华师大附中2019年届数学复习教学案平面向量的数量积及运算律
- 格式:doc
- 大小:236.50 KB
- 文档页数:10
《向量数量积的运算律》教案教学目标1.知识与技能:掌握平面向量的数量积的定义、运算率及其物理意义掌握平面向量的数量积坐标运算及应用2.过程与方法:(1)通过向量数量积物力背景的了解,体会物理学和数学的关系(2)通过向量数量积定义的给出,体会简单归纳与严谨定义的区别(3)通过向量数量积分配率的学习,体会类比,猜想,证明的探索式学习方法3.情感、态度与价值观:通过本节探究性学习,让学生尝试数学研究的过程。
二、教学重点、难点重点:平面向量数量积的定义难点:数量积的性质及运算率三、教学方法探究性设计方法,提出问题,创设情境,引导学生参与教学过程四、课时1课时五、教学过程则 & •方=X]%2 + y 』2从中总结出三个公式(向量的长度、距离、夹角公式)及 一个条件(向量垂直的充要条件) 向量的长度、距离和夹角公式(1 )设/二(九刃,则⑺12二/ *丿2或⑺匸牡2 *〉,2 (长度公式)(2)如果表示向量刁的有向线段的起点和终点的坐标分 别为(兀1,必)、(兀2*2),那么I a \= 7(x,-x 2)2+(^-y 2)2 (距离公式)BIT 纠 V X 12+^127X 22+J22(0505龙)(夹角公式)向量垂直的充要条件设& =(兀i ,yj, b = (x 29y 2), 则&丄b o x {x 2 + y {y 2 = 0定 义 形 成向量具有几何性和代数性,上节课根据向量的几何性定 义出了数量积的运算,并掌握了运算率及性质。
那么这一定 义如何由它的代数性反映出來?那么向量数量积的性质如何由它的坐标表示出来? 结论:己知两个非零向量a = (Xpy,), b = (x 2,y 2)注意:1、找向量夹角时,向量必须同起点;2、定义中注意垂直时数量积为0;3、两个向量的数量积称为内积,写成&厶符号“・”在向量运算中既不能省略,也不能用“ X ”4、数量积不满足结合率和消去率:在实数中,若狞0,且,则H0;但是在数量积中,若井0,且a /rO,不能推出b=Q因为其中cos。
教学设计(主备人:李安杰)教研组长审查签名:高中课程标准•数学必修教案执行时间:5.6平面向量的数量积及运算律(第一课时)一.内容及其解析1. 内容:本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识主要知识点:(1)平面向量数量积的定义及几何意义;(2)平面向量数量积的5个重要性质;(3)平面向量数量积的运算律2. 解析:用向量的数量积可以处理有关长度、角度、垂直的问题,但向量式的混合运算仍然是解决这一切问题的基础.易错的地方有两处,一是数量积的书写方法,特别是混合算式中哪两个向量之间写“·”,哪些地方什么都不写,关键要看是向量间的内积,还是实数与向量的积,二是两个向量的夹角,一定要严格依照定义,将两个向量的始点移到一起再找夹角教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用终点坐标之间的关系.二.目标及其解析1.目标1.帮助学生了解平面向量的数量积的定义及其几何意义,掌握平面向量数量积的性质;2.通过知识发生、发展过程的教学,使学生感受领悟到“数学化”过程及思想;3.通过师生互动、自主探究、交流与学习,培养学生探求新知善于合作交流的学习品质。
2.解析两向量的数量积是两向量之间的一种乘法,与数的乘法、实数与向量的积都是有区别的.首先需明确两向量的数量积结果是个数量,而不是向量,它的值为两向量的模与两向量夹角的余弦的乘积,其符号由夹角决定,其次需注意等式两边如果都是数量积,不能随意约去一个向量.三.教学问题诊断分析1.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件2掌握平面向量的数量积及其几何意义; 3掌握平面向量数量积的重要性质及运算律; 四 .教学支持条件分析 三角板五. 教学过程设计 (一) 教学基本流程(二) 教学情景一、复习引入: 1. 向量共线定理向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa2.平面向量基本定理如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ11e +λ22e3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 4.平面向量的坐标运算 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ= 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ∥b (b≠0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ, 使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0) 7定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比8点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点9线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b aλλλλλ+++=++1111 10.力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角二、讲解新课:问题一:[问题]如图,一辆车在力F 的作用下产生位移S ,那么力所做的功是多少?W = |F |⋅|s |cos θ,θ是F 与s 的夹角 这就是有关平面向量数量积的问题。
2019-2020年高三数学总复习平面向量的数量积教案理教材分析两个向量的数量积是中学代数以往内容中从未遇到过的一种新的乘法,它区别于数的乘法.这篇案例从学生熟知的功的概念出发,引出平面向量数量积的概念和性质及其几何意义,介绍向量数量积的运算律及坐标表示.向量的数量积把向量的长度和三角函数联系在一起,这为解决三角形的有关问题提供了方便,特别是能有效解决线段的垂直等问题.这节内容是整个向量部分的重要内容之一,对它的理解与掌握将直接影响向量其他内容的学习.这节内容的教学难点是对平面向量数量积的定义及运算律的理解和对平面向量数量积的应用.教学目标1. 理解并掌握平面向量的数量积、几何意义和数量积的坐标表示,会初步使用平面向量的数量积来处理有关长度、角度和垂直的问题,掌握向量垂直的条件.2. 通过对数量积的引入和应用,初步体会知识发生、发展的过程和运用过程,培养学生的科学思维习惯.任务分析两个向量的数量积从形式和实质上都与数的乘法有区别,这就给理解和掌握这个概念带来了一些困难.在学习时,要充分让学生理解、明白两个向量的数量积是一个数量,而不是向量.两个向量的数量积的值是这两个向量的模与两个向量夹角余弦的乘积,其符号由夹角余弦值的正负而确定.两向量的数量积“a·b”不同于两实数之积“ab”.通过实例理解a·b=b·c与a=c的关系,a·b=0与a=0或b=0的关系,以及(a·b)c=a(b·c)与(ab)c=a(bc)的不同.教学设计一、问题情景如图40-1所示,一个力f作用于一个物体,使该物体发生了位移s,如何计算这个力所做的功.由于图示的力f的方向与前进方向有一个夹角θ,真正使物体前进的力是f在物体前进方向上的分力,这个分力与物体位移的乘积才是力f做的功.即力f使物体位移x所做的功W可用下式计算.W=|s||f|cosθ.其中|f|cosθ就是f在物体前进方向上的分量,也就是力f在物体前进方向上正射影的数量.问题:像功这样的数量值,它由力和位移两个向量来确定.我们能否从中得到启发,把“功”看成这两个向量的一种运算的结果呢?二、建立模型1. 引导学生从“功”的模型中得到如下概念:已知两个非零向量a与b,把数量|a||b|cosθ叫a与b的数量积(内积),记作a·b =|a||b|cosθ.其中θ是a与b夹角,|a|cosθ(|b|cosθ)叫a在b方向上(b 在a方向上)的投影.规定0与任一向量的数量积为0.由上述定义可知,两个向量a与b的数量积是一个实数.说明:向量a与b的夹角θ是指把a,b起点平移到一起所成的夹角,其中0≤θ≤π.当θ=时,称a和b垂直,记作a⊥b.为方便起见,a与b的夹角记作〈a,b〉.2. 引导学生思考讨论根据向量数量积的定义,可以得出(1)设e是单位向量,a·e=|a|cos〈a,e〉.(2)设a·b是非零向量,则a⊥ba·b=0.(3)a·a=|a|2,于是|a|=.(4)cos〈a,b〉=.(5)|a·b|≤|a||b|(这与实数|ab|=|a||b|不同).三、解释应用[例题]已知|a|=5,|b|=4,〈a,b〉=120°,求a·b.解:a·b=|a||b|cos〈a,b〉=5×4×cos120°=-10.[练习]1. 已知|a|=3,b在a上的投影为-2,求:(1)a·b.(2)a在b上的投影.2. 已知:在△ABC中,a=5,b=8,c=60°,求·.四、建立向量数量积的运算律1. 出示问题:从数学的角度考虑,我们希望向量的数量积运算,也能像数量乘法那样满足某些运算律,这样数量积运算才更富有意义.回忆实数的运算律,你能类比和归纳出向量数量积的一些运算律吗?它们成立吗?为什么?2. 运算律及其推导已知:向量a,b,c和λ∈R,则(1)a·b=b·a(交换律).证明:左=|a||b|cosθ=右.(2)(λa)·b=λ(a·b)=a·(λb)(数乘结合律).证明:设a,b夹角为θ,当λ>0时,λa与b的夹角为θ,∴(λa)·b=(λa)·|b|cosθ=λ|a||b|cosθ=λ(a·b);当λ<0时,λa与b的夹角为(π-θ),∴(λa)·b=|λa||b|cos(π-θ)=-λ|a||b|(-cosθ)=λ|a||b|cosθ=λ(a·b);当λ=0时,(λa)·b=0·b=0=λ(a·b).总之,(λa)·b=λ(a·b);同理a·(λb)=λ(a·b).(3)(a+b)·c=a·c+b·c(乘法对加法的分配律).证明:如图40-2,任取一点O,作=a,=b,=c.∵a+b(即)在c方向上的投影等于a,b在c方向上的投影的和,即|a+b|cosθ=|a|cosθ1+|b|cosθ2,∴|c||a+b|cosθ=|c|(|a|cosθ1+|b|cosθ2)=|c||a|cosθ1+|c||b|cosθ2=c·a+c·b,∴(a+b)·c=a·c+b·c.思考:(1)向量的数量积满足结合律,即(a·b)c=a(b·c)吗?