ ;(2)如图,延长BP 交直线DQ 于点E ,交CD 于点F . ①如图b ,求证:BE ⊥DQ ;②如图c ,若△BCP 为等边三角形,判断△DEP 的形状,并说明理由.【解答】(1)证明:∵∠BCD=90°,∠PCQ=90° ∴∠BCP=∠DCQ 在△BCP 和△DCQ 中BC=CD BCP=DCQ PC=QC ⎧⎪∠∠⎨⎪⎩∴△BCP ≌△DCQ ;(2)①如图b ,∵△BCP ≌△DCQ ∴∠CBF=∠EDF ,又∠BFC=∠DFE ∴∠DEF=∠BCF=90° ∴BE ⊥DQ ;②∵△BCP 为等边三角形∴∠BCP=60°,∴∠PCD=30° ∵△BCP 为等边三角形,且BC=CD ∴CP=CD∴∠CPD=∠CDP=75°,又∠BPC=60°,∠CDQ=60° ∴∠EPD=45°,∠EDP=45° ∴△DEP 为等腰直角三角形.。
九年级数学上册《中心对称》练习题及答案解析学校:___________姓名:___________班级:___________一、单选题1.将一张圆形纸片对折再对折,得到如下左图,然后沿着虚线剪开,得到两部分.其中一部分展开后的平面图形是()A.B.C.D.2.下列图案中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.直角三角形BC ,BC边上的高为4,则图中阴影部分的面3.如图,在平行四边形ABCD中,AC,BD为对角线,6积为()A.3B.6C.12D.244.成中心对称的两个图形,下列说法正确的是()①一定形状相同;②大小可能不等;③对称中心必在图形上;④对称中心可能只在一个图形上;⑤对称中心必在对应点的连线上.A .①③B .③④C .④⑤D .①⑤5.如图,点A 是反比例函数()20=>y x x 的图象上任意一点,AB x ∥轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD ,其中C ,D 在x 轴上,则ABCD S 为( )A .6B .5C .4D .36.如图,点O 是矩形ABCD 的对称中心,点E 在AB 边上,连接CE .若点B 与点O 关于CE 对称,则CB :AB 为( )A .12 B C D二、填空题7.如图,在等腰ABC 中,120A ∠=︒,顶点B 在ODEF 的边DE 上,已知140∠=︒,则2∠=_________.8.在平面内,相交的两条直线是中心对称图形,它的对称中心是________.9.如图,△ABC 和△DEC 关于点C 成中心对称,若AC =1,AB =2,△BAC =90°,则AE 的长是_________.10.在Rt ABC 中,90ACB ∠=︒,8AC =,6BC =,D 是AB 中点,点F 在射线AC 上,连接DF ,将ADF 沿DF 翻折,点A 对应点为点G ,当DG AC ⊥时,线段AG 的长为______.11.如图,在菱形ABCD 中,AB =6,60ABC ∠=︒,AC 与BD 交于点O ,点N 在AC 上且AN =2,点M 在BC 上且BM =23BC ,P 为对角线BD 上一点,则PM ﹣PN 的最大值为____.12.如图,在平面直角坐标系中,等边ABC 与等边BDE 是以原点为位似中心的位似图形,且相似比为13,点A 、B 、D 在x 轴上,若等边BDE 的边长为12,则点C 的坐标为_________.三、解答题13.请你画出一条直线,把如图所示的平行四边形和圆两个图形分成面积相等的两部分(保留作图痕迹).14.如图,已知ABC 和A B C ''''''△ 及点O .(1)画出ABC 关于点O 对称的;(2)若A B C ''''''△与A B C '''关于点O '对称,请确定点O '的位置.15.已知90ABN ∠=︒,在ABN ∠内部作等腰ABC ,AB AC =,()090BAC αα∠=︒<≤︒.点D 为射线BN 上任意一点(与点B 不重合),连接AD ,将线段AD 绕点A 逆时针旋转α得到线段AE ,连接EC 并延长交射线BN 于点F .(1)如图1,当90α=︒时,线段BF 与CF 的数量关系是_________;(2)如图2,当090α︒<<︒时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若60α=︒,AB =BD m =,过点E 作EP BN ⊥,垂足为P ,请直接写出PD 的长(用含有m 的式子表示).16.全等三角形知识结构图17.在平面直角坐标系中,(),P a b 是第一象限内一点,给出如下定义:1a k b =和2k b a=两个值中的最大值叫做点P 的“倾斜系数”k .(1)求点()6,2P 的“倾斜系数”k 的值;(2)△若点(),P a b 的“倾斜系数”2k =,请写出a 和b 的数量关系,并说明理由;△若点(),P a b 的“倾斜系数”2k =,且3a b +=,求OP 的长;(3)如图,边长为2的正方形ABCD 沿直线AC :y x =运动,(),P a b 是正方形ABCD 上任意一点,且点P 的“倾斜系数”k <a 的取值范围.