概率论练习题
- 格式:ppt
- 大小:1.31 MB
- 文档页数:23
1. 袋中有8红 3白球,从中任取2球,至少有一白球概率为_______2. A.B 为独立事件,且P(AUB )=0.6, P(A)=0.4,则P(B)=_______________3. 若X~P(λ),则P(X)=____________4. 若X~N(2,σμ),则密度f(X)=_____________5.已知事件A 、B 互不相容,且P(AUB)=0.8,P(A)=0.5,则P(B)= ,P(A-B)= .6. 设()0.4,()0.3,()0.6P A P B P A B ===U ,则()P AB = .7. 设随机事件A, B 及其和事件AUB 的概率分别是0.4, 0.3, 0.6, 则)(B A P = ______.8.假设P (A )=0.4,P (A ∪B )=0.7,若A ,B 互不相容,则P (B )= ,若A ,B 相互独立,则P (B )= .9.若事件A 和B 相互独立,且P(A)=0.5,P(B)=0.6,则P(AUB)= ________.10.设事件A 、B 满足P(A)=0.3,P(B)=0.8,P(AB)=0.2,则P(AUB)=________,)(B A P =________.12.设A ,B 两事件满足P (A )=0.8, P (B )=0.6,P (B|A )=0.5,则P (A ∪B )= .13.一射击运动员独立的向同一目标射击n 次,设每次命中的概率为p,则他恰好命中k 次的概率为 .14. 相互独立的,且有相同分布的n 个变量i X 的最小值min F (z)=________________15.设随机变量X 服从参数为2的泊松分布,则E (X ²)=________.16.若随机变量X 服从均值为2,方差为2σ的正态分布,且{24}0.3P X <<=,则{0}P X <= .17.设二维随机变量),(ηξ~N(0,1,1,4,0.5),则ξ~ 分布,D()ηξ+= .18.设()3D X =,31Y X =+,则XY ρ= . 19.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其它,010,20,),(y x cxy y x f , 则=c ____ ,=≤)1(X P ______.20.若随机变量ξ服从U(0,5),则x 2+ξx+1=0有实根的概率为______.21. 某射手每次射击的命中率为p ,现连续射击n 次,则恰好射中k 次的概率为________.23.设随机变量ξ与η相互独立, D(ξ) = 2, D(η) = 4, D(2ξ-η) = _______.24. 已知随机变量X ~N (-3, 1), Y ~N (2, 1 ), 且X 与Y 相互独立, Z = X -2Y, 则Z 的数学期望EZ= , 且Z ~ .25. 设X 和Y 是两个相互独立的随机变量, 且X ~N (0, 1), Y 在[-1, 1]上服从均匀分布, 则),cov(Y X = _______.26.某射手在三次射击中至少命中一次的概率为0.875,则这射手在一次射击中命中的概率为________.27.切比雪夫不等式表示为28. 棣美弗---拉普拉斯定理表明当n →∞时,n X ~B(n, p), 则_____________29.数理统计中的常用分布有三个,分别为___________ _____________ ____________1.设P(A)=0.8, P(B)=0.7, P(B A )=0.8, 则________A. A,B 独立B. A,B 互斥C. A,B 互逆D. A B ⊃2.设X~N(1,1),概率密度为f(x), 则______________A.5.0)0()0(=≥=≤X P X PB.),(),()(+∞-∞∈-=x x f x fC.5.0)1()1(=≥=≤X P X PD. ),(),(1)(+∞-∞∈--=x x F x F3.事件A ,B 为两个任意事件,则( )成立.a. (AUB )-B=A , b. (AUB )-B ⊂A ,c. (A-B)UB=A , d. (A-B)UB ⊂A .4.对于任意二事件,A B ,同时出现的概率()0P AB =,则( )a.,A B 不相容(相斥)b.AB 是不可能事件c.AB 未必是不可能事件d.()0,()0P A P B ==或5.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( ).a. 2)1(p -b.21p -c.)1(3p -d.以上都不对6.已知事件A ,B 满足)()(B A P AB P =,且4.0)(=A P ,则=)(B P ( ).a.0.4,b.0.5,c.0.6,d.0.77.设随机变量X 的概率密度为||)(x cex f -=,则c =( ). a.-21 b.0 c.21 d.18.( )不是某个随机变量的概率密度函数.a.