(2)向量的数量积满足消去律,即如果a·b=c·b,那么a=c吗?五、应用与深化[例题]1. 对实数a,b,有(a+b)2=a2+2ab+b2,(a+b)(a-b)=a2-b2.类似地,对任意向量a,b,也有类似结论吗?为什么?解:类比完全平方和公式与平方差公式,有(a+b)2=a2+2a·b+b2,(a+b)·(a-b)=a2-b2.其证明是:(a+b)2=(a+b)·(a+b)=a·a+a·b+b·a+b·b=a2+2a·b+b2,(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2.∴有类似结论.2. 已知|a|=6,|b|=4,〈a,b〉=60°,求(a+2b)·(a-3b).解:(a+2b)·(a-3b)=a2-3a·b+2b·a-6b2=|a|2-|a||b|cos60°-6|b|2=-72.3. 已知|a|=3,|b|=4,且a与b不共线.当k为何值时,(a+kb)⊥(a-kb)?解:(a+kb)⊥(a-kb),即(a+kb)·(a-kb)=0,即a2-k2b2=0,即9-k2×16=0,k=±.因此,当k=±时,有(a+kb)⊥(a-kb).4. 已知:正方形ABCD的边长为1,并且=a,=b,=c,求|a+b+c|.解法1:∵a+b+c=++=2,∴|a+b+c|=2=2.解法2:|a+b+c|2=(a+b+c)2=a2+b2+c2+2a·b+2a·c+2b·c=1+1+2+2×1×1×cos90°+2×1× ×+2×1××=8,∴|a+b+c|=2.[练习]1. |a|=4,|b|=3,(2a-3b)·(2a+b)=61,求a与b的夹角θ.2. 在边长为2的正三角形ABC中,求·+·+·.六、拓展延伸1. 当向量a,b的夹角为锐角时,你能说明a·b的几何意义吗?如图40-3,a·b,即以b在a上射影的长和a的长为两邻边的矩形面积(OA=OA1).2. 平行四边形是表示向量加法与减法的几何模型,如图40-4,=+,=-.试说明平行四边形对角线的长度与两条邻边长度之间的关系.3. 三个单位向量a,b,c有相同终点且a+b+c=0,问:它们的起点连成怎样的三角形?解法1:如图40-5,∵|a|=|b|=|c|=1,a+b+c=0,∴a+b=-c,∴(a+b)2=(-c)2,∴a2+b2+2a·b=c2,∴2|a|·|b|cos∠AOC=-1,cos∠AOC=,∠AOC=120°.同理∠BOC=∠AOC=120°,故△AOB,△BOC,△BOC全等,∴AB=AC=BC,即该△ABC为等边三角形.解法2:如图40-6,=c,=-a,=-b,由a+b+c=0,即=+.∵|a|=|b|=1,∴OADB为菱形.又||=1,∴∠AOB=120°.同理∠AOC=∠BOC=120°,…4. 在△ABC中,·=·=·,问:O点在△ABC的什么位置?解:由·=·,即·(-)=0,即·=0,∴⊥,同理⊥,⊥.故O是△ABC的垂心.点评这篇案例的一个突出特点是使用类比方法,即在研究向量的数量积的性质及运算律时,经常以实数为对象进行类比.以物理学中的力对物体做功的实例,引入数量积的过程比较自然,学生容易接受.在“拓展延伸”中,较多地展示了向量的综合应用.这都充分体现了向量是数形结合的重要载体.运用向量方法解决与向量有关的综合问题,越来越成为考查学生数学思维能力的一个重要方面.认识向量并会使用向量是这一部分的基础,也是重点.总之,这篇案例较好地实现了教学目标,同时,关注类比方法的运用,以及学生数学思维水平的提高.美中不足的是,对学生的自主探究的引导似乎有所欠缺.2019-2020年高三数学总复习平面向量的正交分解与坐标运算教案理教材分析这节课通过建立直角坐标系,结合平面向量基本定理,给出了向量的另一种表示———坐标表示,这样使平面中的向量与它的坐标建立起了一一对应关系,然后导出了向量的加法、减法及实数与向量的积的坐标运算,这就为利用“数”的运算处理“形”的问题搭起了桥梁,更突出也更简化了向量的应用.所以,一定要让学生重点掌握向量的坐标运算,以利于掌握坐标形式下的向量的一些关系式及运用.教学难点是让学生建立起平面向量的坐标概念.教学目标1. 理解平面向量坐标概念,领会它的引入过程,进一步体会一一对应的思想意识.2. 理解平面向量的坐标的概念,掌握平面向量的坐标运算,并能应用坐标运算解决一些问题.3. 增强数形结合意识,领会“没有运算,向量只是一个‘路标’,因为有了运算,向量的力量无限”的说法.任务分析1. 有了平面向量的基本定理,就不难有平面向量的正交分解,有了坐标系下点与坐标的一一对应关系,也就容易有在直角坐标平面内的向量与坐标的一一对应.2. 可以从两个角度来理解平面向量的坐标表示:(1)设i,j为x,y轴方向上的单位向量,则任一向量a可唯一地表示为xi+yj,即唯一对应数对(x,y),所以可以说a=(x,y).(2)任一向量a可平移成,一一对应点A(x,y),从而可说a=(x,y).3. 在接触过xOy平面内一点到它的坐标的这种形、数过渡的基础上,容易接受由向量到坐标的这种代数化的过渡.教学设计一、问题情景1. 光滑斜面上的木块所受重力可以分解为平行斜面使木块下滑的力F1和木块产生的垂直于斜面的压力F2(如图).一个向量也可以分解为两个互相垂直的向量的线性表达,这种情形叫向量的正交分解.以后可以看到,在正交分解下,许多有关向量问题将变得较为简单.2. 在平面直角坐标系中,每一个点可用一对有序实数(即它的坐标)表示,那么对平面直角坐标内的每一个向量,可否用实数对来表示?又如何表示呢?二、建立模型1. 如图,在直角坐标系中,先分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.对于平面上一个向量a,由平面向量的基本定理,知有且只有一对实数x,y使a=xi+yj,这样平面内任一向量a都可由x,y唯一确定,(x,y)叫a的坐标,记作a=(x,y).显然,i=(1,0),j=(0,1),0=(0,0).若把a的起点平移到坐标原点,即a=,则点A的位置由a唯一确定.设=xi+yj,则的坐标就是点A的坐标;反过来,点A的坐标(x,y)也就是的坐标.因此,在平面直角坐标系内,每一个平面向量都可以用一对实数(即坐标)唯一表示.2. 学生思考讨论已知a=(x1,y1),b=(x2,y2),你能得出a+b,a-b,λa的坐标吗?∵a=(x1,y1),b=(x2,y2),∴a=x1i+y1j,b=x2i+y2j.∴a+b=(x1+x2)i+(y1+y2)j,∴a+b=(x1+x2,y1+y2).同理a+b=(x1-x2,y1-y2),λa=(λx1,λy1).上述结论可表述为:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.三、解释应用[例题]1. 已知A(x1,y1),B(x2,y2),求AB→的坐标.解:如图39-3,AB→=-=(x2,y2)-(x1,y1)=(x2-x1,y2-y1).总结:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点坐标.思考:能在图中标出坐标为(x2-x1,y2-y1)的P点吗?平移到,则P(x2-x1,y2-y1).2. 已知A(-2,1),B(-1,3),C(3,4).(1)求-的坐标.(2)求ABCD中D点的坐标.放开思考,展开讨论,看学生们有哪些不同方法.(1)解法1:∵=(1,2),=(5,3),∴-=(1,2)-(5,3)=(-4,-1).解法2:-==(-4,-1).(2)解法1:设D(x,y),=,即(1,2)=(3-x,4-y),∴x=y=2,D(2,2).思考:你能比较出对(2)的两种解法在思想方法上的异同点吗?(解法1是间接的思想,即方程的思想,解法2是直接的思想)3. 在直角坐标系xOy中,已知点A(3,2),点B(-2,4),求向量+的方向和长度.解:由已知,得=(3,2),=(-2,4).设=+,则=+=(3,2)+(-2,4)=(1,6).由两点的距离公式,得设相对x轴正向的转角为α,则查表或使用计算器,得α=80°32′.答:向量的方向偏离x轴正向约为80°32′,长度等于,向量的方向偏离x轴正向约为116°34′,长度等于2.[练习]1. 已知a=(2,1),b=(-3,4),求3a+4b的坐标.2. 设a+b=(-4,-3),a-b=(2,1),求a,b.解法1:∵2a=(-4,-3)+(2,1)=(-2,-2),2b=(-4,-3)-(2,1)=(-6,-4),∴a=(-1,-1),b=(-3,-2).解法2:设a=(x1,y1),b=(x2,y2),则3. 已知a=(1,1),b=(1,-1),c=(-1,2),试以a,b为基底来表示c.解:设c=k1a+k2a,即(-1,2)=k1(1,1)+k2(1,-1),即(-1,2)=(k1+k2,k1-k2),四、拓展延伸1. 在直角坐标系xOy中,已知A(x1,y1),B(x2,y2),求线段AB中点的坐标.解:设点M(x,y)是线段AB的中点(如图39-5),则=(+).将上式换为向量的坐标,得(x,y)=[(x1,y1)+(x2,y2)].即.这里得到的公式叫作线段中点的坐标计算公式,简称中点公式.2. 对于向量a,b,c,若存在不全为0的实数k1,k2,k3,使k1a+k2b+k3c=0,则称a,b,c三个向量线性相关,试研究三个向量=(3,5),=(0,-1),=(-3,-4)是否线性相关.解法1:显然有++=0,∴三者线性相关.解法2:由k1+k2+k3=0,即k1(3,5)+k2(0,-1)+k3(-3,-4)=0,即(3k1-3k3,5k1-k2-4k3)=(0,0),取k1=k2=k3=1,则++=0,故三个向量线性相关.点评这篇案例设计完整,思路自然.由斜边上物体所受重力的分解,联想到向量应有常见的正交分解;由点的坐标表示,结合平面向量基本定理联想到向量也有坐标形式.这为锻炼学生的类比联想能力,增强数学地提出问题、解决问题的能力提供了平台.向量用坐标表示即把向量代数化,增强了学生数形结合的意识,也增强了一一对应的意识,为提高学生的数学素质打下了良好的基础.。
《平面向量数量积》教案一、教学目标知识与技能目标:使学生理解平面向量数量积的概念,掌握平面向量数量积的计算公式及性质,能够运用数量积解决一些几何问题。
过程与方法目标:通过探究平面向量数量积的概念和性质,培养学生的抽象思维能力和逻辑推理能力。
情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在现实生活中的应用价值。
二、教学重点与难点重点:平面向量数量积的概念,计算公式及性质。