参考答案与解析:1.C【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来,也可根据折痕形成的对角线特点进行判定.【详解】根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直平分.故选C .【点睛】本题主要考查学生的动手能力及空间想象能力,以及菱形的判定.掌握“对角线互相垂直平分的四边形是菱形”是解题关键.2.C【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,不符合题意;B、平行四边形不是轴对称图形,是中心对称图形,不符合题意;C、矩形是轴对称图形,也是中心对称图形,符合题意;D、直角三角形不一定是轴对称图形,不是中心对称图形,不符合题意.故选C.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.C【分析】由题意,图中阴影部分的每一块都与非阴影部分的某一块关于平行四边形的中心对称,所以可以由中心对称图形的性质得到解答.【详解】由题意,图中阴影部分的每一块关于平行四边形的中心对称图形都在平行四边形上,且都是非阴影的部分,所以由中心对称图形的性质可得:所求的面积=116412 22ABCDS=⨯⨯=.故选C.【点睛】本题考查中心对称图形的判定和性质,掌握中心对称图形的性质是解题关键.4.D【分析】根据成中心对称的图形的性质,对各小题分析判断后利用排除法求解.【详解】△成中心对称的两个图形能够完全重合,所以一定形状相同,故本小题正确;△成中心对称的两个图形能够完全重合,所以大小一定相等,故本小题错误;△对称中心不一定在图形上,故本小题错误;△对称中心不一定在任何一个图形上,故本小题错误;△对称中心为对应点连线的中点,所以必在对应点的连线上,故本小题正确.综上所述:正确的有△△.故选D.【点睛】本题考查了中心对称,是基本概念题,熟练掌握成中心对称图形的性质是解题的关键.5.B【分析】设A的纵坐标是b,则B的纵坐标也是b,即可求得A、B的横坐标,则AB的长度即可求得,然后利用平行四边形的面积公式即可求解.【详解】解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=2x得,b=2x,则x=2b,即A的横坐标是2b;把y =b 代入y =-3x 得,b =-3x ,则x =3b ,B 的横坐标是:-3b. 则AB =2b -(-3b)=5b . 则S ▱ABCD =5b×b =5. 故选:B .【点睛】本题考查了是反比例函数与平行四边形的综合题,理解A 、B 的纵坐标是同一个值,表示出AB 的长度是关键.6.C【分析】连接DB ,AC ,OE ,利用对称得出OE =EB ,进而利用全等三角形的判定和性质得出OC =BC ,进而解答即可.【详解】解:连接DB ,AC ,OE ,△四边形ABCD 是矩形,△AC =DB ,△ABC =90°,OC =OA =OB =OD ,△点B 与点O 关于CE 对称,△OE =EB ,△OEC =△BEC ,在△COE 与△CBE 中,OE BE OEC BEC CE CE =⎧⎪∠=∠⎨⎪=⎩,△△COE△△CBE (SAS ),△OC =CB ,△AC =2BC ,△△ABC =90°,△AB,即CB :AB故选:C .【点睛】此题考查中心对称,全等三角形的性质与判定,矩形的性质,和勾股定理,利用对称得出OE=EB 是解题的关键.7.110º【分析】先根据等腰三角形的性质求出△ABC的度数;再根据平行四边形对边平行和两直线平行同旁内角互补的性质,得出△2+△ABE=180º,代入求解即可.【详解】解:△ABC是等腰三角形,△A=120º,△△ABC=△C=(180º-△A)÷2=30º,△四边形ODEF是平行四边形,△OF∥DE,△△2+△ABE=180º,即△2+30º+40º=180º,△△2=110º.故答案为:110º.【点睛】此题考查了等腰三角形的性质和平行四边形的性质,解题的关键是数形结合,熟练运用上述知识求解.8.两条直线的交点【分析】根据中心对称图形定义,我们可知图形绕交点旋转180°后,仍然能与原图形重合,所以两条直线的交点即为图形的对称中心.【详解】解:△两条相交直线绕他们的交点旋转180°后,仍能与原图形重合△两直线的交点就是图形的对称中心.故答案为:两条直线的交点.9.【分析】根据中心对称的性质AD=DE及△D=90゜,由勾股定理即可求得AE的长.【详解】△△DEC与△ABC关于点C成中心对称,△△ABC△△DEC,△AB=DE=2,AC=DC=1,△D=△BAC=90°,△AD=2,△△D=90°,△AE故答案为【点睛】本题考查了中心对称的性质,勾股定理等知识,关键中心对称性质的应用.10.