2008高考山东数学文科试卷含详细解答(全word版)080718
- 格式:doc
- 大小:1.14 MB
- 文档页数:12
2008年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( ) A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z = ,则z z等于( )A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<<⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .186.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10πC .11πD .12π 7.不等式252(1)x x +-≥的解集是( )A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦, C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,xxA .B .C .D .俯视图 正(主)视图 侧(左)视图8.已知a b c ,,为A B C △的三个内角A B C ,,的对边,向量1)(cos sin )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( )A .ππ63, B .2ππ36, C .ππ36, D .ππ33, 9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )A .B .5C .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A .5-B .5C .45- D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( ) A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)xa f xb a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<< B .101b a -<<<C .101ba -<<<- D .1101ab --<<<第Ⅱ卷(共90二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 14.执行右边的程序框图,若0.8p =, 则输出的n =.15.已知2(3)4log 3233xf x =+,则8(2)(4)(8)(2)f f f f ++++ 的 值等于 .x16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2.(Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间.18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率. 19.(本小题满分12分)如图,在四棱锥P A B C D -中,平面P A D ⊥平面A B C D ,AB D C ∥,P A D △是等边三角形,已知28B D A D ==,2AB D C ==(Ⅰ)设M 是P C 上的一点,证明:平面M B D ⊥平面PAD ; (Ⅱ)求四棱锥P A B C D -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10aABCMPD记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)n n n nb n b S S=-≥.(Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和.21.(本小题满分12分)设函数2132()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点. (Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小.22.(本小题满分14分)已知曲线11(0)x y C a b a b+=>>:所围成的封闭图形的面积为曲线1C3记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设A B 是过椭圆2C 中心的任意弦,l 是线段A B 的垂直平分线.M 是l 上异于椭圆中心的点. (1)若M O OA λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求A M B △的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B 2.D 3.A 4.C 5.A 6.D 7.D8.C9.B10.C11.B12.A二、填空题 13.221412xy-= 14.4 15.2008 16.11三、解答题17.解:(Ⅰ)())cos()f x x x ωϕωϕ=+-+12sin()cos()22x x ωϕωϕ⎤=+-+⎥⎣⎦π2sin 6x ωϕ⎛⎫=+- ⎪⎝⎭.因为()f x 为偶函数,所以对x ∈R ,()()f x f x -=恒成立,因此ππsin()sin 66x x ωϕωϕ⎛⎫-+-=+- ⎪⎝⎭. 即ππππsin cos cos sin sin cos cos sin 6666x x x x ωϕωϕωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理得πsin cos 06x ωϕ⎛⎫-= ⎪⎝⎭. 因为0ω>,且x ∈R , 所以πcos 06ϕ⎛⎫-= ⎪⎝⎭. 又因为0πϕ<<, 故ππ62ϕ-=.所以π()2sin 2cos 2f x x x ωω⎛⎫=+= ⎪⎝⎭. 由题意得2ππ22ω= ,所以2ω=. 故()2cos 2f x x =.因此ππ2cos 84f ⎛⎫==⎪⎝⎭(Ⅱ)将()f x 的图象向右平移π6个单位后,得到π6f x ⎛⎫-⎪⎝⎭的图象, 所以πππ()2cos 22cos 2663g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 当π2π22ππ3k x k -+≤≤(k ∈Z ), 即π2πππ63k x k ++≤≤(k ∈Z )时,()g x 单调递减,因此()g x 的单调递减区间为π2πππ63k k ⎡⎤++⎢⎥⎣⎦,(k ∈Z ). 18.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,, 132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. 用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,, 122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==.(Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=.19.(Ⅰ)证明:在ABD △中, 由于4AD =,8B D =,AB = 所以222AD BD AB +=.故AD BD ⊥.又平面P A D ⊥平面A B C D ,平面PAD 平面A B C D A D =,ABCM PD OBD ⊂平面A B C D ,所以B D ⊥平面PAD , 又BD ⊂平面M BD , 故平面M B D ⊥平面PAD .(Ⅱ)解:过P 作P O A D ⊥交A D 于O , 由于平面P A D ⊥平面A B C D , 所以P O ⊥平面A B C D .因此P O 为四棱锥P A B C D -的高, 又P A D △是边长为4的等边三角形.因此42PO ==在底面四边形A B C D 中,A B D C ∥,2A B D C =,所以四边形A B C D 是梯形,在R t AD B △中,斜边A B5=此即为梯形A B C D 的高, 所以四边形A B C D的面积为2425S ==.故1243P A B C D V -=⨯⨯=20.(Ⅰ)证明:由已知,当2n ≥时,221n n n nb b S S =-,又12n n S b b b =+++ , 所以1212()1()n n n n n nS S S S S S ---=--,即112()1n n n n S S S S ---=-,所以11112nn S S --=,又1111S b a ===.所以数列1n S ⎧⎫⎨⎬⎩⎭是首项为1,公差为12的等差数列.由上可知1111(1)22n n n S +=+-=,即21n S n =+.所以当2n ≥时,12221(1)n n n b S S n nn n -=-=-=-++.因此1122(1)n n b n n n =⎧⎪=⎨-⎪+⎩, ,,.≥ (Ⅱ)解:设上表中从第三行起,每行的公比都为q ,且0q >. 因为12131212782⨯+++== ,所以表中第1行至第12行共含有数列{}n a 的前78项, 故81a 在表中第13行第三列, 因此28113491a b q ==- .又1321314b =-⨯,所以2q =.记表中第(3)k k ≥行所有项的和为S ,则(1)2(12)2(12)(3)1(1)12(1)kkkk b q S k qk k k k --==-=--+-+ ≥.21.解:(Ⅰ)因为122()e (2)32x f x x x ax bx -'=+++1e(2)(32)x x x x ax b -=+++,又2x =-和1x =为()f x 的极值点,所以(2)(1)0f f ''-==,因此6203320a b a b -+=⎧⎨++=⎩,,解方程组得13a =-,1b =-. (Ⅱ)因为13a =-,1b =-,所以1()(2)(e 1)x f x x x -'=+-,令()0f x '=,解得12x =-,20x =,31x =. 