难点:平面向量数量积的运算规律及其在几何中的应用。
三、教学方法采用问题驱动法、案例分析法和小组合作法,引导学生主动探究,发现平面向量数量积的规律,提高学生解决问题的能力。
四、教学准备教师准备PPT,涵盖平面向量数量积的概念、计算公式、性质及应用实例。
学生准备笔记本,以便记录学习过程中的疑问和感悟。
五、教学过程1. 导入新课教师通过展示一个实际问题,引导学生思考平面向量数量积的定义和作用。
2. 探究平面向量数量积的概念(1)教师引导学生根据定义,探究平面向量数量积的计算公式。
(2)学生通过实例,理解并掌握平面向量数量积的计算方法。
3. 学习平面向量数量积的性质(1)教师引导学生总结平面向量数量积的性质。
(2)学生通过练习,巩固对平面向量数量积性质的理解。
4. 应用平面向量数量积解决几何问题教师展示几个应用实例,引导学生运用平面向量数量积解决几何问题。
学生分组讨论,合作解决问题,分享解题过程和心得。
5. 课堂小结教师引导学生总结本节课所学内容,强调平面向量数量积的概念、计算公式及性质。
学生整理学习笔记,反思自己在学习过程中的收获和不足。
6. 布置作业教师布置一些有关平面向量数量积的练习题,巩固所学知识。
学生认真完成作业,巩固课堂所学内容。
七、教学反思教师在课后对自己的教学过程进行反思,分析教学效果,针对学生的掌握情况,调整教学策略。
学生反思自己的学习过程,总结经验教训,提高学习效果。
八、教学评价教师通过课堂表现、作业完成情况和课后练习成绩,全面评价学生对平面向量数量积的掌握程度。
4.3 平面向量的数量积及其应用[知识梳理]1.两个向量的夹角2.平面向量的数量积3.平面向量数量积的性质设a,b都是非零向量,e是单位向量,θ为a与b(或e)的夹角,则(1)e·a=a·e=|a|cosθ.(2)a⊥b⇔a·b=0.(3)当a 与b 同向时,a ·b =|a ||b |; 当a 与b 反向时,a ·b =-|a ||b |. 特别地,a ·a =|a |2或|a |=a ·a . (4)cos θ=a ·b|a ||b |. (5)|a ·b |≤|a ||b |.4.平面向量数量积满足的运算律 (1)a ·b =b ·a ;(2)(λa )·b =λ(a ·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a ·c +b ·c .5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A ,B 两点间的距离|AB |=|AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0. (4)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 特别提醒:(1)a 在b 方向上的投影与b 在a 方向上的投影不是一个概念,要加以区别. (2)对于两个非零向量a 与b ,由于当θ=0°时,a ·b >0,所以a ·b >0是两个向量a ,b 夹角为锐角的必要而不充分条件;a ·b =0也不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b .(3)在实数运算中,若a ,b ∈R ,则|ab |=|a |·|b |,若a ·b =b ·c (b ≠0),则a =c .但对于向量a ,b 却有|a ·b |≤|a |·|b |;若a ·b =b ·c (b ≠0),则a =c 不一定成立.例如a ·b =|a ||b |cos θ,当cos θ=0时,a 与c 不一定相等.又如下图,向量a 和c 在b 的方向上的投影相等,故a ·b =b ·c ,但a ≠c .(4)两个向量的数量积是一个实数. ∴0·a =0(实数)而0·a =0.(5)数量积不满足结合律(a ·b )·c ≠a ·(b ·c ). (6)a ·b 中的“·”不能省略. [诊断自测] 1.概念辨析(1)一个向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( ) (3)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) (4)在△ABC 中,A B →·B C →=|A B →|·|B C →|cos B .( ) 答案 (1)√ (2)√ (3)× (4)× 2.教材衍化(1)(必修A4 P 108T 3)已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .3 3 D .3 答案 B解析 a ·b =-122=|a ||b |cos135°, 解得|b |=6.故选B.(2)(必修A4 P 104例1)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________.答案 -2解析 由数量积的定义知,b 在a 方向上的投影为 |b |cos θ=4×cos120°=-2. 3.小题热身(1)(2017·包头质检)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30° B.45° C.60° D.120° 答案 A解析 cos ∠ABC =BA →·BC →|BA →||BC →|=32,所以∠ABC =30°.故选A.(2)已知向量a ,b 的夹角为60°,|a |=2, |b |=1,则|a +2b |=________. 答案 2 3解析 由题意知a ·b =|a ||b |cos60°=2×1×12=1,则|a +2b |2=(a +2b )2=|a |2+4|b |2+4a ·b =4+4+4=12.所以|a +2b |=2 3.题型1 平面向量数量积的运算角度1 求数量积典例 已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( )A .-58 B.18 C.14 D.118本题可采用向量基底法、坐标法.答案 B解析 解法一:如图, AF →·BC →=(AD →+DF →)·BC →=⎝ ⎛⎭⎪⎫-12BA →+32DE →·BC →=⎝ ⎛⎭⎪⎫-12BA →+34AC →·BC →=⎝ ⎛⎭⎪⎫-12BA →+34BC →-34BA →·BC →=⎝ ⎛⎭⎪⎫-54BA →+34BC →·BC →=-54BA →·BC →+34BC →2=-54×1×1×cos60°+34×12=18.故选B.解法二:建立平面直角坐标系,如图.则B ⎝ ⎛⎭⎪⎫-12,0,C ⎝ ⎛⎭⎪⎫12,0, A ⎝ ⎛⎭⎪⎫0,32, 所以BC →=(1,0).易知DE =12AC ,则EF =14AC =14,因为∠FEC =60°,所以点F 的坐标为⎝ ⎛⎭⎪⎫18,-38,所以AF →=⎝ ⎛⎭⎪⎫18,-538,所以AF →·BC →=⎝ ⎛⎭⎪⎫18,-538·(1,0)=18.故选B.方法技巧求两个向量的数量积的两种方法1.利用定义.2.利用向量的坐标运算.如典例. 冲关针对训练1.若菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( )A.12B.23C.56D.712 答案 C解析 以AB →,AD →为基向量,则AE →·AF →=(AB →+λAD →)·(AD →+μAB →)=μAB →2+λAD →2+(1+λμ)AB →·AD →=4(μ+λ)-2(1+λμ)=1①.CE →·CF →=(λ-1)BC →·(μ-1)DC →=-2(λ-1)(μ-1)=-23②,由①②可得λ+μ=56.故选C.2.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 2解析 解法一:AE →·BD →=⎝⎛⎭⎪⎫AD →+12AB →·(AD →-AB →)=AD →2-12AB →2=22-12×22=2.解法二:以A 为原点建立平面直角坐标系(如图),可得A (0,0),E (1,2),B (2,0),C (2,2),D (0,2),AE →=(1,2),BD →=(-2,2),则AE →·BD →=(1,2)·(-2,2)=1×(-2)+2×2=2.角度2 平面向量的夹角与垂直问题典例1 若非零向量a ,b 满足|a |=223·|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4 B.π2 C.3π4D .π 本题采用定义法.答案 A解析 ∵(a -b )⊥(3a +2b ),∴(a -b )·(3a +2b )=0⇒3|a |2-a ·b -2|b |2=0⇒3|a |2-|a ||b |cos 〈a ,b 〉-2|b |2=0.又∵|a |=223|b |,∴83|b |2-223|b |2·cos〈a ,b 〉-2|b |2=0. ∴cos 〈a ,b 〉=22.∵〈a ,b 〉∈[0,π], ∴〈a ,b 〉=π4.选A.典例2 平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( )A. -2B. -1C. 1D. 2本题采用坐标法、方程思想.答案 D解析 a =(1,2),b =(4,2),则c =m a +b =(m +4,2m +2),|a |=5,|b |=25,∴a ·c =5m +8,b ·c =8m +20.∵c 与a 的夹角等于c 与b 的夹角,∴c ·a |c ||a |=c ·b |c ||b |,∴5m +85=8m +2025,解得m =2.故选D.典例3 (2018·邢台模拟)已知△ABC 周长为6,a ,b ,c 分别为角A ,B ,C 的对边,且a ,b ,c 成等比数列,则BA →·BC →的取值范围为( )A .[2,18)B.⎝⎛⎦⎥⎤3(5-1)2,2 C.⎣⎢⎡⎭⎪⎫2,27-952D .(2,9-35)本题采用转化思想、向量法、余弦定理.答案 C解析 由题意可得a +b +c =6,且b 2=ac , ∴b =ac ≤a +c 2=6-b2,从而0<b ≤2.再由|a -c |<b ,得(a -c )2<b 2,(a +c )2-4ac <b 2, ∴(6-b )2-4b 2<b 2,得b 2+3b -9>0. 又b >0,解得b >35-32,∴35-32<b ≤2, ∵cos B =a 2+c 2-b 22ac =a 2+c 2-ac2ac,∴BA →·BC →=ac cos B =a 2+c 2-b 22=(a +c )2-2ac -b 22=(6-b )2-3b 22=-(b +3)2+27,则2≤BA →·BC →<27-952.