【分析】由勾股定理求得AB 的长,延长GD 交AC 于E ,则DE △BC ,DE 是△ABC 的中位线,可得AE 、DE 、DG 的长,再由勾股定理解Rt △AGE 即可解答;【详解】解:由题意作图如下,延长GD 交AC 于E ,·Rt △ABC 中,由勾股定理得:AB 10=,△GE △AC ,BC △AC ,△DE △BC ,△D 是AB 中点,△DE 是△ABC 的中位线,△DE =12BC =3,AE =12AC =4,由折叠性质可得:DG =AD =12AB =5,Rt △AGE 中,EG =ED +DG =8,由勾股定理得:AG=故答案为:【点睛】本题考查了勾股定理,三角形的中位线,折叠的性质,正确作出辅助线是解题关键.11.2【分析】作点N 关于BD 的对称点N ',连接,MN PN '',从而可得PM PN PM PN MN ''-=-≤,再根据菱形的性质、等边三角形的判定证出CMN '△是等边三角形,然后根据等边三角形的性质可得2MN '=,由此即可得. 【详解】解:四边形ABCD 是菱形,6AB =, 6AB BC ∴==,OA OC =,AC BD ⊥,60ABC ∠=︒,ABC ∴是等边三角形,6,60AC AB ACB ∴==∠=︒,3OA OC ∴==,2AN =,1ON ∴=,如图,作点N 关于BD 的对称点N ',连接,MN PN '',则1,ON ON PN PN ''===,2,CN OC ON PM PN PM PN MN ''''∴=-=-=-≤,当且仅当,,P N M '共线时,等号成立, 23BM BC =,6BC =, 123CM BC ∴==, CMN '∴是等边三角形,2MN CM '∴==,即PM PN -的最大值为2,故答案为:2.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、轴对称的性质等知识点,熟练掌握菱形的性质是解题关键.12.(4,【分析】作CF △AB 于F ,根据位似图形的性质得到BC △DE ,根据相似三角形的性质求出OA 、AB ,根据等边三角形的性质计算,得到答案.【详解】解:作CF △AB 于F ,△等边△ABC与等边△BDE是以原点为位似中心的位似图形,△BC△DE,△△OBC△△ODE,△BC OB DE OD=,△△ABC与△BDE的相似比为13,等边△BDE边长为12,△1, 12123==+BC OBOB解得,BC=4,OB=6,△OA=2,AB=BC=4,△CA=CB,CF△AB,△AF=2,由勾股定理得,CF△OF=OA+AF=2+2=4,△点C的坐标为(4,故答案为:(4,.【点睛】本题考查的是位似变换的概念和性质、等边三角形的性质、掌握位似变换的概念、相似三角形的性质是解题的关键.13.见解析【详解】试题分析:根据平行四边形的性质,过平行四边形中心的直线把平行四边形分成面积相等的两部分;根据圆的性质,过圆心的直线把圆分成面积相等的两部分,所以过平行四边形的中心与圆心的直线就是所要求作的直线.所以过平行四版型的中心和圆心的直线就是所求做的直线.解:如图所示.点睛:本题考查了中心对称图形的性质,熟悉过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.14.(1)见解析(2)见解析【分析】(1)连接三角形的各顶点与O 的连线,并延长相同长度,找到对应点,顺次连接.(2)若A B C ''''''△与A B C '''关于点O '对称,连接两组对应点的连线的交点O 就是对称点.(1)(2)【点睛】本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,看图是关键.15.(1)BF =CF(2)成立;理由见解析 (3)62m PD =-或PD =0或62m PD =-【分析】(1)连接AF ,先根据“SAS”证明ACE ABD ∆∆≌,得出90ACE ABD ∠=∠=︒,再证明Rt Rt ABF ACF ≌,即可得出结论;(2)连接AF ,先说明EAC BAD ∠=∠,然后根据“SAS”证明ACE ABD ∆∆≌,得出90ACE ABD ∠=∠=︒,再证明Rt Rt ABF ACF ≌,即可得出结论;(3)先根据60α=︒,AB =AC ,得出△ABC 为等边三角形,再按照60BAD ∠︒<,60BAD ∠=︒,60BAD ∠︒>三种情况进行讨论,得出结果即可.(1)解:BF =CF ;理由如下:连接AF ,如图所示:根据旋转可知,90DAE α∠==︒,AE =AD ,△△BAC =90°,△90EAC CAD ∠+∠=︒,90BAD CAD ∠+∠=︒,△EAC BAD ∠=∠,△AC =AB ,△ACE ABD ∆∆≌(SAS ),△90ACE ABD ∠=∠=︒,△1809090∠=︒-︒=︒ACF ,△在Rt△ABF 与Rt△ACF 中AB AC AF AF =⎧⎨=⎩, △Rt Rt ABF ACF ≌(HL ),△BF =CF .故答案为:BF =CF .