⎩⎨⎧≤>=-0x00 x 2)(2x e x f , b.⎩⎨⎧<<=其它0101)(x x f c.⎩⎨⎧<<=其它 01x 0x )(x f ,d.⎪⎩⎪⎨⎧<<=其它020sin )(πx x x f 9.设随机变量ξ,η有:E ξη=E ξE η,则( ).a. D (ξη)=D ξD η, b. D (ξ+η)=D ξ+D η,c. ξ与η独立, d. ξ与η不独立.10. 设二维随机变量(,)X Y 服从G 上的均匀分布,G 的区域由曲线2x y =与x y =所围,则(,)X Y 的联合概率密度函数为( ). a.⎩⎨⎧∈=他其,0),(,6),(G y x y x f ; b.⎩⎨⎧∈=他其,0),(,6/1),(G y x y x f ; c.⎩⎨⎧∈=他其,0),(,2),(G y x y x f ; d.⎩⎨⎧∈=他其,0),(,2/1),(G y x y x f11.对于任意两个随机变量,X Y ,若()E XY EX EY =⋅,则( )a.()D XY DX DY =⋅b.()D X Y DX DY +=+c.,X Y 独立d.,X Y 不独立12.设随机变量,X Y 相互独立,)1,0(~N X ,)1,1(~N Y ,则( ).a.2/1)0(=≤+Y X P ;b.2/1)1(=≤+Y X P ;c.2/1)0(=≤-Y X P ;d.2/1)1(=≤-Y X P .13.设ξ的分布列为⎪⎪⎭⎫ ⎝⎛-949231201,则P(ξ<2|ξ≠0)= . a. 31 b. 73 c. 95 d. 1 14.设二维随机变量(,)X Y 服从G :122≤+y x 上的均匀分布,则(,)X Y 的联合概率密度函数为 .a. ⎩⎨⎧∈=他其,0),(,),(G y x y x f πb. ⎩⎨⎧∈=他其,0),(,/1),(G y x y x f π c.⎩⎨⎧∈=他其,0),(,2),(G y x y x f d. ⎩⎨⎧∈=他其,0),(,2/1),(G y x y x f 15.设10个电子管的寿命i X (10~1=i )独立同分布,且A X D i =)((10~1=i ),则10个电子管的平均寿命Y 的方差=)(Y D ( ).(a)A ; (b)A 1.0; (c)A 2.0; (d)A 10.16.设随机变量()2~,N ξμσ,则当σ增大时,概率{}P ξμσ-<=( ).. a .保持不变 b .单调减少 c .单调增加 d . 增减不定17.设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X ,则Z = min(X, Y)的分布函数是( ).a .)(z F Z = )(z F Xb .)(z F Z = )(z F Yc .)(z F Z = min{)(),(z F z F Y X }d .)(z F Z = 1-[1-)(z F X ][1-)(z F Y ]21.设随机变量X 和Y 独立同分布, 记U = X -Y, V = X + Y, 则U 和V 必然( ).a .不独立b . 独立c .相关系数不为零d .相关系数为零.22.设X 与Y 的相关系数0=ρ,则( ).a .X 与Y 相互独立b .X 与Y 不一定相关c .X 与Y 必不相关d .X 与Y 必相关23.在假设检验中,0H 为原假设,则所谓犯第二类错误指的是( ).a.0H 为真时,接受0H b.0H 不真时,接受0Hc.0H 不真时,拒绝0H d.0H 为真时,拒绝0H24.设n X X X ......,21是总体X~N(0,1)的样本, X ,S 分别为样本均值和样本标准差,则有________ A.X n ~ N(0,1) B. X ~N(0,1) C.)(~212n Xn i i χ∑= D.)1(~-n t S X四、计算题1.一袋中有4白,2红球,从袋取球两次,每次一只,(1)放回(2)不放回,就这两种情况求:1)取到两只都是白球的概率2)取到两只中至少有一白球的概率2.变量x 在[]π,0上服从均匀分布,求:x Y sin =的概率密度3.变量X ~()λe ,求;E ()x ,()x D4. 变量()k X 2~χ,求: ()()x D x E , 5.变量()y x ,的联合概率密度为()()⎩⎨⎧>>=+-其它,,00y 0,2,2x e y x f y x 6.变量()1,0~N X 求:函数Y=X 2的概率密度7.从总体X 中抽取样本x 1,x 2,x 3证明:1)三个统计量6323211x x x ++=μ),4423212x x x ++=μ),3333213x x x ++=μ) 都是总体均值的无偏估计量2)问哪个估计量更有效8. 变量()y x ,在R :x y x ≤≤≤≤0,10上服从均匀分布求:1)()()()()y D x D y E x E ,,,2)()y x Cov , ()y x R ,9.总体(),~λP X ()未知参数0>λ取样本值x 1x 2........x n 求:λ的最大似然估计值10.