故选C.方法技巧求平面向量的夹角的方法1.定义法:利用向量数量积的定义知,cos θ=a ·b|a ||b |,其中两个向量的夹角θ的范围为[0,π],求解时应求出三个量:a ·b ,|a |,|b |或者找出这三个量之间的关系.如典例2.2.坐标法:若a =(x 1,y 1),b =(x 2,y 2),则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 3.解三角形法:可以把所求两向量的夹角放到三角形中,利用正、余弦定理和三角形的面积公式等进行求解.如典例3.冲关针对训练1.若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则向量a +b 与a 的夹角为( )A.π6 B.π3 C.2π3 D.5π6答案 B解析 作▱ABCD ,使AB →=a ,AD →=b ,则AC →=a +b ,DB →=a -b ,由|a +b |=|a -b |,知▱ABCD 为矩形.又|a +b |=2|a |,所以∠CAB =π3.故选B.2.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为______.答案712解析 ∵AP →⊥BC →,∴AP →·BC →=0,∴(λAB →+AC →)·BC →=0,即(λAB →+AC →)·(AC →-AB →)=λAB →·AC →-λAB →2+AC →2-AC →·AB →=0. ∵向量AB →与AC →的夹角为120°,|AB →|=3,|AC →|=2, ∴(λ-1)|AB →||AC →|·cos120°-9λ+4=0,解得λ=712.角度3 求向量的模(或最值、范围)典例已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为( )A .6B .7C .8D .9本题采用三角函数法、不等式法.答案 B解析 解法一:由圆周角定理及AB ⊥BC ,知AC 为圆的直径. 故PA →+PC →=2PO →=(-4,0)(O 为坐标原点).设B (cos α,sin α),∴PB →=(cos α-2,sin α),∴PA →+PB →+PC →=(cos α-6,sin α),|PA →+PB →+PC →|=(cos α-6)2+sin 2α=37-12cos α≤37+12=7,当且仅当cos α=-1时取等号,此时B (-1,0),故|PA →+PB →+PC →|的最大值为7.故选B.解法二:同解法一得PA →+PC →=2PO →(O 为坐标原点),又PB →=PO →+OB →,∴|PA →+PB →+PC →|=|3PO →+OB →|≤3|PO →|+|OB →|=3×2+1=7,当且仅当PO →与OB →同向时取等号,此时B 点坐标为(-1,0),故|PA →+PB →+PC →|max =7.故选B.方法技巧求向量模及最值(范围)的方法1.代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;见典例答案解法一.2.几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解;见典例答案解法二.3.利用绝对值三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |求模的取值范围.见典例答案解法二.冲关针对训练已知向量a ,b ,c ,满足|a |=2,|b |=a ·b =3,若(c -2a )·⎝ ⎛⎭⎪⎫c -23b =0,则|b -c |的最小值是( )A .2- 3B .2+ 3C .1D .2 答案 A解析 根据条件,设a =(1, 3),b =(3,0),设c =(x ,y ),则(c -2a )·⎝ ⎛⎭⎪⎫c -23b =(x -2,y -23)·(x -2,y )=0;∴(x -2)2+(y -3)2=3;∴c 的终点在以(2,3)为圆心,3为半径的圆上,如图所示:∴|b -c |的最小值为(2-3)2+(3-0)2-3=2- 3.故选A.角度4 求参数的取值典例在△ABC 中,已知AB →=(2,3),AC →=(1,k ),且△ABC 的一个内角为直角,则实数k 的值为________.本题采用方程思想,并依据直角的位置可分三种情形讨论.答案 -23或113或3±132解析 ①若∠A =90°,则有AB →·AC →=0,即2+3k =0,解得k =-23.②若∠B =90°,则有AB →·BC →=0,因为BC →=AC →-AB →=(-1,k -3),所以-2+3(k -3)=0,解得k =113.③若∠C =90°,则有AC →·BC →=0,即-1+k (k -3)=0,解得k =3±132.综上所述,得k =-23或113或3±132.方法技巧平面向量中的参数及范围的求法1.利用方程思想,由已知列出方程或方程组,进而求解.如典例.2.利用等价转化思想将已知转化为不等式或函数,求出参数的取值.如冲关针对训练. 冲关针对训练设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1与e 2的夹角为π3,若向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,求实数t 的取值范围.解 由向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,得(2t e 1+7e 2)·(e 1+t e 2)|2t e 1+7e 2||e 1+t e 2|<0,即(2t e 1+7e 2)·(e 1+t e 2)<0,化简即得2t 2+15t +7<0,解得-7<t <-12.当夹角为π时,也有(2t e 1+7e 2)·(e 1+t e 2)<0,但此时夹角不是钝角. 设2t e 1+7e 2=λ(e 1+t e 2),λ<0, 可求得⎩⎪⎨⎪⎧2t =λ,7=λt ,λ<0,∴⎩⎪⎨⎪⎧λ=-14,t =-142.∴所求实数t 的范围是⎝⎛⎭⎪⎫-7,-142∪⎝ ⎛⎭⎪⎫-142,-12.题型2 平面向量的综合应用角度1 在平面几何中的应用典例1已知△ABC 的三边长AC =3,BC =4,AB =5,P 为AB 边上任意一点,则CP →·(BA →-BC →)的最大值为________.本题采用坐标法、基向量法.答案 9解析 (坐标法)以C 为原点,建立平面直角坐标系如图所示,设P 点坐标为(x ,y )且0≤y ≤3,0≤x ≤4,则CP →·(BA →-BC →)=CP →·CA →=(x ,y )·(0,3)=3y ,当y =3时,取得最大值9.典例2 如图,在△ABC 中,已知点D ,E 分别在边AB ,BC 上,且AB =3AD ,BC =2BE .(1)用向量AB →,AC →表示DE →;(2)设AB =9,AC =6,A =60°,求线段DE 的长.本例(1)问采用数形结合法,(2)问采用向量法.解 (1)∵AB =3AD ,BC =2BE , ∴DB →=23AB →,BE →=12BC →=12(AC →-AB →),∴DE →=DB →+BE →=23AB →+12AC →-12AB →=16AB →+12AC →.(2)AB →2=81,AC →2=36,AB →·AC →=9×6×cos60°=27, ∴DE →2=136AB →2+16AB →·AC →+14AC →2=634,∴DE =|DE →|=634=372. 角度2 三角函数与向量典例 已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.利用转化法将向量方程转化为三角方程.解 (1)证明:由题意得|a -b |2=2,即(a -b )2=a 2-2a ·b +b 2=2. 因为a 2=b 2=|a |2=|b |2=1,所以1-2a ·b +1=2.所以a ·b =0. 故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1,由此得cos α=cos(π-β),由 0<β<π,得0<π-β<π. 又0<α<π,所以α=π-β.代入sin α+sin β=1,得sin α=sin β=12,又α>β,所以α=5π6,β=π6.角度3 向量与解三角形的综合典例1已知O 是△ABC 内部一点,OA →+OB →+OC →=0,AB →·AC →=2且∠BAC =60°,则△OBC 的面积为( )A.33 B.12 C.32 D.23用三角形重心定理.答案 A解析 ∵OA →+OB →+OC →=0, ∴OA →+OB →=-OC →, ∴O 为三角形的重心,∴△OBC 的面积为△ABC 面积的13.∵AB →·AC →=2,∴|AB →|·|AC →|cos ∠BAC =2. ∵∠BAC =60°, ∴|AB →|·|AC →|=4,△ABC 面积为12|AB →|·|AC →|sin ∠BAC =3,∴△OBC 的面积为33. 故选A.典例2 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m =⎝⎛⎭⎪⎫sin A 2,cos A 2,n =⎝⎛⎭⎪⎫cos A2,-cos A 2,且2m ·n +|m |=22,AB →·AC →=1.(1)求角A 的大小; (2)求△ABC 的面积S .利用转化法将向量等式转化为三角方程.解 (1)因为2m ·n =2sin A 2cos A2-2cos 2A2=sin A -(cos A +1)=2sin ⎝⎛⎭⎪⎫A -π4-1,又|m |=1,所以2m ·n +|m | =2sin ⎝⎛⎭⎪⎫A -π4=22, 即sin ⎝⎛⎭⎪⎫A -π4=12.因为0<A <π, 所以-π4<A -π4<3π4,所以A -π4=π6,即A =5π12.(2)cos A =cos 5π12=cos ⎝ ⎛⎭⎪⎫π6+π4 =cos π6cos π4-sin π6sin π4=6-24,因为AB →·AC →=bc cos A =1,所以bc =6+ 2.又sin A =sin 5π12=sin ⎝ ⎛⎭⎪⎫π6+π4=6+24, 所以△ABC 的面积S =12bc sin A =12(6+2)×6+24=2+32.角度4 向量与解析几何的综合典例1已知动直线l 与圆O :x 2+y 2=4相交于A ,B 两点,且满足|AB |=2,点C 为直线l 上一点,且满足CB →=52CA →,若M 是线段AB 的中点,则OC →·OM →的值为( )A .3B .2 3C .2D .