因为当(2)x ∈-∞-,(01) ,时,()0f x '<; 当(20)(1)x ∈-+∞ ,,时,()0f x '>. 所以()f x 在(20)-,和(1)+∞,上是单调递增的; 在(2)-∞-,和(01),上是单调递减的.(Ⅲ)由(Ⅰ)可知21321()e 3x f x x x x -=--,故21321()()e (e )x x f x g x x x x x ---=-=-, 令1()e x h x x -=-, 则1()e 1x h x -'=-. 令()0h x '=,得1x =,因为(]1x ∈-∞,时,()0h x '≤, 所以()h x 在(]1x ∈-∞,上单调递减. 故(]1x ∈-∞,时,()(1)0h x h =≥; 因为[)1x ∈+∞,时,()0h x '≥, 所以()h x 在[)1x ∈+∞,上单调递增. 故[)1x ∈+∞,时,()(1)0h x h =≥. 所以对任意()x ∈-∞+∞,,恒有()0h x ≥,又20x ≥,因此()()0f x g x -≥,故对任意()x ∈-∞+∞,,恒有()()f x g x ≥. 22.解:(Ⅰ)由题意得23ab ⎧=⎪⎨=.又0a b >>, 解得25a =,24b =.因此所求椭圆的标准方程为22154xy+=.(Ⅱ)(1)假设A B 所在的直线斜率存在且不为零,设A B 所在直线方程为(0)y kx k =≠,()A A A x y ,.解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545A Akk OA x y kkk+=+=+=+++.设()M x y ,,由题意知(0)M O OA λλ=≠,所以222M O OA λ=,即2222220(1)45k x y kλ++=+,因为l 是A B 的垂直平分线, 所以直线l 的方程为1y x k =-,即x k y=-,因此22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++ , 又220x y +≠, 所以2225420x y λ+=, 故22245xyλ+=.又当0k =或不存在时,上式仍然成立. 综上所述,M 的轨迹方程为222(0)45xyλλ+=≠.(2)当k 存在且0k ≠时,由(1)得222045Ax k=+,2222045Aky k=+,由221541x yy x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45A Ak OA x y k+=+=+,222280(1)445k ABOAk+==+,22220(1)54k OMk+=+.解法一:由于22214A MB S A B O M= △2222180(1)20(1)44554k k kk++=⨯⨯++2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥ 222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭,当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时A M B △面积的最小值是409A M B S =△. 当0k =,140229A M B S =⨯=>△. 当k不存在时,140429A M B S =⨯=>△. 综上所述,A M B △的面积的最小值为409. 解法二:因为222222111120(1)20(1)4554k k O A O M k k+=+++++2224554920(1)20k k k +++==+, 又22112O A O M O A O M + ≥,409O A O M ≥, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立, 此时A M B △面积的最小值是409A M B S =△. 当0k =,140229A M B S =⨯=>△. 当k不存在时,140429A M B S =⨯=>△. 综上所述,A M B △的面积的最小值为409.。
2008年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,, 的集合M 的个数是( B ) A .1 B .2 C .3D .4解析:本小题主要考查集合子集的概念及交集运算。
集合M 中必含有12,a a ,则{}12,M a a =或{}124,,M a a a =.选B. 2.设z 的共轭复数是z ,若4z z +=,8z z = ,则zz等于( D ) A .i B .i - C .1± D .i ±解析:本小题主要考查共轭复数的概念、复数的运算。
可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±选D.3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( A )解析:本小题主要考查复合函数的图像识别。
ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cos x 的值域可以确定.选A.xxA .B .C .D .4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限. 在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( C ) A .3 B .2 C .1 D .0解析:本小题主要考查四种命题的真假。
易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题.故它的逆命题、否命题、逆否命题三个命题中, 真命题 有一个。
2008年普通高等学校招生全国统一考试(山东文科数学及答案第I 卷(共60分)参考公式:1锥体的体积公式: V Sh ,其中S 是锥体的底面积,h 是锥体的高.32球的表面积公式: S =4 T R ,其中R 是球的半径. 如果事件 A , B 互斥,那么P (A BHP (A ) P (B ).一、选择题:本大题共 12小题,每小题5分,共 有一项是符合题目要求的.C . 3函数y =1 ncosxi n::: x ::: n的图象是I 2 2丿6.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A . 9 n B . 10 n60分.在每小题给出的四个选项中,只 1.满足 M 三问,a 2, O J , a 4?,且 M Pp. a ,a ,乱:-〔a a 2的集合M 的个数是2. 设z 的共轭复数是Z.z=8 , 则-等于(zC . -1D . _i3. y 二f (x )是幕函数,则函数 f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中, A . 35.设函数 f(x)C . 1D 011 -x 2, x < f 1 ]< 2则fx +x -2,X A1,lf(2)丿15 A .1627 16D . 18俯视图 o L 2 V o丿I 3 v4 .给出命题:若函数真命题的个数是( B . 2的值为(2侧(左)视图2正(主)视图C . 11nD . 12 nx 亠57•不等式 ------- 2》2的解集是()(X-1)2准方程是( )2 2B . (x -2)2 (y -1)2 hx12.已知函数f (x )=log a (2 ,b-1)(a 0, a=1)的图象如图所示,贝U a, b 满足的关系A.(x —3)2 y_7” (n4L rt f rf 10.已知 cos 1sin :- =—\ 3,则 sin l165 I2怎2.34A .B .c .55511•若圆C 的半径为1,圆心在第一象限,且与直线¥的值是2 2C . (x -1) (y -3) =1D . 2(y-1)2 =1B .,3C .D .三,18 .已知a ,△ ABC 的三个内角A, BC 勺对边,向的大小分别为 A ,m L n ,且 acosB bcosA =csin C ,则角 An n A. -6 39.从某项综合能力测试中抽取B .2 n n ~3,6亠 n n … n n C . 一,一D . -3 63 3分数5 4 3 2 1 人数2010303010A . ,3B .4x-3y=0和x 轴相切,则该圆的标是( )A . 0 :: a ' ::b :: 14_1B. 0 < b a :: 1-14D . 0 :: a ::C . 3D .100人的成绩,统计如表,则这100人成绩的标准差为(第H卷(共90分)二、填空题:本大题共 4小题,每小题4分,共16分.2 213.已知圆C: x y -6x -4y • 8 = 0 •以圆C 与坐标轴的交点分别作为双曲线的一个焦则z = 2x y 的最大值为 ______________ . 三、解答题:本大题共 6小题,共74分. 17. (本小题满分12分)已知函数 f (x) = . 3sin(• ■ x ?丨)- cos( x " ■ ) ( 0 ::: • ::: n ,> 0 )为偶函数,且函数ny = f (x)图象的两相邻对称轴间的距离为-.(I)求f I n 的值;8n(n)将函数y = f(x)的图象向右平移个单位后,得到函数y = g(x)的图象,求g(x)的6单调递减区间.18. (本小题满分12分)现有8名奥运会志愿者,其中志愿者 A , A ,, A 3通晓日语,B 1, B 2, B 3通晓俄语,C 1, C 2 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各(I)求A 被选中的概率;点和顶点,则适合上述条件的双曲线的标准方程为 14•执行右边的程序框图,若 p =0.8, 则输出的n 二 ____________ . x15.