(2)成立;理由如下:连接AF ,如图所示:根据旋转可知,DAE α∠=,AE =AD ,△BAC α∠=,△EAC CAD α∠-∠=,BAD CAD α∠-∠=,△EAC BAD ∠=∠,△AC =AB ,△ACE ABD ∆∆≌,△90ACE ABD ∠=∠=︒,△1809090∠=︒-︒=︒ACF ,△在Rt△ABF 与Rt△ACF 中AB AC AF AF =⎧⎨=⎩, △Rt Rt ABF ACF ≌(HL ),△BF =CF .(3)△60α=︒,AB =AC ,△△ABC 为等边三角形,△60ABC ACB BAC ∠=∠=∠=︒,AB AC BC ===,当60BAD ∠︒<时,连接AF ,如图所示:根据解析(2)可知,Rt Rt ABF ACF ≌, △1302BAF CAF BAC ∠=∠=∠=︒,△AB = tan tan30BF BAF AB∴∠=︒=,即tan304BF AB =⨯︒==, 4CF BF ∴==,根据解析(2)可知,ACE ABD ∆∆≌,△CE BD m ==,△4EF CF CE m =+=+,906030FBC FCB ∠=∠=︒-︒=︒,60EFP FBC FCB ∴∠=∠+∠=︒,△90EPF ∠=︒,△906030FEP ∠=︒-︒=︒, △()1142222m PF EF m ==+=+, 42622m m BP BF PF ∴=+=++=+, △6622m m PD BP BD m =-=+-=-; 当60BAD ∠=︒时,AD 与AC 重合,如图所示:△60DAE ∠=︒,AE AD =,△△ADE 为等边三角形,△△ADE =60°,△9030ADB BAC ∠=︒-∠=︒,△603090ADE ∠=︒+︒=︒,△此时点P 与点D 重合,0PD =;当60BAD ∠︒>时,连接AF ,如图所示:根据解析(2)可知,Rt Rt ABF ACF ≌,△1302BAF CAF BAC ∠=∠=∠=︒,△AB =tan tan30BFBAF AB ∴∠=︒=,即tan304BF AB =⨯︒==,4CF BF ∴==,根据解析(2)可知,ACE ABD ∆∆≌,△CE BD m ==,△4EF CF CE m =+=+,△906030FBC FCB ∠=∠=︒-︒=︒,60EFP FBC FCB ∴∠=∠+∠=︒,△90EPF ∠=︒,△906030FEP ∠=︒-︒=︒, △()1142222m PF EF m ==+=+, 42622m m BP BF PF ∴=+=++=+, △6622m m PD BD BF m ⎛⎫=-=-+=- ⎪⎝⎭; 综上分析可知,62m PD =-或PD =0或62m PD =-. 16.见解析 【详解】17.(1)3(2)△a -2b 或b =2a,△OP (3)a>【分析】(1)直接由“倾斜系数”定义求解即可;(2)△由点(),P a b 的“倾斜系数”2k =,由a b =2或b a =2求解即可;△由a =2b 或b =2a ,又因a +b =3,求出a 、b 值,即可得点P 坐标,从而由勾股定理可求解;(3)当点P 与点D 重合时,且ka 有最小临界值,此时,b a 2a a+a ;当点P 与B 点重合,且ka 有最大临界值,此时,ab =2a a =-a得k <a 的取值范围.(1) 解:由题意,得632=,2163=, △3>13,△点()6,2P 的“倾斜系数”k =3;(2)解:△a =2b 或b =2a ,△点(),P a b 的“倾斜系数”2k =, 当ab =2时,则a =2b ; 当ba =2时,则b =2a ,△a =2b 或b =2a ;△△(),P a b 的“倾斜系数”2k =, 当ab =2时,则a =2b△3a b +=,△2b +b =3,△b =1,△a =2,△P (2,1),△OP= 当ba =2时,则b =2a ,△3a b +=,△a +2a =3,△a=1,△b=2,△P(1,2)△OP=综上,OP(3)解:由题意知,当点P与点D重合时,且ka有最小临界值,如图,连接OD,延长DA交x轴于E,此时,ba则2 aa+=解得:a;△k<则1a>;当点P与B点重合,且ka有最大临界值,如图,连接OB,延长CB交x轴于F,此时,a b =则2a a - 解得:a△k <则3a >综上,若P 的“倾斜系数”k <a>【点睛】本题考查新定义,正方形的性质,正比例函数性质,解题的关键是:(1)(2)问理解新定义,(3)问求临界值.。
02 《中心对称配》套练习
【课前预习】如图,以点O 为中心,把△OAB 旋转180°.
【课堂思考】:你能找到关于点O 对称的两个三角形之间的一些关系吗?
中心对称性质1
: 。
中心对称性质2: 。
例1 (1)如图1,以点O 为对称中心,画出点A 关于点O 的对称点A ′.
(2)如图2,以点O 为对称中心,画出与⊿ABC 关于点O 对称的⊿A ′B ′C ′.
A • ·
o
图1
图2
B'
A
A
B
O
【当堂测检】
1.以点O 为中心,画出与线段AB 对称的线段A ′B ′.
2.如图,以点C 为对称中心,画出与四边形ABCD 对称的四边形A ′B ′CD ′.
3.如图,两个四边形关于某点对称,你能尝试找出它们的对称中心吗?