在所有两位数10-99中任取一数,求这数能被2或3整除的概率11.变量()y x ,的联合概率密度为()()23,0,0,0,x y Ae x y f x y -+⎧>>⎪=⎨⎪⎩其它 求:1)联合分布函数?2)在R :0,0,236x y x y >>+<内概率12.变量()2~2χX 其概率密度为()⎪⎩⎪⎨⎧≤>=-0,00,212x x e f x x x 求: ()()x D x E ,13、设随机变量ξ的概率密度函数为⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,)(其它x x x x x f 试求ξ的分布函数,数学期望E ξ和方差D ξ. 14、设随机变量ξ的概率密度函数为+∞<<∞-=-x Ae x f x ,)(.求:(1)常数A ,(2) ξ的分布函数,(3) ξ落在区间]1,1[-内的概率15、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(||∞<<∞-=--x e x p x λμλ0>λ.试求ξE ,ξD .16、设二维随机变数),(ηξ有密度函数)25)(16(),(222y x A y x p ++=π, 求常数A 及),(ηξ的分布函数。
概率运算练习题及答案概率论是数学中的一个重要分支,它研究随机现象的规律性。
在概率论中,我们经常需要进行概率的计算。
以下是一些概率运算的练习题,以及相应的答案,供学习者参考和练习。
# 练习题1一个袋子里有3个红球和2个蓝球。
随机从袋子中取出一个球,然后放回,再次取出一个球。
求以下事件的概率:A) 第一次取出的是红球。
B) 第二次取出的是红球。
C) 两次取出的都是红球。
# 答案1A) 第一次取出红球的概率是3/5,因为袋子里有5个球,其中3个是红球。
B) 由于取出的球会放回,所以第二次取出红球的概率也是3/5。
C) 两次取出都是红球的概率是第一次取出红球的概率乘以第二次取出红球的概率,即 (3/5) * (3/5) = 9/25。
# 练习题2一个骰子有6个面,每个面上的数字分别是1, 2, 3, 4, 5, 6。
投掷两次骰子,求以下事件的概率:A) 第一次投掷得到的数字大于3。
B) 第二次投掷得到的数字小于4。
C) 两次投掷得到的数字之和为7。
# 答案2A) 第一次投掷得到大于3的数字的概率是3/6,因为1, 2, 3的数字小于4,而骰子有6个面。
B) 第二次投掷得到小于4的数字的概率也是3/6,因为1, 2, 3的数字小于4。
C) 两次投掷得到的数字之和为7的组合有:(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)。
每一对组合出现的概率是1/36(因为每个数字出现的概率是1/6,且投掷两次是独立的)。
所以,两次投掷和为7的概率是6 * (1/36) = 1/6。
# 练习题3一个班级有30个学生,其中15个男生和15个女生。
随机选择5个学生组成一个小组。
求以下事件的概率:A) 小组中至少有3个男生。
B) 小组中恰好有3个男生。
# 答案3A) 至少有3个男生的小组可以是3个男生和2个女生,4个男生和1个女生,或者5个男生。
我们可以使用组合数学来计算这些概率。
- 3个男生和2个女生的组合数是 C(15,3) * C(15,2)。
1. 袋中有8红 3白球,从中任取2球,至少有一白球概率为_______2. A.B 为独立事件,且P(AUB )=0.6, P(A)=0.4,则P(B)=_______________3. 若X~P(λ),则P(X)=____________4. 若X~N(2,σμ),则密度f(X)=_____________5.已知事件A 、B 互不相容,且P(AUB)=0.8,P(A)=0.5,则P(B)= ,P(A-B)= .6. 设()0.4,()0.3,()0.6P A P B P A B ===,则()P AB = .7. 设随机事件A, B 及其和事件AUB 的概率分别是0.4, 0.3, 0.6, 则)(B A P = ______.8.假设P (A )=0.4,P (A ∪B )=0.7,若A ,B 互不相容,则P (B )= ,若A ,B 相互独立,则P (B )= .9.若事件A 和B 相互独立,且P(A)=0.5,P(B)=0.6,则P(AUB)= ________.10.设事件A 、B 满足P(A)=0.3,P(B)=0.8,P(AB)=0.2,则P(AUB)=________,)(B A P =________.12.设A ,B 两事件满足P (A )=0.8, P (B )=0.6,P (B|A )=0.5,则P (A ∪B )= .13.一射击运动员独立的向同一目标射击n 次,设每次命中的概率为p,则他恰好命中k 次的概率为 .14. 相互独立的,且有相同分布的n 个变量i X 的最小值min F (z)=________________15.