已知 f (3 ) =4xlog 2 3 233 , 则 f (2) f(4) f (8) ||( f (28)的值等于16.设x , y 满足约束条件x - y +2》0, 』5x-y-10 < 0, x 》0,n = n +1__________ J结束1名,组成一个小组.否.输出n(n)求B1和G不全被选中的概率.19. (本小题满分12分)如图,在四棱锥 P _ ABCD 中,平面PAD _平面ABCD , AB // DC , △ PAD 是等边三 角形,已知 BD=2AD=8,AB=2DC=4.,5 .(I)设M 是PC 上的一点,证明:平面 MBD _平面PAD ; (n)求四棱锥 P - ABCD 的体积.20. (本小题满分12 分) 将数列'a n 』中的所有项按每一行比上一行多一项的规则排成如下数表:a 1a 2 a 3a 4 a5a6a 7 a 8a9a10记表中的第一列数 6, a 2, 34, 37,构成的数列为 Z , ^=^=1. S n 为数列 g 的前n 项和,且满足b S2b:S 2"(n > 2).b n SnSn(I)证明数列1 .... ...................... . •、成等差数列,并求数列bn f 的通项公式;(n)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为4同一个正数•当a 8i时,求上表中第k(k > 3)行所有项的和.9121. (本小题满分12分)设函数f (x)二x 2e x4 ' ax 3 bx 2,已知x ~ -2和x = 1为f (x)的极值点.(I)求a 和b 的值; (n)讨论f (x)的单调性;2 3 2(川)设g(x^-x -x,试比较f (x)与g(x)的大小.322. (本小题满分14分)已知曲线C i:凶+国=1(a Ab >0)所围成的封闭图形的面积为4亦,曲线C i的内切圆半径a b2 5为•记C2为以曲线C i与坐标轴的交点为顶点的椭圆.3(I)求椭圆C2的标准方程;(n)设AB是过椭圆C2中心的任意弦,I是线段AB的垂直平分线. M是I上异于椭圆中心的点.(1)若MO| =》OA ( O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;(2)若M是I与椭圆C2的交点,求△AMB的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题1. B2. D3. A4. C5. A6. D9. B 10. C 11. B 12. A7. D 8. C二、填空题2 2x y ’14. 4 15.2008 16. 1113. 14 121.满足M —0, a2, a s, a/,且M 门”©, a?, a?』的集合M的个数是(B )A . 1B . 2 C. 3 D . 4解析:本小题主要考查集合子集的概念及交集运算。
2008年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( )A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z = ,则zz等于( ) A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( )A .1516B .2716-C .89D .18xxA .B .C .D .6.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10π C .11π D .12π7.不等式252(1)x x +-≥的解集是( )A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,8.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量1)(c o s s i n )A A =-=,,m n .若⊥m ,且cos cos sin a B b A c C +=,则角A B,的大小分别为( ) A .ππ63,B .2ππ36, C .ππ36,D .ππ33,9.( )AB .5 C .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A . BC .45-D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)x a fx b a a =+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<<B .101b a -<<<C .101ba -<<<-D .1101ab --<<<x俯视图 正(主)视图 侧(左)视图第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为.14.执行右边的程序框图,若0.8p =,则输出的n = . 15.已知2(3)4log 3233x f x =+, 则8(2)(4)(8)(2)f f f f ++++ 的 值等于 .16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2. (Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间. 18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10a记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)nn n nb n b S S =-≥. (Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式; (Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和.ABCMPD21.(本小题满分12分)设函数2132()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点. (Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 22.(本小题满分14分)已知曲线11(0)xyC a b a b+=>>:所围成的封闭图形的面积为曲线1C 的内切圆半径2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若M O O A λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B 2.D 3.A 4.C 5.A 6.D 7.D 8.C 9.B 10.C 11.B 12.A二、填空题13.221412x y -=14.415.2008 16.11三、解答题17.解:(Ⅰ)())cos()f x x x ωϕωϕ+-+12)cos()2x x ωϕωϕ⎤=+-+⎥⎣⎦π2sin 6x ωϕ⎛⎫=+- ⎪⎝⎭.因为()f x 为偶函数,所以对x ∈R ,()()f x f x -=恒成立,因此ππsin()sin 66x x ωϕωϕ⎛⎫-+-=+-⎪⎝⎭. 即ππππsin cos cos sin sin cos cos sin 6666x x x x ωϕωϕωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理得πsin cos 06x ωϕ⎛⎫-= ⎪⎝⎭. 因为0ω>,且x ∈R , 所以πcos 06ϕ⎛⎫-= ⎪⎝⎭. 又因为0πϕ<<, 故ππ62ϕ-=. 所以π()2sin 2cos 2f x x x ωω⎛⎫=+= ⎪⎝⎭. 由题意得2ππ22ω= ,所以2ω=. 故()2cos 2f x x =.因此ππ2cos 84f ⎛⎫==⎪⎝⎭(Ⅱ)将()f x 的图象向右平移π6个单位后,得到π6f x ⎛⎫- ⎪⎝⎭的图象,所以πππ()2cos 22cos 2663g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.当π2π22ππ3k x k -+≤≤(k ∈Z ), 即π2πππ63k x k ++≤≤(k ∈Z )时,()g x 单调递减,因此()g x 的单调递减区间为π2πππ63k k ⎡⎤++⎢⎥⎣⎦,(k ∈Z ). 18.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==. (Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=. 19.(Ⅰ)证明:在ABD △中,由于4AD =,8BD =,AB = 所以222AD BD AB +=.故AD BD ⊥.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,BD ⊂平面ABCD , 所以BD ⊥平面PAD ,ABCM PD O又BD ⊂平面MBD ,故平面MBD ⊥平面PAD .(Ⅱ)解:过P 作PO AD ⊥交AD 于O , 由于平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .因此PO 为四棱锥P ABCD -的高, 又PAD △是边长为4的等边三角形.因此4PO == 在底面四边形ABCD 中,AB DC ∥,2AB DC =,所以四边形ABCD 是梯形,在Rt ADB △中,斜边AB5=, 此即为梯形ABCD 的高, 所以四边形ABCD的面积为2425S ==.故1243P ABCD V -=⨯⨯= 20.(Ⅰ)证明:由已知,当2n ≥时,221nn n nb b S S =-, 又12n n S b b b =+++ , 所以1212()1()n n n n n nS S S S S S ---=--, 即112()1n n n nS S S S ---=-,所以11112n n S S --=, 又1111S b a ===. 