【课堂小结】
把 图形绕着某一个点旋转( ) ,如果它能够与
重合,
那么就说这两个图形关于这点对称,这个点叫做 ,两个图形关于
点对称也称中心对称,这两个图形中的对应点叫做关于中心的对称点 ①中心对称的两个图形 ;
②对应点连线都经过 ,并且被对称中心 。
教材P 67 复习巩固1
D C
A
B
A
B
.
O。
23.2 中心对称23.2.1中心对称基础题知识点1认识中心对称1.下列说法中正确的是()A.全等的两个图形成中心对称B.成中心对称的两个图形必须重合C.成中心对称的两个图形全等D.旋转后能够重合的两个图形成中心对称2.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有____________.3.如图所示,两个五角星关于某一点成中心对称,指出哪一点是对称中心,并指出图中点A、B、C、D的对称点.知识点2中心对称的性质4.如图,△ABC与△A′B′C′成中心对称.ED是△ABC的中位线,已知BC=4,则E′D′=() A.2 B.3C.4 D.1.55.如图所示,△ABC与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是()A.AB=A′B′,BC=B′C′B.AB∥A′B′,BC∥B′C′C.S△ABC=S△A′B′C′D.△ABC≌△A′OC′6.如果△ABC和△A′B′C′关于点O成中心对称,那么△ABC和△A′B′C′______相同,大小______,即它们是______关系.7.(邵阳中考)如图所示,已知△ABC与△CDA关于AC的中点O成中心对称,添加一个条件________,使四边形ABCD为矩形.8.如图,△A′B′C′与△ABC关于点O成中心对称,试从图中找出几种不同的结论.(至少三种)9.如图所示,△AOB与△COD关于点O成中心对称,连接BC,AD.(1)求证:四边形ABCD为平行四边形;(2)若△AOB的面积为15 cm2,求四边形ABCD的面积.知识点3 画中心对称图形10.如图所示,△ABC 和△DEF 是成中心对称的两个三角形,请找出它的对称中心.11.如图,已知△ABC 和点O.在图中画出△A ′B ′C ′,使△A′B′C′与△ABC 关于O 点成中心对称.中档题12.如图,△ABC 和△AB′C′成中心对称,A 为对称中心,若∠C =90°,∠B =30°,BC =1,则BB′的长为( )A .4 B.33C.233D.43313.下列说法中,正确的是( )A .在成中心对称的图形中,连接对称点的线段不一定都经过对称中心B .在成中心对称的图形中,连接对称点的线段都被对称中心平分C .若两个图形的对应点连成的线段都经过某一点,那么这两个图形一定关于这一点成中心对称D .以上说法都正确14.如图,在平面直角坐标系中,若△ABC 与△A 1B 1C 1关于E 点成中心对称,则对称中心E 点的坐标是________.15.(齐齐哈尔中考)如图所示,在四边形ABCD 中.(1)画出四边形A 1B 1C 1D 1,使四边形A 1B 1C 1D 1与四边形ABCD 关于直线MN 成轴对称; (2)画出四边形A 2B 2C 2D 2,使四边形A 2B 2C 2D 2与四边形ABCD 关于点O 中心对称; (3)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2是否对称,若对称请在图中画出对称轴或对称中心.16.如图,点O 是矩形ABCD 的对称中心,过点O 任意作直线l ,并过点B 作BE ⊥l 于E ,过点D 作DF ⊥l 于F ,求证:BE =DF.综合题17.如图所示,AD 是△ABC 的边BC 的中线.(1)画出以点D 为对称中心,与△ABD 成中心对称的三角形; (2)若AB =10,AC =12,求AD 长的取值范围.参考答案基础题1.C2.(1)(2)(3)3.点A 是对称中心,A 、B 、C 、D 关于A 点的对称点分别是A 、G 、H 、E.4.A5.D6.形状 相等 全等7.∠B =90°8.答案不唯一:如线段的相等关系:OA =OA′,OB =OB′,OC =OC′,AB =A′B′,AC =A′C′,BC =B ′C ′;三角形的全等关系:△ABC ≌△A′B′C′;平行关系:AB ∥A′B′,AC ∥A ′C′,BC ∥B ′C ′;角的相等关系:∠CAB =∠C′A′B′,∠CBA =∠C ′B ′A ′,∠BCA =∠B′C′A′. 9.(1)证明:∵△AOB 与△COD 关于点O 成中心对称,∴OA =OC ,OB =OD.∴四边形ABCD 为平行四边形.(2)四边形ABCD 的面积为60 cm 2. 10.图略,点O 即为所求. 11.图略. 中档题12.D 13.B 14.(3,-1)15.(1)图略.(2)图略.(3)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2对称,对称轴为图形中的直线EF. 16.证明:连接BD.∵点O 是矩形ABCD 的对称中心,∴点B 、O 、D 三点共线,BO =DO.∵BE ⊥l ,DF ⊥l ,∴∠BEO =∠DFO =90°.在△BEO 和△DFO 中,⎩⎪⎨⎪⎧∠BEO =∠DFO ,∠BOE =∠DOF ,BO =DO ,∴△BEO ≌△DFO.∴BE=DF.综合题17.(1)图略.(2)1<AD<11.作者留言:非常感谢!您浏览到此文档。