-3运用数形结合思想,坐标法化为代数问题.答案 A解析 动直线l 与圆O :x 2+y 2=4相交于A ,B 两点, 且满足|AB |=2, 则△OAB 为等边三角形,于是可设动直线l 为y =3(x +2),根据题意可得B (-2,0),A (-1,3), ∵M 是线段AB 的中点, ∴M ⎝ ⎛⎭⎪⎫-32,32. 设C (x ,y ),∵CB →=52CA →,∴(-2-x ,-y )=52(-1-x ,3-y ),∴⎩⎪⎨⎪⎧-2-x =52(-1-x ),-y =52(3-y ),解得⎩⎪⎨⎪⎧x =-13,y =533,∴C ⎝ ⎛⎭⎪⎫-13,533, ∴OC →·OM →=⎝ ⎛⎭⎪⎫-13,533·⎝ ⎛⎭⎪⎫-32,32=12+52=3,故选A.典例2 已知圆C 经过点A (1,3),B (2,2),并且直线m :3x -2y =0平分圆C . (1)求圆C 的方程;(2)若直线l :y =kx +2与圆C 交于M ,N 两点,是否存在直线l ,使得OM →·ON →=6(O 为坐标原点),若存在,求出k 的值;若不存在,请说明理由.坐标法,利用向量的坐标与解析几何的坐标的关系求解.解 (1)线段AB 的中点E ⎝ ⎛⎭⎪⎫32,52,k AB =3-21-2=-1, 故线段AB 的中垂线方程为y -52=x -32,即x -y +1=0.因为圆C 经过A ,B 两点,故圆心在线段AB 的中垂线上. 又因为直线m :3x -2y =0平分圆C ,所以直线m 经过圆心.由⎩⎪⎨⎪⎧x -y +1=0,3x -2y =0,解得⎩⎪⎨⎪⎧x =2,y =3,即圆心的坐标为C (2,3),而圆的半径r =|BC |=(2-2)2+(2-3)2=1, 所以圆C 的方程为(x -2)2+(y -3)2=1. (2)设M (x 1,y 1),N (x 2,y 2),将y =kx +2代入圆C 的方程,即(1+k 2)x 2-(2k +4)x +4=0, 由Δ=(2k +4)2-16(1+k 2)>0,得0<k <43,∴x 1+x 2=2k +41+k 2,x 1x 2=41+k2,∴OM →·ON →=x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+2k (x 1+x 2)+4=6,∴(1+k 2)41+k 2+2k ·2k +41+k 2+4=6,即3k 2+4k +1=0, 解得k =-1或k =-13.此时不满足Δ>0,与直线l 与圆C 交于M ,N 两点相矛盾, 所以不存在直线l ,使得OM →·ON →=6. 角度5 向量与函数、不等式的综合典例1 若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8将向量问题用坐标法转化为函数问题求解.答案 C解析 由题意,得F (-1,0),设P (x 0,y 0),则有x 204+y 203=1,解得y 2=3⎝ ⎛⎭⎪⎫1-x 204.因为FP→=(x 0+1,y 0),OP →=(x 0,y 0),所以OP →·FP →=x 0(x 0+1)+y 20=x 20+x 0+3⎝ ⎛⎭⎪⎫1-x 204=x 204+x 0+3,对应的抛物线的对称轴方程为x 0=-2.因为-2≤x 0≤2,故当x 0=2时,OP →·FP →取得最大值224+2+3=6.故选C.典例2 已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若P 点是△ABC 所在平面内一点,且AP →=AB→|AB →|+4AC →|AC →|,则PB →·PC →的最大值等于( ) A .13 B .15 C .19 D .21将向量问题化归为均值不等式问题.答案 A解析 由题意建立如图所示的坐标系,可得A (0,0),B ⎝ ⎛⎭⎪⎫1t,0,C (0,t ),∵AP →=AB→|AB →|+4AC →|AC →|,∴P (1,4),∴PB →=⎝ ⎛⎭⎪⎫1t -1,-4,PC →=(-1,t -4),∴PB →·PC →=-⎝ ⎛⎭⎪⎫1t -1-4(t -4)=17-⎝ ⎛⎭⎪⎫4t +1t ,由基本不等式可得1t+4t ≥21t·4t =4,∴17-⎝ ⎛⎭⎪⎫4t +1t ≤17-4=13,当且仅当4t =1t ,即t =12时取等号,∴PB →·PC →的最大值为13.故选A. 方法技巧1.平面向量的模及其应用的类型及解题策略(1)求向量的模的方法:①公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;②几何法,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.如题型1中角度3典例.2.向量在平面几何中的应用用平面向量解决平面几何问题时,常常建立平面直角坐标系,这样可以使向量的运算更简便一些.如题型2角度1典例1.3.向量与三角函数综合应用(1)解决平面向量与三角函数的交汇问题,关键是准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题解决.(2)还应熟练掌握向量数量积的坐标运算公式、几何意义、向量模、夹角的坐标运算公式以及三角恒等变换、正、余弦定理等知识.如题型2中角度2典例.4.向量在解析几何中的作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别是向量垂直、平行的坐标表示在解决解析几何中的垂直、平行问题时经常用到.如题型2角度4典例1.冲关针对训练1.(2018·沈阳模拟)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=( )A .20B .15C .9D .6 答案 C解析 如图所示,∵四边形ABCD 为平行四边形,点M ,N 满足BM →=3MC →,DN →=2NC →,∴根据图形可得:AM →=AB →+34BC →=AB →+34AD →,AN →=AD →+23DC →=AD →+23AB →,∴NM →=AM →-AN →,∵AM →·NM →=AM →·(AM →-AN →)=AM →2-AM →·AN →,AM →2=AB →2+32AB →·AD →+916AD →2,AM →·AN →=23AB →2+34AD →2+32AB →·AD →,|AB →|=6,|AD →|=4,∴AM →·NM →=13AB →2-316AD →2=12-3=9.故选C.2.已知a ,b 为平面向量,若a +b 与a 的夹角为π3,a +b 与b 的夹角为π4,则|a ||b |=( )A.33 B.64 C.53 D.63答案 D解析 如图所示:在平行四边形ABCD 中,AB →=a ,AD →=b ,AC →=a +b ,∠BAC =π3,∠DAC =π4,在△ABC 中,由正弦定理得,|a ||b |=sinπ4sinπ3=2232=63.故选D. 3.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的交点为B ,点A 在抛物线的准线上的射影为C ,若AF →=FB →,BA →·BC →=48,则抛物线的方程为( )A .y 2=8x B .y 2=4x C .y 2=16x D .y 2=42x答案 B解析 如图所示,AF →=FB →⇒F 为线段AB 中点,∵AF =AC ,∴∠ABC =30°.由BA →·BC →=48,得BC =43,得AC =4.∴由中位线的性质有p =12AC =2.故抛物线的方程为y 2=4x .故选B.1.(2018·沧州调研)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43 D .-1答案 B解析 解法一:设BC 的中点为D ,AD 的中点为E ,则有PB →+PC →=2PD →,则PA →·(PB →+PC →)=2PA →·PD →=2(PE →+EA →)·(PE →-EA →)=2(PE →2-EA →2). 而AE →2=⎝ ⎛⎭⎪⎫322=34,当P 与E 重合时,PE →2有最小值0,故此时PA →·(PB →+PC →)取最小值,最小值为-2EA →2=-2×34=-32.故选B. 解法二:以AB 所在直线为x 轴,AB 的中点O 为原点建立平面直角坐标系,如图,则A (-1,0),B (1,0),C (0,3),设P (x ,y ),取BC 的中点D , 则D ⎝ ⎛⎭⎪⎫12,32.PA →·(PB →+PC →)=2PA →·PD →=2(-1-x ,-y )·⎝ ⎛⎭⎪⎫12-x ,32-y=2⎣⎢⎡⎦⎥⎤(x +1)·⎝ ⎛⎭⎪⎫x -12+y ·⎝ ⎛⎭⎪⎫y -32=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +142+⎝⎛⎭⎪⎫y -342-34.因此,当x =-14,y =34时,PA →·(PB →+PC →)取得最小值,最小值为2×⎝ ⎛⎭⎪⎫-34=-32.故选B.2.(2017·全国卷Ⅰ)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________.答案 7解析 ∵a =(-1,2),b =(m,1), ∴a +b =(-1+m,2+1)=(m -1,3). 又a +b 与a 垂直,∴(a +b )·a =0, 即(m -1)×(-1)+3×2=0, 解得m =7.3.(2017·北京高考)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.答案 6解析 解法一:根据题意作出图象,如图所示,A (-2,0),P (x ,y ).由点P 向x 轴作垂线交x 轴于点Q ,则点Q 的坐标为(x,0). AO →·AP →=|AO →||AP →|cos θ,|AO →|=2,|AP →|=(x +2)2+y 2, cos θ=AQ AP=x +2(x +2)2+y2,所以AO →·AP →=2(x +2)=2x +4.点P 在圆x 2+y 2=1上,所以x ∈[-1,1]. 所以AO →·AP →的最大值为2+4=6.解法二:如图所示,因为点P 在圆x 2+y 2=1上, 所以可设P (cos α,sin α)(0≤α<2π), 所以AO →=(2,0),AP →=(cos α+2,sin α), AO →·AP →=2cos α+4≤2+4=6,当且仅当cos α=1,即α=0,P (1,0)时“=”号成立.4.