所以数列1n S ⎧⎫⎨⎬⎩⎭是首项为1,公差为12的等差数列. 由上可知1111(1)22n n n S +=+-=, 即21n S n =+.所以当2n ≥时,12221(1)n n n b S S n n n n -=-=-=-++. 因此1122(1)n n b n n n =⎧⎪=⎨-⎪+⎩, ,,.≥ (Ⅱ)解:设上表中从第三行起,每行的公比都为q ,且0q >. 因为12131212782⨯+++== , 所以表中第1行至第12行共含有数列{}n a 的前78项, 故81a 在表中第13行第三列,因此28113491a b q ==-. 又1321314b =-⨯,所以2q =.记表中第(3)k k ≥行所有项的和为S ,则(1)2(12)2(12)(3)1(1)12(1)k k k k b q S k q k k k k --==-=--+-+ ≥.21.解:(Ⅰ)因为122()e(2)32x f x x x ax bx -'=+++1e (2)(32)x x x x ax b -=+++,又2x =-和1x =为()f x 的极值点,所以(2)(1)0f f ''-==,因此6203320a b a b -+=⎧⎨++=⎩,,解方程组得13a =-,1b =-. (Ⅱ)因为13a =-,1b =-,所以1()(2)(e1)x f x x x -'=+-,令()0f x '=,解得12x =-,20x =,31x =.因为当(2)x ∈-∞-,(01) ,时,()0f x '<;当(20)(1)x ∈-+∞ ,,时,()0f x '>. 所以()f x 在(20)-,和(1)+∞,上是单调递增的; 在(2)-∞-,和(01),上是单调递减的.(Ⅲ)由(Ⅰ)可知21321()e3x f x x x x -=--, 故21321()()e (e )x x f x g x x x x x ---=-=-, 令1()e x h x x -=-, 则1()e 1x h x -'=-. 令()0h x '=,得1x =,因为(]1x ∈-∞,时,()0h x '≤, 所以()h x 在(]1x ∈-∞,上单调递减. 故(]1x ∈-∞,时,()(1)0h x h =≥; 因为[)1x ∈+∞,时,()0h x '≥, 所以()h x 在[)1x ∈+∞,上单调递增. 故[)1x ∈+∞,时,()(1)0h x h =≥.所以对任意()x ∈-∞+∞,,恒有()0h x ≥,又20x ≥,因此()()0f x g x -≥,故对任意()x ∈-∞+∞,,恒有()()f x g x ≥. 22.解:(Ⅰ)由题意得2ab ⎧=⎪⎨=又0a b >>,解得25a =,24b =.因此所求椭圆的标准方程为22154x y +=.(Ⅱ)(1)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为(0)y kx k =≠, ()A A A x y ,. 解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545A Ak k OA x y k k k +=+=+=+++. 设()M x y ,,由题意知(0)MO OA λλ=≠, 所以222MO OA λ=,即2222220(1)45k x y k λ++=+, 因为l 是AB 的垂直平分线,所以直线l 的方程为1y x k =-, 即x k y=-, 因此22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++ , 又220x y +≠,所以2225420x y λ+=, 故22245x y λ+=. 又当0k =或不存在时,上式仍然成立.综上所述,M 的轨迹方程为222(0)45x y λλ+=≠. (2)当k 存在且0k ≠时,由(1)得222045Ax k =+,2222045A k y k =+,由221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45A Ak OA x y k +=+=+,222280(1)445k AB OA k +==+,22220(1)54k OM k +=+. 解法一:由于22214AMB S AB OM = △ 2222180(1)20(1)44554k k k k++=⨯⨯++ 2222400(1)(45)(54)k k k +=++ 22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△. 当0k =,140229AMB S =⨯=>△. 当k不存在时,140429AMB S ==>△. 综上所述,AMB △的面积的最小值为409. 解法二:因为222222111120(1)20(1)4554k k OA OM k k+=+++++2224554920(1)20k k k +++==+, 又22112OA OMOA OM + ≥,409OA OM ≥, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△.当0k =,140229AMB S =⨯=>△.当k 不存在时,140429AMB S ==>△. 综上所述,AMB △的面积的最小值为409.。
2008年普通高等学校招生全国统一考试文科数学(山东卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足1234{,,,}M a a a a ⊆,且12312{,,}{,}Ma a a a a =的集合M 的个数是A .1B .2C .3D .4 2. 2.设z 的共轭复数是z ,若4z z +=,8z z ⋅=,则zz等于 A .i B .i - C .1± D .i ±3.函数ln cos y x =(22ππx -<<)的图象是4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-≤=⎨+->⎩,则1()(2)f f 的值为 A .1516 B .2716- C .89D .18 6.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 A .9π B .10π C .11π D .12π7.不等式252(1)x x +≥-的解集是 A .1[3,]2- B .1[,3]2- C .1[,1)(1,3]21 D .1[,1)(1,3]2-8.已知ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c .向量(3,1)m =-,(cos ,sin )n A A =.若m n ⊥,且cos cos sin a B b A c C +=,则角A ,B 的大小分别为 A .6π,3π B .23π,6π C .3π,6π D .3π,3πA B C .3 D .8510.已知cos()sin 6παα-+=7sin()6πα+的值是 A ..532 C .45- D .54 11.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴都相切,则该圆的标准方程是正(主)视图俯视图 侧(左)视图A .227(3)()13x y -+-= B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223()(1)12x y -+-=12.已知函数()log (21)x a f x b =+-(1a >,1a ≠)的图象如图所示,则a ,b 满足的关系是A .101a b -<<<B .101b a -<<<C .101b a -<<<D .1101a b --<<<二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆C :226480x y x y +--+=,以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 14.执行右边的程序框图,若0.8p =,则输出的n = .15.已知2(3)4log 3233x f x =+,则8(2)(4)(8)(2)f f f f ++++的值等于 .16.设x ,y 满足约束条件20510000x y x y x y -+≥⎧⎪--≤⎪⎨≥⎪⎪≥⎩,则2z x y =+的最大值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为2π. (Ⅰ)求()8πf 的值;(Ⅱ)将函数()y f x =的图象向右平移6π个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间. 18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者1A 、2A 、3A 通晓日语,1B 、2B 、3B 通晓俄语,1C 、2C 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求1A 被选中的概率; (Ⅱ)求1B 和1C 不全被选中的概率. 19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB ∥DC ,PAD ∆是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积.ABC DMP20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:记表中的第一列数1a ,2a ,4a ,7a ,构成的数列为{}n b ,111b a ==,n S 为数列{}n b 的前n 项和,且满足221nn n nb b S S =-(2n ≥). (Ⅰ)证明数列1{}nS 成等差数列,并求数列{}n b 的通项公式; (Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当91481-=a 时,求上表中第k (3k ≥)行所有项的和.21.(本小题满分12分)设函数2122()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点. (Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 22.(本小题满分1414分) 已知曲线1C :1x ya b+=(0a b >>)所围成的封闭图形的面积为2C的内切圆半径为3,记2C 为以曲线1C 与坐标轴的交点顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线,M 是l 上异于椭圆中心的点.(1)若MO OA λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程;(2)若M 是l 与椭圆2C 的交点,求AMB ∆的面积的最小值.1a 2a 3a 4a 5a 6a 7a 10a9a 8a。