设随机变量X 服从参数为2的泊松分布,则E (X ²)=________.16.若随机变量X 服从均值为2,方差为2σ的正态分布,且{24}0.3P X <<=,则{0}P X <= .17.设二维随机变量),(ηξ~N(0,1,1,4,0.5),则ξ~ 分布,D()ηξ+= .18.设()3D X =,31Y X =+,则XY ρ= . 19.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其它,010,20,),(y x cxy y x f , 则=c ____ ,=≤)1(X P ______.20.若随机变量ξ服从U(0,5),则x 2+ξx+1=0有实根的概率为______.21. 某射手每次射击的命中率为p ,现连续射击n 次,则恰好射中k 次的概率为________.23.设随机变量ξ与η相互独立, D(ξ) = 2, D(η) = 4, D(2ξ-η) = _______.24. 已知随机变量X ~N (-3, 1), Y ~N (2, 1 ), 且X 与Y 相互独立, Z = X -2Y, 则Z 的数学期望EZ= , 且Z ~ .25. 设X 和Y 是两个相互独立的随机变量, 且X ~N (0, 1), Y 在[-1, 1]上服从均匀分布, 则),cov(Y X = _______.26.某射手在三次射击中至少命中一次的概率为0.875,则这射手在一次射击中命中的概率为________.27.切比雪夫不等式表示为28. 棣美弗---拉普拉斯定理表明当n →∞时,n X ~B(n, p), 则_____________29.数理统计中的常用分布有三个,分别为___________ _____________ ____________1.设P(A)=0.8, P(B)=0.7, P(B A )=0.8, 则________A. A,B 独立B. A,B 互斥C. A,B 互逆D. A B ⊃2.设X~N(1,1),概率密度为f(x), 则______________A.5.0)0()0(=≥=≤X P X PB.),(),()(+∞-∞∈-=x x f x fC.5.0)1()1(=≥=≤X P X PD. ),(),(1)(+∞-∞∈--=x x F x F3.事件A ,B 为两个任意事件,则( )成立.a. (AUB )-B=A , b. (AUB )-B ⊂A ,c. (A-B)UB=A , d. (A-B)UB ⊂A .4.对于任意二事件,A B ,同时出现的概率()0P AB =,则( )a.,A B 不相容(相斥)b.AB 是不可能事件c.AB 未必是不可能事件d.()0,()0P A P B ==或5.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( ).a. 2)1(p -b.21p -c.)1(3p -d.以上都不对6.已知事件A ,B 满足)()(B A P AB P =,且4.0)(=A P ,则=)(B P ( ).a.0.4,b.0.5,c.0.6,d.0.77.设随机变量X 的概率密度为||)(x cex f -=,则c =( ). a.-21 b.0 c.21 d.18.( )不是某个随机变量的概率密度函数.a.⎩⎨⎧≤>=-0x00 x 2)(2x e x f , b.⎩⎨⎧<<=其它0101)(x x f c.⎩⎨⎧<<=其它 01x 0x )(x f ,d.⎪⎩⎪⎨⎧<<=其它020sin )(πx x x f 9.设随机变量ξ,η有:E ξη=E ξE η,则( ).a. D (ξη)=D ξD η, b. D (ξ+η)=D ξ+D η,c. ξ与η独立, d. ξ与η不独立.10. 设二维随机变量(,)X Y 服从G 上的均匀分布,G 的区域由曲线2x y =与x y =所围,则(,)X Y 的联合概率密度函数为( ). a.⎩⎨⎧∈=他其,0),(,6),(G y x y x f ; b.⎩⎨⎧∈=他其,0),(,6/1),(G y x y x f ; c.⎩⎨⎧∈=他其,0),(,2),(G y x y x f ; d.⎩⎨⎧∈=他其,0),(,2/1),(G y x y x f11.对于任意两个随机变量,X Y ,若()E XY EX EY =⋅,则( )a.()D XY DX DY =⋅b.()D X Y DX DY +=+c.,X Y 独立d.,X Y 不独立12.设随机变量,X Y 相互独立,)1,0(~N X ,)1,1(~N Y ,则( ).a.2/1)0(=≤+Y X P ;b.2/1)1(=≤+Y X P ;c.2/1)0(=≤-Y X P ;d.2/1)1(=≤-Y X P .13.设ξ的分布列为⎪⎪⎭⎫ ⎝⎛-949231201,则P(ξ<2|ξ≠0)= . a. 31 b. 73 c. 95 d. 1 14.