(2017·天津高考)在△ABC 中,∠A =60°,AB =3,AC =2.若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.答案311解析 解法一:由B D →=2D C →得A D →=13A B →+23A C →,所以A D →·A E →=⎝ ⎛⎭⎪⎫13A B →+23A C →·(λAC →-A B →)=13λAB →·A C →-13A B →2+23λAC →2-23A B →·A C →,又A B →·A C →=3×2×cos60°=3,A B →2=9,A C →2=4,所以A D →·A E →=λ-3+83λ-2=113λ-5=-4,解得λ=311.解法二:以A 为原点,AB 所在的直线为x 轴建立平面直角坐标系,如图,因为AB =3,AC =2,∠A =60°,所以B (3,0),C (1,3),又B D →=2D C →,所以D ⎝ ⎛⎭⎪⎫53,233,所以A D →=⎝ ⎛⎭⎪⎫53,233,而A E →=λAC →-A B →=λ(1,3)-(3,0)=(λ-3,3λ),因此A D →·A E →=53(λ-3)+233×3λ=113λ-5=-4,解得λ=311.[基础送分 提速狂刷练]一、选择题1.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-1665答案 C解析 由题可知,设b =(x ,y ),则2a +b =(8+x,6+y )=(3,18),所以可以解得x =-5,y =12,故b =(-5,12).由cos 〈a ,b 〉=a ·b |a ||b |=1665.故选C.2.已知向量a =(m,2),b =(2,-1),且a ⊥b ,则|2a -b |a ·(a +b )等于( )A .-53B .1C .2 D.54答案 B解析 ∵a ⊥b ,∴2m -2=0,∴m =1,则2a -b =(0,5),a +b =(3,1),∴a ·(a +b )=1×3+2×1=5,|2a -b |=5,∴|2a -b |a ·(a +b )=55=1.故选B.3.已知△DEF 的外接圆的圆心为O ,半径R =4,如果OD →+DE →+DF →=0,且|OD →|=|DF →|,则向量EF →在FD →方向上的投影为( )A .6B .-6C .2 3D .-2 3 答案 B解析 由OD →+DE →+DF →=0得,DO →=DE →+DF →. ∴DO 经过EF 的中点,∴DO ⊥EF . 连接OF ,∵|OF →|=|OD →|=|DF →|=4, ∴△DOF 为等边三角形,∴∠ODF =60°. ∴∠DFE =30°,且EF =4×sin60°×2=4 3.∴向量EF →在FD →方向上的投影为|EF →|·cos〈EF →,FD →〉=43cos150°=-6.故选B. 4.已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形答案 D解析 因为非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又cos ∠BAC =AB→|AB →|·AC →|AC →|=12,所以∠BAC =π3. 所以△ABC 为等边三角形.故选D.5.在△ABC 中,|AB →+AC →|=3|AB →-AC →|,|AB →|=|AC →|=3,则CB →·CA →的值为( ) A .3 B .-3 C .-92 D.92答案 D解析 由|AB →+AC →|=3|AB →-AC →|两边平方可得,AB →2+AC →2+2AB →·AC →=3(AB →2+AC →2-2AB →·AC →),即AB →2+AC →2=4AB →·AC →,又|AB →|=|AC →|=3,所以AB →·AC →=92,又因为CB →=AB →-AC →,所以CB →·CA →=(AB →-AC →)·(-AC →)=AC →2-AB →·AC →=9-92=92.故选D.6.(2017·龙岩一模)已知向量OA →与OB →的夹角为60°,且|OA →|=3,|OB →|=2,若OC →=mOA→+nOB →,且OC →⊥AB →,则实数m n的值为( )A.16B.14 C .6 D .4 答案 A解析 OA →·OB →=3×2×cos60°=3,∵OC →=mOA →+nOB →,且OC →⊥AB →,∴(mOA →+nOB →)·AB →=(mOA →+nOB →)·(OB →-OA →)=(m -n )OA →·OB →-mOA →2+nOB →2=0, ∴3(m -n )-9m +4n =0,∴m n =16.故选A. 7.已知直线y =x +m 和圆x 2+y 2=1交于A ,B 两点,O 为坐标原点,若AO →·AB →=32,则实数m =( )A .±1 B.±32 C .±22 D .±12答案 C解析 设A (x A ,y A ),B (x B ,y B ),联立⎩⎪⎨⎪⎧y =x +m ,x 2+y 2=1,消去y 得2x 2+2mx +m 2-1=0,由Δ=4m 2-8(m 2-1)>0,得-2<m <2,又x A x B =m 2-12,x A +x B =-m ,所以y A y B =(x A +m )(x B+m )=m 2-12,由AO →·AB →=AO →·(OB →-OA →)=-OA →·OB →+OA →2=-x A x B -y A y B +1=-m 2+2=32,解得m =±22.故选C. 8.对任意两个非零的平面向量α和β,定义α·β=α·ββ·β.若两个非零的平面向量a ,b 满足a 与b 的夹角θ∈⎝ ⎛⎭⎪⎫π4,π2,且a ·b 和b ·a 都在集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ ⎪⎪⎪n 2n ∈Z 中,则a ·b等于( )A.52B.32 C .1 D.12 答案 D解析 根据新定义,得a ·b =a ·b b ·b =|a ||b |cos θ|b |2=|a ||b |cos θ,b ·a =b ·aa ·a=|a ||b |cos θ|a |2=|b ||a |cos θ. 又因为a ·b 和b ·a 都在集合⎭⎬⎫⎩⎨⎧⎪⎪⎪n 2n ∈Z 中,设a ·b =n 12,b ·a =n 22(n 1,n 2∈Z ),那么(a ·b )·(b ·a )=cos 2θ=n 1n 24,又θ∈⎝ ⎛⎭⎪⎫π4,π2,所以0<n 1n 2<2.所以n 1,n 2的值均为1,故a ·b =n 12=12.故选D.9.已知a ,b 是两个互相垂直的单位向量,且c ·a =c ·b =1,则对任意的正实数t ,⎪⎪⎪⎪⎪⎪c +t a +1t b 的最小值是( ) A .2 B .2 2 C .4 D .4 2答案 B解析 设a =(1,0),b =(0,1),c =(x ,y ),则由c ·a =c ·b =1,得c =(1,1),c +t a +1t b =(1,1)+t (1,0)+1t (0,1)=⎝⎛⎭⎪⎫t +1,1+1t ,⎪⎪⎪⎪⎪⎪c +t a +1t b =(t +1)2+⎝⎛⎭⎪⎫1+1t 2=t 2+1t 2+2t +2t+2≥22,当且仅当t =1时等号成立.故选B.10.已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .[1,2+2]答案 A解析 以a 和b 分别为x 轴和y 轴正方向的单位向量建立直角坐标系,则a =(1,0),b =(0,1),设c =(x ,y ),则c -a -b =(x -1,y -1),∵|c -a -b |=1,∴(x -1)2+(y -1)2=1.即(x ,y )是以点M (1,1)为圆心,1为半径的圆上的点,而|c |=x 2+y 2.所以|c |可以理解为圆M 上的点到原点的距离,由圆的性质可知,|OM |-r ≤|c |≤|OM |+r ,即|c |∈[2-1,2+1].故选A.二、填空题11.已知向量a ,b 的夹角为60°,且|a |=2,|a -2b |=27,则|b |=________. 答案 3解析 因为|a |=2,|a -2b |=27,所以(a -2b )2=28,即4-4a ·b +4|b |2=28,又向量a ,b 的夹角为60°,所以4-4×2×|b |cos60°+4|b |2=28,解得|b |=3.12.已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.答案223解析 a ·b =(3e 1-2e 2)·(3e 1-e 2)=9+2-9×1×1×13=8.∵|a |2=(3e 1-2e 2)2=9+4-12×1×1×13=9,∴|a |=3.∵|b |2=(3e 1-e 2)2=9+1-6×1×1×13=8,∴|b |=22, ∴cos β=a ·b |a |·|b |=83×22=223.13.在平行四边形ABCD 中,∠A =π3,边AB ,AD 的长分别为2,1.若M ,N 分别是边BC ,CD 上的点,且满足|BM →||BC →|=|CN →||CD →|,则AM →·AN →的取值范围是________.答案 [2,5]解析 如图所示,设|BM →||BC →|=|CN →||CD →|=λ,则λ∈[0,1],AM →·AN →=(AB →+BM →)·(AD →+DN →)=(AB →+λBC →)·[AD →+(λ-1)CD →]=AB →·AD →+(λ-1)AB →·CD →+λBC →·AD →+λ(λ-1)BC →·CD →=1×2×12+(λ-1)×(-4)+λ×1+λ(λ-1)×(-1)=1+4-4λ+λ-λ2+λ=-(λ+1)2+6.∵λ∈[0,1],∴AM →·AN →∈[2,5].14.(2018·杭州质检)在边长为1的菱形ABCD 中,∠BAD =60°,E 是BC 的中点,则A C →·A E →=________.答案 94解析 建立如图平面直角坐标系,则A ⎝ ⎛⎭⎪⎫-32,0,C ⎝ ⎛⎭⎪⎫32,0,B ⎝⎛⎭⎪⎫0,-12.∴E 点坐标为⎝⎛⎭⎪⎫34,-14,∴A C →=(3,0),A E →=⎝ ⎛⎭⎪⎫334,-14,∴A C →·A E →=3×334=94. 三、解答题15.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上,且OP →=mAB →+nAC →(m ,n ∈R ).(1)若m =n =23,求|OP →|;(2)用x ,y 表示m -n ,并求m -n 的最大值.解 (1)∵m =n =23,AB →=(1,2),AC →=(2,1),∴OP →=23(1,2)+23(2,1)=(2,2),∴|OP →|=22+22=2 2.(2)∵OP →=m (1,2)+n (2,1)=(m +2n,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减,得m -n =y -x .令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得asin A =bsin B,则sin B =b sin A a =5×4542=22,因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1,c =-7(舍去),故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.。