2008年普通高等学校招生全国统一考试(山东文科数学及答案第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( ) A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z =,则zz等于( ) A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .186.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10πxxA .B .C .D .俯视图 正(主)视图 侧(左)视图C .11πD .12π7.不等式252(1)x x +-≥的解集是( ) A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,8.已知a b c ,,为ABC △的三个内角A B C,,的对边,向量1)(c o s s i n )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( ) A .ππ63,B .2ππ36, C .ππ36,D .ππ33,9.( )ABC .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A .5-B .5C .45-D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)xa f xb a a=+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<<B .101b a -<<<C .101b a -<<<-D .1101ab --<<<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为.14.执行右边的程序框图,若0.8p =,则输出的n = .15.已知2(3)4log 3233xf x =+,则8(2)(4)(8)(2)f f f f ++++的值等于 .16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分) 已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2.(Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间. 18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10a记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)nn n nb n b S S =-≥. (Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和. 21.(本小题满分12分) 设函数2132()x f x x eax bx -=++,已知2x =-和1x =为()f x 的极值点.ABCMPD(Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 22.(本小题满分14分)已知曲线11(0)x yC a b a b+=>>:所围成的封闭图形的面积为曲线1C 的内切圆半径2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若M O O A λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B 2.D 3.A 4.C 5.A 6.D 7.D 8.C 9.B 10.C 11.B 12.A二、填空题13.221412x y -=14.415.2008 16.111.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( B ) A .1 B .2 C .3D .4解析:本小题主要考查集合子集的概念及交集运算。
2008年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)参考公式:锥体的体积公式:Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24R S π=,其中R 是球的半径. 如果事件A 、B 互斥,那么).()()(B P A P B A P +=+一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)满足{}{}{}213214321,,,,,,,a a a a a M a a a a M =⊆ 且的集合M 的个数是(A )1(B )2(C )3(D )4(2)设z 的共轭复数是zzz z z z z 则若,8,4,=⋅=+等于(A )i(B )-i(C )1±(D )±i(3)函数)22(cos ln ππ<<-=x x y 的图象是(A ) (B ) (C ) (D )(4)给出命题:若函数)(x f y =是幂函数,则函数)(x f y =的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 (A )3 (B )2 (C )1(D )0(5)设函数⎪⎩⎪⎨⎧>-+≤-=,1,2,11)(22x x x x xx f 则⎪⎪⎭⎫⎝⎛)2(1f f 的值为 (A )1615(B )1627-(C )98(D )18(6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表 面积是 (A )9π (B )π10 (C )11π (D )12π (7)不等式2)1(52≥-+x x 的解集是(A )[-3,21](B )[-21,3](C ))1,21[(]3,1(D )]3,1()1,21[ -(8)已知c b a ,,为△ABC 的三个内角A ,B ,C 的对边,向量).sin ,(cos ),1,3(A A n m =-=若C c A b B a n m sin cos cos ,=+⊥且,则角A ,B 的大小分别为(A )3,6ππ (B )6,32ππ (C )6,3ππ (D )3,3ππ (9)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为(A )3(B )5102 (C )3 (D )58 (10)已知)67sin(,354sin )6cos(ππ+=+-a a a 则的值是 (A )532-(B )532 (C )54-(D )54(11)若圆C 的半径为1,圆心在第一象限,且与直线x y x 和034=-轴都相切,则该圆的标准方程是 (A )1)37()3(22=-+-y x (B )1)1()2(22=-+-y x(C )1)3()1(22=-+-y x(D )1)1()23(22=-+-y x(12)已知函数)1,0)(12(log )(≠>-+=a a b x f xa 的图象如图所示,则b a ,满足的关系是 (A )101<<<-b a(B )101<<<-a b(C )101<<<-a b(D )1011<<<--b a第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分).(13)已知圆.0846:22=+--+y x y x C 以圆C 与坐标轴的交点 分别作为双曲线的一个焦点和顶点,则适合上述条件的双 曲线的标准方程为 .(14)执行右边的程序框图,若8.0=p ,则输出的=n . (15)已知 ++++=)8()4()2(,2333log 4)3(2f f f x f x则 )2(8f +的值等于 .(16)设⎪⎪⎩⎪⎪⎨⎧≥≥≤--≥+-,0,0,0105,02,y x y x y x y x 满足约束条件则的y x z +=2最大值为 11 .三、解答题:本大题共6小题,共74分. (17)(本小题满 分12分) 已知函数)0,0)(cos()sin(3)(><<+-+=ωπϕϕωϕωx x x f 为偶函数,且函数)(x f y =图象的两相邻对称轴间的距离为.2π(Ⅰ)求)8(πf 的值;(Ⅱ)将函数)(x f y =的图象向右平移6π个单位后,得到函数)(x g y =的图象,求)(x g 的单调递减区间. (18)(本小题满分12分)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语、韩语的志愿者各1名,组成一个小组,(Ⅰ)求A 1被选中的概率; (Ⅱ)求B 1和C 1不全被选中的概率.(19)(本小题满分12 分)如图,在四棱锥P —ABCD 中,平面PAD ⊥平面ABCD , AB//CD ,△PAD 是等边三角形,已知BD=2AD=8, AB=2DC=54.(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P —ABCD 的体积.