设二维随机变量(,)X Y 服从G :122≤+y x 上的均匀分布,则(,)X Y 的联合概率密度函数为 .a. ⎩⎨⎧∈=他其,0),(,),(G y x y x f πb. ⎩⎨⎧∈=他其,0),(,/1),(G y x y x f π c.⎩⎨⎧∈=他其,0),(,2),(G y x y x f d. ⎩⎨⎧∈=他其,0),(,2/1),(G y x y x f 15.设10个电子管的寿命i X (10~1=i )独立同分布,且A X D i =)((10~1=i ),则10个电子管的平均寿命Y 的方差=)(Y D ( ).(a)A ; (b)A 1.0; (c)A 2.0; (d)A 10.16.设随机变量()2~,N ξμσ,则当σ增大时,概率{}P ξμσ-<=( ).. a .保持不变 b .单调减少 c .单调增加 d . 增减不定17.设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X ,则Z = min(X, Y)的分布函数是( ).a .)(z F Z = )(z F Xb .)(z F Z = )(z F Yc .)(z F Z = min{)(),(z F z F Y X }d .)(z F Z = 1-[1-)(z F X ][1-)(z F Y ]21.设随机变量X 和Y 独立同分布, 记U = X -Y, V = X + Y, 则U 和V 必然( ).a .不独立b . 独立c .相关系数不为零d .相关系数为零.22.设X 与Y 的相关系数0=ρ,则( ).a .X 与Y 相互独立b .X 与Y 不一定相关c .X 与Y 必不相关d .X 与Y 必相关23.在假设检验中,0H 为原假设,则所谓犯第二类错误指的是( ).a.0H 为真时,接受0H b.0H 不真时,接受0Hc.0H 不真时,拒绝0H d.0H 为真时,拒绝0H24.设n X X X ......,21是总体X~N(0,1)的样本, X ,S 分别为样本均值和样本标准差,则有________ A.X n ~ N(0,1) B. X ~N(0,1) C.)(~212n Xn i i χ∑= D.)1(~-n t S X四、计算题1.一袋中有4白,2红球,从袋取球两次,每次一只,(1)放回(2)不放回,就这两种情况求:1)取到两只都是白球的概率2)取到两只中至少有一白球的概率2.变量x 在[]π,0上服从均匀分布,求:x Y sin =的概率密度3.变量X ~()λe ,求;E ()x ,()x D4. 变量()k X 2~χ,求: ()()x D x E , 5.变量()y x ,的联合概率密度为()()⎩⎨⎧>>=+-其它,,00y 0,2,2x e y x f y x 6.变量()1,0~N X 求:函数Y=X 2的概率密度7.从总体X 中抽取样本x 1,x 2,x 3证明:1)三个统计量6323211x x x ++=μ ,4423212x x x ++=μ ,3333213x x x ++=μ 都是总体均值的无偏估计量2)问哪个估计量更有效8. 变量()y x ,在R :x y x ≤≤≤≤0,10上服从均匀分布求:1)()()()()y D x D y E x E ,,,2)()y x Cov , ()y x R ,9.总体(),~λP X ()未知参数0>λ取样本值x 1x 2........x n 求:λ的最大似然估计值10.在所有两位数10-99中任取一数,求这数能被2或3整除的概率11.变量()y x ,的联合概率密度为()()23,0,0,0,x y Ae x y f x y -+⎧>>⎪=⎨⎪⎩其它 求:1)联合分布函数?2)在R :0,0,236x y x y >>+<内概率12.变量()2~2χX 其概率密度为()⎪⎩⎪⎨⎧≤>=-0,00,212x x e f x x x 求: ()()x D x E ,13、设随机变量ξ的概率密度函数为⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,)(其它x x x x x f 试求ξ的分布函数,数学期望E ξ和方差D ξ. 14、设随机变量ξ的概率密度函数为+∞<<∞-=-x Ae x f x ,)(.求:(1)常数A ,(2) ξ的分布函数,(3) ξ落在区间]1,1[-内的概率15、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(||∞<<∞-=--x e x p x λμλ0>λ.试求ξE ,ξD .16、设二维随机变数),(ηξ有密度函数)25)(16(),(222y x A y x p ++=π, 求常数A 及),(ηξ的分布函数。