2019-2020年高考数学一轮复习专题26平面向量的数量积及平面向量的应用教学案理1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.2.掌握数量积的坐标表达式,会进行平面向量数量积的运算.3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.1.平面向量的数量积(1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b 的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a=0.(2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos__θ的乘积.2.平面向量数量积的性质及其坐标表示设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.(1)数量积:a·b=|a||b|cos θ=x1x2+y1y2.(2)模:|a|=a·a=x21+y21.(3)夹角:cos θ=a·b|a||b|=x1x2+y1y2x21+y21·x22+y22.(4)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.(5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤x21+y21·x22+y22. 3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).4.向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a ∥b (b ≠0)⇔a =λb ⇔x 1y 2-x 2y 1=0.(2)证明垂直问题,常用数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0(a ,b 均为非零向量). (3)求夹角问题,利用夹角公式cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22(θ为a 与b 的夹角). 5.向量在三角函数中的应用与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.6.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.高频考点一 平面向量数量积的运算例1、(1)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( )A .20 B.15 C .9 D .6(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1. 因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1, 故DE →·DC →的最大值为1.方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,∴DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大即为DC =1, ∴(DE →·DC →)max =|DC →|·1=1.【感悟提升】(1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【变式探究】(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 (1)22 (2)2高频考点二 用数量积求向量的模、夹角例2、(1)(2016·全国Ⅱ卷)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A.-8 B.-6 C.6D.8(2)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.解析 (1)由题知a +b =(4,m -2),因为(a +b )⊥b ,所以(a +b )·b =0, 即4×3+(-2)×(m -2)=0,解之得m =8,故选D. (2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0,即(2k -3,-6)·(2,1)<0,解得k <3. 又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c , 此时2a -3b 与c 反向,不合题意.综上,k 的取值范围为⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3.答案 (1)D (2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3【方法规律】(1)根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【变式探究】 (1)(2016·全国Ⅲ卷)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A.30°B.45°C.60°D.120°(2)(2016·全国Ⅰ卷)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 解析 (1)|BA →|=1,|BC →|=1, cos ∠ABC =BA sup 6(→)·BC →|BA →|·|BC →|=32.由〈BA →,BC →〉∈[0°,180°],得∠ABC =30°. (2)由|a +b |2=|a |2+|b |2,得a ⊥b , 所以m ×1+1×2=0,得m =-2. 答案 (1)A (2)-2【感悟提升】(1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【举一反三】(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B .2 C. 6D .6答案 (1)223 (2)C 解析 (1)∵|a |=3e 1-2e 22=9+4-12×1×1×13=3,|b |=3e 1-e 22=9+1-6×1×1×13=22,∴a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22=9-9×1×1×13+2=8, ∴cos β=83×22=223.(2)∵AB →·AC →=-1,∴|AB →|·|AC →|·cos120°=-1, 即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2 ≥2|AB →|·|AC →|-2AB →·AC →=6, ∴|BC →|min = 6.高频考点三 平面向量与三角函数例3、在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 解 (1)因为m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n . 所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ·n =cos π3=12, 即22sin x -22cos x =12,所以sin ⎝⎛⎭⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4, 所以x -π4=π6,即x =5π12.【感悟提升】平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【变式探究】已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且OA →⊥OB →,则tan α的值为( ) A .-43 B .-45 C.45 D.34答案 A高频考点四 向量在平面几何中的应用例4、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心.【感悟提升】解决向量与平面几何综合问题,可先利用基向量或坐标系建立向量与平面图形的联系,然后通过向量运算研究几何元素之间的关系.【变式探究】(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形 B .梯形 C .正方形 D .菱形 答案 (1)12 (2)D解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →, 又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →) =AD →2-12AD →·AB →+AD →·AB →-12AB →2 =|AD →|2+12|AD →||AB →|cos60°-12|AB →|2 =1+12×12|AB →|-12|AB →|2=1.∴()avs4alco1(f(1,2)-|AB →|)|AB →|=0,又|AB →|≠0,∴|AB →|=12.(2)AB →+CD →=0⇒AB →=-CD →=DC →⇒平面四边形ABCD 是平行四边形,(AB →-AD →)·AC →=DB →·AC →=0⇒DB →⊥AC →,所以平行四边形ABCD 是菱形.高频考点五、 向量在解析几何中的应用例5、(1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx =______.