(20)(本小题满分12分)将数列}{n a 中所有项按每一行比上一行多一项的规则排成如下数表:记表中的第一列数a 1,a 2,a 4,a 7,……构成的数列{n b },n S a b .111==为数列{n b }的前n项和,且满足).2(122≥=-n S S b b nn n n(Ⅰ)证明数列}1{nS 成等差数列,并求数列{n b }的通项公式; (Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数,当91481-=a 时,求上表中第)3(≥k k 行所有项的和.(21)(本小题满分12分) 设函数)(12,)(2312x f x x bx ax ex x f x 为和已知=-=++=-的极值点.(I )求a 和b 的值; (II )讨论)(x f 的单调性; (III )设.)()(,32)(23的大小与试比较x g x f x x x g -=(22)(本小题满分14分) 已知曲线)0(1||||:1>>=+b a by a x C 所围成的封闭图形的面积为54,曲线C 1的内切圆半径为.352记C 2为以曲线C 1与坐标轴的交点为顶点的椭圆. (I )求椭圆C 2的标准方程;(II )设AB 是过椭圆C 2中心的任意弦,l 是线段AB 的垂直平分线,M 是l 上异于椭圆中心的点. (1)若||||OA MO λ=(O 为坐标原点),当点A 在椭圆C 2上运动时,求点M 的轨迹方程;(2)若M 是l 与椭圆C 2的交点,求△AMB 的面积的最小值.参考答案一、选择题:(1)B (2)D (3)A (4)C (5)A (6)D (7)D (8)C (9)B (10)C (11)B (12)A 二、填空题:每小题4分,满分28分。
08年山东高考数学真题2008年山东高考数学真题一、填空题1. 计算:$(-1)^{2008}$ = 。
2. 如果$a^2 - 3a + 1 = 0$,则$a^3 - 3a^2 + 3a - 1$ = 。
3. 若函数$f(x) = \frac{1}{x-1}$,则$f(2) + f(\frac{1}{2})$ = 。
4. 设$x^2 + y^2 = 13$,则$x + y$的取值范围是:。
5. 化简$\sqrt{3+\sqrt{8}} + \sqrt{3-\sqrt{8}}$ = 。
二、选择题6. 若$a>0$,$b<0$,且$a-b = 1$,则下列不等式中成立的是:()A. $a^2 > b^2$B. $a^3 > b^3$C. $a^4 > b^4$D. $a^5 > b^5$7. 若直线$x=3$与圆$x^2 + y^2 = 4$相交于点$A,B$,则线段$AB$的长度是:()A. 1B. 2C. 3D. 48. 已知函数$f(x) = x^2 + ax + \frac{1}{2}$的图象恰好经过点$(a,0)$,则$a=$()A. -2B. -1C. 0D. 1三、解答题9. 已知$a \neq 2$,$b \neq 1$,若$ax + by = 0$与$x + 2y = 0$所表示的两直线平行,则$a+b$的值是多少?10. 在直角三角形$ABC$中,$\angle A=90^\circ$,且$\sin B =\frac{1}{3}$,$\cos C = \frac{5}{13}$,则$\frac{a}{b}$恰好等于多少?(其中$a$为三角形的面积,$b$为三角形的周长)以上就是2008年山东高考数学真题的部分内容,希望能帮助大家更好地复习数学,取得优异的成绩!。
2008年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k k n P k C p p k n -=-=,,,,一、选择题1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .54.函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6C .9D .189.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .410.函数x x x f cos sin )(-=的最大值为( ) A .1B .2 C .3D .211.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2C .3D .22008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13A =-,3cos 5B =. (Ⅰ)求sinC 的值;(Ⅱ)设5BC =,求ABC △的面积. 18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 20.(本小题满分12分) 如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小. 21.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. 22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C 二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =, 由3cos 5B =,得4sin 5B =. ··········································································· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ····································· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===. ··········································· 8分 所以ABC △的面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=. ····················· 10分18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,104由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =.······················································································· 7分 当0d =时,20420200S a ==. ······································································ 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=. ············································· 12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++, ··································································· 2分112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ····························································· 6分 (Ⅱ)12B C C =+, ······················································································ 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=, 332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ··························· 12分20.解法一:依题设,2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.1在平面1A CA 内,连结EF 交1A C 于点G ,由于1AA AC FC CE==,故1Rt Rt A AC FCE △∽△,1AA C CFE ∠=∠,CFE ∠与1FCA ∠互余.于是1A C EF ⊥.1A C 与平面BED 内两条相交直线BD EF ,都垂直,所以1A C ⊥平面BED . ·················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角.························································ 8分EF =CE CF CG EF ⨯==3EG ==. 13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==113A G A C CG =-=.11tan AG A HG HG∠== 所以二面角1A DE B --的大小为arctan ················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.AB CDE A 1B 1C 1D 1 FH G(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--=,,,,,. ······························ 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1A C BD ⊥,1A C DE ⊥. 