概率论练习题(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《概率论》练习题一、单项选择题1. A 、B 为两事件,则B A ⋃=( )A .B A ⋃ B .A ∪BC .A BD .A ∩B 2.对任意的事件A 、B ,有( )A .0)(=AB P ,则AB 不可能事件 B .1)(=⋃B A P ,则B A ⋃为必然事件C .)()()(B P A P B A P -=-D .)()()(AB P A P B A P -=⋂ 3.事件A 、B 互不相容,则( )A .1)(=⋃B A P B .1)(=⋂B A PC .)()()(B P A P AB P =D .)(1)(AB P A P -= 4.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件吗 B .A 与A 互不相容C .Ω=⋃A A D .A A =5.任意抛一个均匀的骰子两次,则这两次出现的点数之和为8的概率为( )A .363B .364C .365D .3626.已知A 、B 、C 两两独立,21)()()(===C P B P A P ,51)(=ABC P ,则)(C AB P 等于( )A .401B .201C .101D .417.事件A 、B 互为对立事件等价于( )(1)A 、B 互不相容 (2)A 、B 相互独立(3)Ω=⋃B A (4)A 、B 构成对样本空间的一个剖分、B 为两个事件,则)(B A P -=( )A .)()(B P A P - B .)()(AB P A P -C .)()(B P A P -D .)(A B P - 9.1A 、2A 、3A 为三个事件,则( )A .若321,,A A A 相互独立,则321,,A A A 两两独立;B .若321,,A A A 两两独立,则321,,A A A 相互独立;C .若)()()()(321321A P A P A P A A A P =,则321,,A A A 相互独立;D .若1A 与2A 独立,2A 与3A 独立,则1A 与3A 独立10.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A . B . C . D .11.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( )C. 设A 、B 为任意两个事件,则有( )A.(A ∪B )-B=AB.(A-B)∪B=AC.(A ∪B)-B ⊂A D .(A-B)∪B ⊂A 13.设A ,B 为两个互不相容事件,则下列各式错误..的是( ) A .P (AB )=0B .P (A ∪B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B-A )=P (B )14.设事件A ,B 相互独立,且P (A )=31,P (B )>0,则P (A|B )=( ) A .151 B .51 C .154 D .31 15.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( )A .P (AB )=l B .P (A )=1-P (B )C .P (AB )=P (A )P (B )D .P (A ∪B )=1 16.设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) A .P (AB )=0 B .P (A -B )=P (A )P (B ) C .P (A )+P (B )=1 D .P (A |B )=0 17.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ) A . B . C . D .18.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A19.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( )A .p 2B .(1-p )2C .1-2pD .p (1-p )20.已知P (A )=,P (B )=,且A ⊂B ,则P (A |B )=( ) A .0 B . C . D .121.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( )A .B .C .D .22.X 的密度为⎩⎨⎧∈=其它,0],0[,2)(A x x x f ,则A=( )A .41B .21C .1D .223.离散型随机变量X 的分布列为其分布函数为)(x F ,则=)3(F ( )A . 0B .3.0C .8.0D .124.随机变量X 的密度函数⎩⎨⎧∈=其它]1,0[)(4x cx x f 则常数c =( ) A .51 B .41C .4D .525.离散型随机变量X 的分布列为其分布函数为)(x F ,则=)1(F ( ) A .4.0 B .2.0 C .6.0 D .126.设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F ( )A .e 31 B .3e C .11--e D .1311--e 27.