中心对称与中心对称图形一、基础练习1.下列命题正确的个数是()①关于中心对称的两个三角形是全等三角形;②两个全等三角形必定关于某一点成中心对称;③两个三角形对应点的连线都经过同一点,则这两个三角形关于该点成中心对称;④关于中心对称的两个三角形,对称点的连线都经过对称中心.A.1个B.2个C.3个D.4个2.如图,已知菱形ABCD与菱形EFGH关于直线BD上某个点成中心对称,则点B的对称点是()A.点E B.点F C.点G D.点H3.下面的图形中,是轴对称图形但不是中心对称图形的是()4.如图的四组图形中,左边图形与右边图形成中心对称的有________组.5.在图中,作出△ABC关于点E成中心对称的图形.6.一块如图所示的钢板,如何用一条直线将其分成面积相等的两部分?7.已知:如图,已知△ABC,点O为BC的中点.(1)画出△ABC绕边BC的中点O旋转180°得到的△DCB;(2)求证:四边形ABDC是平行四边形.二、、提高训练8.如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90°,将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个平行四边形,则能拼出中心对称图形________个.9.如图,在每个边长均为1的小正方形的方格纸中,△ABC的顶点和点O均与小正方形的顶点重合.(1)在方格纸中,将△ABC向下平移5个单位长度得到△A1B1C1,请画出△A1B1C1;(2)在方格纸中,将△ABC绕点O旋转180°得到△A2B2C2,请画出△A2B2C2.10.如图,在4×3的网格上,由个数相同的白色方块与黑色方块组成的一幅图案,请依照此图案分别设计出符合要求的图案(注:①不得与原图案相同;②黑白方块的个数相同).(1)是轴对称图形,又是中心对称图形;(2)是轴对称图形,但不是中心对称图形;(3)是中心对称图形,但不是轴对称图形.中心对称与中心对称图形(答案)1.B 2.D 3.D4.35.解:如图6.解:如图,将图形分成两个矩形,画一条同时经过两个矩形中心的直线即可.有三种思路:7.(1)解:如图(2)证明:因为△DCB是由△ABC绕点O旋转180°所得,所以点A和D,B和C关于点O中心对称.所以OB=OC,OA=OD.所以四边形ABDC是平行四边形.8.39.解:(1)、(210.解:(1)如图(2)如图.(3)如图。
《中心对称》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF的长为()A.2B.2C.D.42.(5分)如图,四边形ABCD与四边形FGHE关于一个点成中心对称,则这个点是()A.O1B.O2C.O3D.O43.(5分)如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′4.(5分)已知四边形ABCD与四边形A′B′C′D′关于点O成中心对称,则AB与A′B′的关系是()A.相等B.垂直C.相等并且平行D.相等并且平行或相等并且在同一直线上5.(5分)若两个图形关于某点成中心对称,则以下说法正确的是()①这两个图形一定全等;②对称点的连线一定经过对称中心;③一定存在某条直线,沿该直线折叠后的两个图形能互相重合.A.①②B.①③C.②③D.①②③二、填空题(本大题共5小题,共25.0分)6.(5分)如图,已知AB=3,AC=1,∠D=90°,△DEC与△ABC关于点C成中心对称,则AE的长是.7.(5分)如图,在平面直角坐标系xOy中,若点B与点A关于点O中心对称,则点B的坐标为.8.(5分)如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为.9.(5分)如图,在△ABC中,点O是AC的中点,△CDA与△ABC关于点O中心对称,若AB=6,∠BAC=40°,则CD的长度为,∠ACD的度数为°.10.(5分)如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=秒时,点P与点C中心对称,且对称中心在直径AB上.三、解答题(本大题共5小题,共50.0分)11.(10分)△ABC中,AD⊥BC于D,tan∠B=,tan∠C=1,AD=6,点E沿射线DC 方向一直运动,将点E绕点D逆时针旋转90°得到点F(F在射线DA上),点G与点E 关于点D成中心对称(点G在射线DB上),连接GE、EF、FG得到△GEF.(1)求BC的长;(2)在点E的运动过程中,设DE=x,△GEF与△ABC的重叠部分面积为S,求S与x 的函数关系式.12.(10分)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.13.(10分)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:;(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.14.(10分)如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式.15.(10分)如图是两个等边三角形拼成的四边形.(1)这个图形是不是旋转对称图形?是不是中心对称图形?若是,指出对称中心.(2)若△ACD旋转后能与△ABC重合,那么图形所在平面上可以作为旋转中心的点共有几个?请一一指出.《中心对称》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF的长为()A.2B.2C.D.4【分析】根据菱形的性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出EF为△ABD的中位线,根据三角形中位线定理求出即可.