又DBDE D =,所以1A C ⊥平面DBE . ·················································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ····················································· 9分 1AC <>,n 等于二面角1A DE B --的平面角, 11114cos 42A C A C A C<>==,n n n . 所以二面角1A DE B --的大小为. ················································· 12分 21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ········································· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤. ································································································ 9分 反之,当65a ≤时,对任意[02]x ∈,,26()(3)3(2)5g x x x x x +-+≤23(210)5xx x =+- 3(25)(2)5xx x =+- 0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ··································································· 12分22.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+. 所以212k =+,化简得2242560k k -+=,解得23k =或38k =. ······················································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h ==······················································· 9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+ 14(12525(14k k +=+==≤当21k =,即当12k =时,上式取等号.所以S 的最大值为. ························ 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ···································································································· 9分===当222x y =时,上式取等号.所以S 的最大值为 ······································· 12分。
2008年普通高等学校招生全国统一考试(山东卷)数 学(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,, 的集合M 的个数是( B ) A .1B .2C .3D .4解:集合M 中必含有12,a a ,则{}12,M a a =或{}124,,M a a a =.选B. 2.设z 的共轭复数是z ,若4z z +=,8z z = ,则zz等于( D ) A .iB .i -C .1±D .i ±解:设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z zi z ±===±选D. 3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( A )解:由ππ0cos 1ln cos 022x x x -<<⇒<≤⇒≤函数的最大值是0,选A. 4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( C ) A .3B .2C .1D .0解:易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题.故它的逆命题、否命题、逆否命题三个命题中, 真命题有一个。
选C.5.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( A )xxA .B .C .D .A .1516B .2716-C .89D .18解:本小题主要考查分段函数问题。
正确利用分段函数来进行分段求值。
(2)4,f = 11115()1.(2)41616f f f ⎛⎫∴==-= ⎪⎝⎭选A. 6.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( D ) A .9π B .10πC .11πD .12π解:本小题主要考查三视图与几何体的表面积。
从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面积为22411221312.S ππππ=⨯+⨯⨯+⨯⨯=选D 。
7.不等式252(1)x x +-≥的解集是( D ) A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,解:易知1x ≠排除B;由0x=符合可排除C;由3x =排除A, 故选D 。
(也可用分式不等式的解法,将2移到左边直接求解.)8.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量1)=-,m (cos sin )A A =,n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( C )A .ππ63,B .2ππ36, C .ππ36,D .ππ33,解: sin 0A A ⊥⇒-=m n 3A π⇒=;cos cos sin a B b A c C +=2sin cos sin cos sin ,A B B A C ⇒+=2sin cos sin cos sin()sin sin A B B A A B C C ⇒+=+==.2C π⇒=π6B ⇒=.选C. (本题在求角B 时,也可用验证法.) 9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( B )俯视图 正(主)视图 侧(左)视图A B C.3 D.85解:100409060103,100x++++==2222121[()()()]nS x x x x x xn∴=-+-++-22221[202101301102]100=⨯+⨯+⨯+⨯1608,1005==S⇒=选B.10.已知πcos sin6αα⎛⎫-+=⎪⎝⎭7πsin6α⎛⎫+⎪⎝⎭的值是( C )A.B C.45-D.45解:3cos()sin sin62παααα-+=+=14cos25αα=,714sin()sin()cos.6625ππαααα⎫+=-+=-+=-⎪⎪⎝⎭选C.11.若圆C的半径为1,圆心在第一象限,且与直线430x y-=和x轴相切,则该圆的标准方程是( B )A.227(3)13x y⎛⎫-+-=⎪⎝⎭B.22(2)(1)1x y-+-=C.22(1)(3)1x y-+-=D.223(1)12x y⎛⎫-+-=⎪⎝⎭解:设圆心为(,1),a由已知得|43|11,2().52ad a-==∴=-舍选B.12.已知函数()log(21)(01)xaf x b a a=+->≠,的图象如图所示,则a b,满足的关系是( A )A.101a b-<<<B.101b a-<<<C.101b a-<<<D.1101a b--<<<解:由图易得1,a>101a-∴<<,取特殊点0x=1log0,ay b⇒-<=<11log log log10,a a aba⇒-=<<=101a b-∴<<<.选A.x二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 .解:圆22:6480C x y x y +--+=,令20680,y x x =⇒-+=得圆C 与坐标轴的交点分别为(20),,(40),,则22,4,12,a c b ===所以双曲线的标准方程为221412x y -= 14.执行右边的程序框图,若0.8p =,则输出的n = . 解:程序执行如下:1,0,0.8,n s p s p ===<成立;1,2,2s n s p ==<成立;11,3,24s n s p =+=<成立;111,4,248s n s p =++=<不成立,因此输出 4.n =15.已知2(3)4log 3233x f x =+,则8(2)(4)(8)(2)f f f f ++++ 的值等于 . 解:22(3)4log 32334log 3233,x x f x =+=+2()4l o g 233,f x x ⇒=+8(2)(4)(8)(2)f f ff∴++++= 222282334(l o g22l o g 23l o g 28l o g 2)18641442008.⨯+++++=+= 16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥ 则2z x y =+的最大值为 .解:如图,可行域为一个四边形,其四个顶点分别为(0),,0(0),,2(20),,(35),,在顶点(35),处2z x y =+取最大值11.三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ+-+(0πϕ<<,0ω>)为偶函数, 且函数()y f x =图象的两相邻对称轴间的距离为π2. (Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象, 求()g x 的单调递减区间.