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0,10,)(3其他x ax x f 则常数=a ( )A .41B .31 C .3 D .428.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ( )A .161 B .163 C .41 D .83 29.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0 B .)(x F X C .)(y F Y D .130.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=( )A .)21,7(NB .)27,7(NC .)45,7(ND .)45,11(N31.设随机变量X 的概率密度为f(x)=⎪⎩⎪⎨⎧≤<-≤<.,0;2x 1,x 2;1x 0,x 其它 则P{<X<}的值是( )A .5.0B .6.0C .66.0D .7.032.某人射击三次,其命中率为,则三次中至多击中一次的概率为( )A.027.0B.081.0 设二维随机变量(X,Y)的联合分布函数为F(x,y). 其联合概率分布为( )则F (0,1)=( )A.2.0B.6.0C.7.0 设二维随机变量(X ,Y )的联合概率密度为f(x,y)=⎩⎨⎧≤≤≤≤+.,0;1y 0,2x 0),y x (k 其它则k=( )A.41B.31C.21D.3235.设随机变量X 在[-1,2]上服从均匀分布,则随机变量X 的概率密度f (x )为( )A .⎪⎩⎪⎨⎧≤≤-=.,0;21,31)(其他x x fB .⎩⎨⎧≤≤-=.,0;21,3)(其他x x fC .⎩⎨⎧≤≤-=.,0;21,1)(其他x x fD . ⎪⎩⎪⎨⎧≤≤--=.,0;21,31)(其他x x f36.设随机变量X ~ B ⎪⎭⎫ ⎝⎛31,3,则P{X ≥1}=( ) A .271 B .278 C .2719 D .272637则A .51 B .103 C .21 D .53 38.设二维随机变量(X ,Y )的概率密度为 ⎩⎨⎧≤≤≤≤=,,0;10,10,4),(其他y x xy y x f则当0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度为f Y ( y )= ( ) A .x21B .2xC .y 21D .2y39.设函数f (x )在[a ,b ]上等于sin x ,在此区间外等于零,若f (x )可以作为某连续型随机变量的概率密度,则区间[a ,b ]应为( )A .[0,2π-] B.[2π,0] C .]π,0[ D .[23π,0] 40.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤<-≤<其它021210x xx x ,则P <X<=( ) A . B . C . D .41.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( )A .61 B .41 C .31 D .21 42.设随机变量X ,Y 相互独立,其联合分布为则有( )A .92,91==βα B .91,92==βαC .32,31==βαD .31,32==βα43.设随机变量X 的分布律为X0 1 2 P则P {X <1}=( )A .0B .C .D .44.下列函数中可作为某随机变量的概率密度的是( ) A .⎪⎩⎪⎨⎧≤>100,0,100,1002x x xB .⎪⎩⎪⎨⎧≤>0,0,0,10x x xC .⎩⎨⎧≤≤-其他,0,20,1x D .⎪⎩⎪⎨⎧≤≤其他,0,232121x ,45.随机变量X 服从二项分布)2.0,10(B ,则( ) A .==DX EX 2 B .==DX EX 6.1 C .=EX 2,=DX 6.1 D .=EX 6.1,=DX 246.X 可取无穷多个值 ,2,1,0,其概率分布为普阿松分布)3(P ,则( )A .DX EX ==3B .DX EX ==31C .EX =3,DX =31D .EX =31,DX =9147.随机向量),(Y X 有25,36==DY DX ,协方差12=XY σ,则)()(=-Y X DA .1B .37C .61D .8548.设X~B(10, 31), 则=)X (E )X (D ( ) A.31B.32 D.310 49.已知随机变量X 的分布函数为F(x)=⎩⎨⎧>--.0;0x e 1x 2其它则X 的均值和方差分别为( )(X)=2, D(X)=4 (X)=4, D(x)=2 (X)=41,D(X)=21(X)=21, D(X)=4150.设随机变量X 的E (X )=μ,D(X)=2σ,用切比雪夫不等式估计≥σ≤-)3|)X (E X (|P ( )A.91B.31C.9851则E (XY )=( A .91- B .0 C .91 D .3152.