【解答】解:如图所示:连接BD、AC.∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(2)=,故选:C.【点评】本题考查了折叠性质,菱形性质,含30度角的直角三角形性质,勾股定理,平行线分线段成比例定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.2.(5分)如图,四边形ABCD与四边形FGHE关于一个点成中心对称,则这个点是()A.O1B.O2C.O3D.O4【分析】连接任意两对对应点,连线的交点即为对称中心;【解答】解:如图,连接HC和DE交于O1,故选:A.【点评】此题考查了中心对称的知识,解题的关键是了解成中心对称的两个图形的对应点的连线经过对称中心,难度不大.3.(5分)如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′【分析】根据中心对称的性质即可判断.【解答】解:对应点的连线被对称中心平分,A,B正确;成中心对称图形的两个图形是全等形,那么对应线段相等,C正确.故选:D.【点评】本题考查成中心对称两个图形的性质:对应点的连线被对称中心平分;成中心对称图形的两个图形是全等形.4.(5分)已知四边形ABCD与四边形A′B′C′D′关于点O成中心对称,则AB与A′B′的关系是()A.相等B.垂直C.相等并且平行D.相等并且平行或相等并且在同一直线上【分析】根据中心对称的性质即可得到结论.【解答】解:∵四边形ABCD与四边形A′B′C′D′关于点O成中心对称,∴AB与A′B′的关系是相等并且平行或相等并且在同一直线上,故选:D.【点评】此题主要考查了中心对称的图形性质,得出对应边是解题关键.5.(5分)若两个图形关于某点成中心对称,则以下说法正确的是()①这两个图形一定全等;②对称点的连线一定经过对称中心;③一定存在某条直线,沿该直线折叠后的两个图形能互相重合.A.①②B.①③C.②③D.①②③【分析】根据中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分进行分析即可.【解答】解:①这两个图形一定全等,说法正确;②对称点的连线一定经过对称中心,说法正确;③一定存在某条直线,沿该直线折叠后的两个图形能互相重合,说法错误;故选:A.【点评】此题主要考查了中心对称,关键是掌握中心对称的性质.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,已知AB=3,AC=1,∠D=90°,△DEC与△ABC关于点C成中心对称,则AE的长是.【分析】直接利用中心对称的性质得出DC,DE的长,进而利用勾股定理得出答案.【解答】解:∵△DEC与△ABC关于点C成中心对称,∴DC=AC=1,DE=AB=3,∴在Rt△EDA中,AE的长是:=.故答案为:.【点评】此题主要考查了中心对称以及勾股定理,正确得出DC,DE的长是解题关键.7.(5分)如图,在平面直角坐标系xOy中,若点B与点A关于点O中心对称,则点B的坐标为(2,﹣1).【分析】根据中心对称定义结合坐标系确定B点位置即可.【解答】解:∵A(﹣2,1),点B与点A关于点O中心对称,∴点B的坐标为(2,﹣1),故答案为:(2,﹣1).【点评】此题主要考查了中心对称,关键是掌握把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.8.(5分)如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为cm2.【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n﹣1阴影部分的和.【解答】解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=cm2.故答案为:cm2.【点评】考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.9.(5分)如图,在△ABC中,点O是AC的中点,△CDA与△ABC关于点O中心对称,若AB=6,∠BAC=40°,则CD的长度为6,∠ACD的度数为40°.【分析】直接利用中心对称图形的性质得出四边形ABCD是平行四边形,进而得出答案.【解答】解:∵点O是AC的中点,△CDA与△ABC关于点O中心对称,∴四边形ABCD是平行四边形,∴AB=DC=6,AB∥DC,∴∠BAC=∠ACD=40°.故答案为:6,40.【点评】此题主要考查了中心对称图形的性质,正确得出四边形ABCD是平行四边形是解题关键.10.(5分)如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=或或或秒时,点P与点C中心对称,且对称中心在直径AB上.【分析】根据中心对称的定义,可得P点的位置,根据弧长公式,可得,根据路程除以速度等于时间,可得答案.【解答】解:如图,当∠AOP1=40°时,P1与C1对称,=4π×=,t=÷π=;当∠AOP2=140°时,P2与C1对称,=4π×=π,t=÷π=;当∠AOP3=220°时,P3与C2对称,=4π×=,t=÷π=;当∠AOP4=320°时,P4与C1对称,=4π×=π,t=÷π=;故答案为:或或或.【点评】本题考查了中心对称,利用中心对称得出P点的位置是解题关键,又利用了弧长公式,要分类讨论,以防遗漏.三、解答题(本大题共5小题,共50.0分)11.