解:(Ⅰ)())cos()f x x x ωϕωϕ+-+12)cos()2x x ωϕωϕ⎤=+-+⎥⎣⎦π2sin 6x ωϕ⎛⎫=+- ⎪⎝⎭.因为()f x 为偶函数,所以对x ∈R ,()()f x f x -=恒成立,因此ππsin()sin 66x x ωϕωϕ⎛⎫-+-=+-⎪⎝⎭. 即ππππsin cos cos sin sin cos cos sin 6666x x x x ωϕωϕωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理得πsin cos 06x ωϕ⎛⎫-= ⎪⎝⎭.因为0ω>,且x ∈R ,所以πcos 06ϕ⎛⎫-= ⎪⎝⎭.又因为0πϕ<<,故ππ62ϕ-=.所以π()2sin 2cos 2f x x xωω⎛⎫=+= ⎪⎝⎭. 由题意得2ππ22ω= ,所以2ω=.故()2cos 2f x x =.因此ππ2cos 84f ⎛⎫== ⎪⎝⎭.(Ⅱ)将()f x 的图象向右平移π6个单位后,得到π6f x ⎛⎫- ⎪⎝⎭的图象,所以πππ()2cos 22cos 2663g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 当π2π22ππ3k x k -+≤≤(k ∈Z ),即π2πππ63k x k ++≤≤(k ∈Z )时,()g x 单调递减, 因此()g x 的单调递减区间为π2πππ63k k ⎡⎤++⎢⎥⎣⎦,(k ∈Z ). 18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C , 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等, 因此这些基本事件的发生是等可能的. 用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成,因而61()183P M ==. (Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. 解:(Ⅰ)证明:在ABD △中, 由于4AD =,8BD =,AB = 所以222AD BD AB +=.故AD BD ⊥.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,BD ⊂平面ABCD ,所以BD ⊥平面PAD , 又BD ⊂平面MBD , 故平面MBD ⊥平面PAD.(Ⅱ)解:过P 作PO AD⊥交AD 于O , 由于平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD .因此PO 为四棱锥P ABCD -的高, 又PAD △是边长为4的等边三角形.因此42PO == 在底面四边形ABCD 中,AB DC ∥,2AB DC =,所以四边形ABCD 是梯形,在RtADB △中,斜边AB5=, 此即为梯形ABCD 的高,所以四边形ABCD的面积为24S ==. 故1243P ABCD V -=⨯⨯= ABC MPD AB CMPD O将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10a记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)nn n nb n b S S =-≥. (Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和. 解:(Ⅰ)证明:由已知,当2n ≥时,221nn n nb b S S =-, 又12n n S b b b =+++ ,所以1212()1()n n n n n nS S S S S S ---=--, 即112()1n n n n S S S S ---=-,所以11112n n S S --=,又1111S b a ===.所以数列1n S ⎧⎫⎨⎬⎩⎭是首项为1,公差为12的等差数列. 由上可知1111(1)22n n n S +=+-=,即21n S n =+. 所以当2n ≥时,12221(1)n n n b S S n n n n -=-=-=-++. 因此1122(1)n n b n n n =⎧⎪=⎨-⎪+⎩, ,,.≥(Ⅱ)解:设上表中从第三行起,每行的公比都为q ,且0q >.因为12131212782⨯+++== , 所以表中第1行至第12行共含有数列{}n a 的前78项,故81a 在表中第13行第三列,因此28113491a b q ==-. 又1321314b =-⨯,所以2q =.记表中第(3)k k ≥行所有项的和为S ,则(1)2(12)2(12)(3)1(1)12(1)k k k k b q S k q k k k k --==-=--+-+ ≥.21.(本小题满分12分) 设函数2132()x f x x eax bx -=++,已知2x =-和1x =为()f x 的极值点.(Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 解:(Ⅰ)因为122()e (2)32x f x x x ax bx -'=+++1e (2)(32)x x x x ax b -=+++,又2x =-和1x =为()f x 的极值点,所以(2)(1)0f f ''-==,因此6203320a b a b -+=⎧⎨++=⎩,,解方程组得13a =-,1b =-.(Ⅱ)因为13a =-,1b =-,所以1()(2)(e 1)x f x x x -'=+-, 令()0f x '=,解得12x =-,20x =,31x =.因为当(2)x ∈-∞-,(01) ,时,()0f x '<; 当(20)(1)x ∈-+∞ ,,时,()0f x '>. 所以()f x 在(20)-,和(1)+∞,上是单调递增的;在(2)-∞-,和(01),上是单调递减的. (Ⅲ)由(Ⅰ)可知21321()e 3x f x x x x -=--, 故21321()()e(e )x x f x g x x x x x ---=-=-,令1()e x h x x -=-,则1()e 1x h x -'=-.令()0h x '=,得1x =,因为(]1x ∈-∞,时,()0h x '≤,所以()h x 在(]1x ∈-∞,上单调递减.故(]1x ∈-∞,时,()(1)0h x h =≥; 因为[)1x ∈+∞,时,()0h x '≥,所以()h x 在[)1x ∈+∞,上单调递增. 故[)1x ∈+∞,时,()(1)0h x h =≥.所以对任意()x ∈-∞+∞,,恒有()0h x ≥,又20x ≥,因此()()0f x g x -≥,故对任意()x ∈-∞+∞,,恒有()()f x g x ≥. 22.(本小题满分14分) 已知曲线11(0)xyC a b a b+=>>:所围成的封闭图形的面积为 曲线1C 2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若MO OA λ=(O为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程;(2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.解:(Ⅰ)由题意得23ab ⎧=⎪⎨=又0a b >>,解得25a =,24b =.因此所求椭圆的标准方程为22154x y +=. (Ⅱ)(1)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为(0)y kx k =≠,()A A A x y ,.解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+,所以22222222202020(1)454545A A k k OA x y k k k +=+=+=+++. 设()M x y ,,由题意知(0)MO OA λλ=≠,所以222MO OA λ=,即2222220(1)45k x y k λ++=+, 因为l 是AB 的垂直平分线,所以直线l 的方程为1y x k =-,即x k y=-, 因此22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++ , 又220x y +≠,所以2225420x y λ+=,故22245x y λ+=. 又当0k =或不存在时,上式仍然成立.综上所述,M 的轨迹方程为222(0)45x y λλ+=≠. (2)当k 存在且0k ≠时,由(1)得222045Ax k =+,2222045A k y k =+, 由221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45A Ak OA x y k +=+=+,222280(1)445k AB OA k +==+,22220(1)54k OM k +=+. 解法一:由于22214AMB S AB OM = △2222180(1)20(1)44554k k k k++=⨯⨯++ 2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△. 当0k =,140229AMB S =⨯=>△. 当k 不存在时,140429AMB S ==>△. 综上所述,AMB △的面积的最小值为409. 解法二:因为222222111120(1)20(1)4554k k OA OM k k +=+++++2224554920(1)20k k k +++==+, 又22112OA OMOA OM + ≥,409OA OM ≥,当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△.当0k =,140229AMB S =⨯=>△. 当k 不存在时,140429AMB S ==>△. 综上所述,AMB △的面积的最小值为409.。