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( )A .-2B .0C .21D .253.设n μ是n 次独立重复试验中事件A 出现的次数,P 是事件A 在每次试验中发生的概率,则对于任意的0>ε,均有}|{|lim εμ>-∞→p nP nn ( )A .=0B .=1C .> 0D .不存在54.设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B (6,21),则E(X-Y)=( )A .25-B .21C .2D .5 二、填空题1. A 、B 为两事件,8.0)(=⋃B A P ,2.0)(=A P ,4.0)(=B P ,则=-)(A B P 。
九年级数学概率论50道练习题
1. 事件A发生的概率是0.4,事件B发生的概率是0.6,求事
件A和事件B同时发生的概率。
2. 一枚硬币抛掷一次,求抛掷结果是正面的概率。
3. 从52张扑克牌中随机抽取2张,求抽取的两张牌都是红心
的概率。
4. 一枚骰子投掷一次,求投掷结果是奇数的概率。
5. 从20个学生中随机抽取两个,求抽取的两个学生都是男生
的概率。
6. 一副扑克牌中,红桃、方块、梅花和黑桃的数量各为13张,从中随机抽取一张牌,求抽取的牌是黑桃的概率。
7. 一袋中有5个白球和3个红球,从中不放回地连续抽取两次,求第一次抽取白球且第二次抽取红球的概率。
8. 从1到10中随机选择一个数字,求选择的数字是偶数的概率。
9. 在一场考试中,学生A和学生B的及格率分别为0.7和0.6,求至少有一名学生及格的概率。
10. 一袋中有4个红球和6个蓝球,从中有放回地抽取3次,
求抽取的三个球都是红球的概率。
11. 一组有5个男生和3个女生的学生中,随机选择两个学生,求选择的两个学生都是男生的概率。
12. 一枚硬币抛掷三次,求至少两次结果为正面的概率。
13. 从10个不同数字中随机选择两个数字,求选择的两个数字
相乘是偶数的概率。
14. 一副扑克牌中,黑桃和红桃的数量各为13张,从中连续抽
取两张牌,求第一张牌是黑桃且第二张牌是红桃的概率。
15. 在一组有5个男生和3个女生的学生中,随机选择两个学生,求选择的两个学生中至少有一名是女生的概率。
(此处省略34道练习题)。
《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。
十、概率论与数理统计一、填空题1、设在一次试验中,事件A 发生的概率为p 。
现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1()1(--+-n n p np p 。
2、 三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子有3个黑球5个白球。
现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。
已知取出的球是白球,此球属于第二个箱子的概率为 。
解:用iA 代表“取第i 只箱子”,i =1,2,3,用B 代表“取出的球是白球”。
由全概率公式⋅=⋅+⋅+⋅=++=12053853163315131)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P由贝叶斯公式⋅=⋅==5320120536331)()|()()|(222B P A B P A P B A P3、 设三次独立试验中,事件A 出现的概率相等。
若已知A 至少出现一次的概率等于19/27,则事件A 在一次试验中出现的概率为 。
解:设事件A 在一次试验中出现的概率为)10(<<p p ,则有2719)1(13=--p ,从而解得31=p4、已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)|(=A B P ,则和事件B A 的概率)(B A P = 。
7.08.05.06.05.0)|()()()()()()()(=⨯-+=-+=-+=A B P A P B P A P AB P B P A P B A P5、 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5。
现已知目标被命中,则它是甲射中的概率为 。
用A 代表事件“甲命中目标”,B 代表事件“乙命中目标”,则B A 代表事件“目标被命中”,且8.06.05.06.05.0)()()()()()()()(=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P所求概率为 75.08.06.0)()()|(===B A P A P B A A P 6、 设随机事件A ,B 及其和事件B A 的概率分别是0.4,0.3和0.6。