(10分)△ABC中,AD⊥BC于D,tan∠B=,tan∠C=1,AD=6,点E沿射线DC 方向一直运动,将点E绕点D逆时针旋转90°得到点F(F在射线DA上),点G与点E 关于点D成中心对称(点G在射线DB上),连接GE、EF、FG得到△GEF.(1)求BC的长;(2)在点E的运动过程中,设DE=x,△GEF与△ABC的重叠部分面积为S,求S与x 的函数关系式.【分析】(1)解直角三角形求出BD,CD即可解决问题;(2)分三种情形:①如图1中,当0<x≤6时,重叠部分是△EFG.②如图2中,当6<x<12时,重叠部分是五边形ACGM.③当x≥12时,重叠部分是△ABC.分别求解即可解决问题;【解答】解:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°,∵tan∠B=,tan∠C=1,AD=6,∴CD=AD=6,BD=2AD=12,∴BC=BD+CD=18.(2)①如图1中,当0<x≤6时,重叠部分是△EFG,S=×2x×x=x2.②如图2中,当6<x<12时,重叠部分是五边形ACGM.作BK∥GF交DF的延长线于K,作MH⊥BC于H.易知:AB=6,DB=DK=12,∵FM∥BK,∴=,∴=,∴AM=(x﹣6),∵MH∥AD,∴=,∴=,∴MH=﹣x,∴S=S△ABC﹣S△BMG=×6×18﹣×(12﹣x)×(﹣x)=﹣x2+x+.③当x≥12时,重叠部分是△ABC,S=54,综上所述,S=.【点评】本题考查旋转变换,中心对称,解直角三角形,平行线的性质,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.12.(10分)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.【分析】(1)根据中心对称的性质可得AC=CD,BC=CE,然后根据对角线互相平分的四边形是平行四边形得到四边形ABDE是平行四边形,再根据平行四边形的对边互相平行且相等解答;(2)根据平行四边形的性质,对角线把四边形分成面积相等的四个部分解答;(3)∠ACB=60°.先判断出△ABC是等边三角形,根据等边三角形的三条边都相等可得AC=BC,然后求出AD=BE,再根据对角线相等的平行四边形是矩形证明.【解答】解:(1)∵△ABC与△DEC关于点C成中心对称,∴AC=CD,BC=CE,∴四边形ABDE是平行四边形,∴AE与BD平行且相等;(2)∵四边形ABDE是平行四边形,∴S△ABC=S△BCD=S△CDE=S△ACE,∵△ABC的面积为5cm2,∴四边形ABDE的面积=4×5=20cm2;(3)∠ACB=60°时,四边形ABDE为矩形.理由如下:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴AC=BC,∵四边形ABDE是平行四边形,∴AD=2AC,BE=2BC,∴AD=BE,∴四边形ABDE为矩形.【点评】本题考查了中心对称的性质,平行四边形的判定与性质,等边三角形的判定与性质,矩形的判定,熟记各性质与判定方法是解题的关键.13.(10分)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:(6,4);(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.【分析】(1)根据点B、D的坐标求出点C的横坐标与纵坐标,然后写出即可;(2)连接OC、BD得到矩形的中心,然后根据平分矩形面积的直线必过中心作出直线m 即可,再利用待定系数法求一次函数解析式解答.【解答】解:(1)∵B(6,0)、D(0,4),∴点C的横坐标是6,纵坐标是4,∴点C的坐标为(6,4);故答案为:(6,4);(2)直线m如图所示,对角线OC、BD的交点坐标为(3,2),设直线m的解析式为y=kx+b(k≠0),则,解得,所以,直线m的解析式为y=﹣x+6.【点评】本题考查了中心对称,矩形的性质,待定系数法求一次函数解析式,熟记过矩形的中心的直线把矩形的面积分成面积相等的两份是解题的关键.14.(10分)如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式.【分析】首先设AD与C′D′交于点F,CD与A′D交于点E,由正方形ABCD与正方形A′B′C′D′关于点O中心对称,易得四边形DED′F是正方形,又由正方形ABCD的边长为1,即可求得BD的长,继而求得OD、DE的长,则可求得y与x之间的函数关系式.【解答】解:如图,设AD与C′D′交于点F,CD与A′D交于点E,∵正方形ABCD与正方形A′B′C′D′关于点O中心对称,∴四边形DED′F是正方形,∵正方形ABCD的边长为1,∴BD==,∵OB=x,∴OD=BD﹣OB=﹣x,∴DE==(﹣x)=2﹣x,∴y=S正方形DED′F=DE2=(2﹣x)2.∴y与x之间的函数关系式为:y=(2﹣x)2.【点评】此题考查了中心对称的性质与正方形的性质.此题难度适中,注意掌握数形结合思想的应用.15.(10分)如图是两个等边三角形拼成的四边形.(1)这个图形是不是旋转对称图形?是不是中心对称图形?若是,指出对称中心.(2)若△ACD旋转后能与△ABC重合,那么图形所在平面上可以作为旋转中心的点共有几个?请一一指出.【分析】(1)根据旋转对称图形的定义得出即可;(2)利用△ACD旋转后能与△ABC重合,结合图形得出旋转中心.【解答】解:(1)这个图形是旋转对称图形,对称中心为AC的中点;(2)3个,旋转中心可以为:点A,点C,AC的中点.【点评】此题主要考查了旋转对称图形的定义,正确根据旋转的性质得出旋转中心是解题关键.。