答案 (1)2x +y -3=0 (2)± 3 解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3. 【感悟提升】向量在解析几何中的作用:(1)载体作用,向量在解析几何问题中出现,多用于“包装”,解决此类问题关键是利用向量的意义、运算,脱去“向量外衣”;(2)工具作用,利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题.【变式探究】已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是( )A .5B .6C .10D .12答案 B解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1,∵CM =5>2+1,故两圆相离.如图所示,设直线CM 和圆M 交于H ,G 两点,则PE →·PF →最小值是HE →·HF →,HC =CM -1=5-1=4,HE =HC 2-CE 2=16-4=23, sin ∠CHE =CE CH =12,∴cos ∠EHF =cos2∠CHE =1-2sin 2∠CHE =12,HE →·HF →=|HE →|·|HF →|cos ∠EHF =23×23×12=6,故选B.高频考点六 向量的综合应用例6、(1)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是( )A .1 B.13 C.14D.18(2)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是________.答案 (1)D (2)3(2)由图象可知,M ⎝⎛⎭⎫12,1,N ()x N ,-1,所以OM →·ON →=⎝⎛⎭⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎫2-12=3.【感悟提升】利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.【变式探究】在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域面积是( )A .2 2B .2 3C .4 2D .4 3答案 D解析 由|OA →|=|OB →|=OA →·OB →=2, 知〈OA →,OB →〉=π3.当λ≥0,μ≥0,λ+μ=1时,在△OAB 中,取OC →=λOA →,过点C 作CD ∥OB 交AB 于点D ,作DE ∥OA 交OB 于点E ,显然OD →=λOA →+CD →.由于CD OB =AC AO ,CD OB =2-2λ2,∴CD →=(1-λ)OB →,∴OD →=λOA →+(1-λ)OB →=λOA →+μOB →=OP →, ∴λ+μ=1时,点P 在线段AB 上,∴λ≥0,μ≥0,λ+μ≤1时,点P 必在△OAB 内(包括边界).考虑|λ|+|μ|≤1的其他情形,点P 构成的集合恰好是以AB 为一边,以OA ,OB 为对角线一半的矩形,其面积为S =4S △OAB =4×12×2×2sin π3=4 3.1.【2016高考江苏卷】如图,在ABC ∆中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .【答案】78【2015高考山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠= ,则BD CD ⋅=( )(A )232a -(B )234a - (C ) 234a (D ) 232a 【答案】D 【解析】因为()BD CD BD BA BA BC BA ⋅=⋅=+⋅()22223cos602BA BC BA a a a +⋅=+=故选D.【2015高考陕西,理7】对任意向量,a b ,下列关系式中不恒成立的是( ) A .||||||a b a b ⋅≤ B .||||||||a b a b -≤-C .22()||a b a b +=+ D .22()()a b a b a b +-=-【答案】B【2015高考四川,理7】设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则AM NM ⋅=( )(A )20 (B )15 (C )9 (D )6 【答案】C 【解析】311,443AM AB AD NM CM CN AD AB =+=-=-+,所以 221111(43)(43)(169)(1636916)94124848AM NM AB AD AB AD AB AD =+-=-=⨯-⨯=,选C.【2015高考安徽,理8】C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4C a b +⊥B 【答案】D 【解析】如图,由题意,(2)2BC AC AB a b a b =-=+-=,则||2b =,故A 错误;|2|2||2a a ==,所以||1a =,又22(2)4||222cos 602AB AC a a b a ab ⋅=⋅+=+=⨯=,所以1a b ⋅=-,故,B C 错误;设,B C 中点为D ,则2AB AC AD +=,且AD BC ⊥,而22(2)4AD a a b a b =++=+,所以()4C a b +⊥B ,故选D.【2015高考福建,理9】已知1,,AB AC AB AC t t⊥== ,若P 点是ABC ∆ 所在平面内一点,且4AB AC AP ABAC=+,则PB PC ⋅ 的最大值等于( )A .13B . 15C .19D .21 【答案】A【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P (,4),所以11PB t-=(,-4),1PC -=(,t-4),因此PB PC ⋅11416t t =--+117(4)t t=-+,因为144t t +≥=,所以PB PC ⋅ 的最大值等于13,当14t t =,即12t =时取等号.【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 . 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==,AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+, ()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. BA1.(2014·北京卷)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.【答案】5【解析】∵λa +b =0,∴λa =-b ,∴|λ|=|b ||a |=51= 5. 2.(2014·湖北卷)设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________.【答案】±3【解析】因为a +λb =(3+λ,3-λ),a -λb =(3-λ,3+λ),又(a +λb )⊥(a -λb ),所以(a +λb )·(a -λb )=(3+λ)(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.3.(2014·江西卷)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.【答案】2 234.(2014·全国卷)若向量a ,b 满足:=1,(a +b )⊥a ,(+b )⊥b ,则|=( ) A .2 B. 2 C .1 D.22 【答案】B【解析】因为(a +b )⊥a ,所以(a +b )=0,即2+=因为(+b )⊥b ,所以(+b )=0,即b +2=0,与2+=0联立,可得-2=0,所以=2= 2.5.(2014·新课标全国卷Ⅱ] 设向量a ,b 满足|a +b |=10,|a -b |=6,则=( ) A .1 B .2 C .3 D .5 【答案】A【解析】由已知得|a +b |2=10,|a -b |2=6,两式相减,得4a ·b =4,所以a ·b =1.6.(2014·山东卷)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______. 【答案】16【解析】因为AB ·AC =|AB →|·|AC →|cos A =tan A ,且A =π6,所以|AB →|·|AC →|=23,所以△ABC 的面积S =12|AB →|·|AC →|sin A =12×23×sin π6=16 .7.(2014·天津卷)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( )A.12B.23C.56D.712 【答案】C【解析】建立如图所示的坐标系,则A (-1,0),B (0,-3),C (1,0),D (0,3).设E (x 1,y 1),F (x 2,y 2).由BE =λBC 得(x 1,y 1+3)=λ(1,3),解得⎩⎨⎧x 1=λ,y 1=3(λ-1),即点E (λ,3(λ-1)).由DF →=μDC →得(x 2,y 2-3)=μ(1,-3),解得⎩⎨⎧x 2=μ,y 2=3(1-μ),即点F (μ,3(1-μ)).又∵AE ·AF =(λ+1,3(λ-1))·(μ+1,3(1-μ))=1,① CE →·CF →=(λ-1,3(λ-1))·(μ-1,3(1-μ))=-23.②①-②得λ+μ=56.8.(2013年高考湖北卷)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( )A.322B.3152 C .-322 D .-31529.(2013年高考湖南卷)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的取值范围是( )A .[2-1,2+1] B.[]2-1,2+2 C .[1,2+1] D .[1,2+2]解析:由a ,b 为单位向量且a ·b =0,可设a =(1,0),b =(0,1),又设c =(x ,y ),代入|c -a -b |=1得(x -1)2+(y -1)2=1,又|c |= x 2+y 2,故由几何性质得12+12-1≤|c |≤12+12+1,即2-1≤|c |≤ 2+1.答案:A10.(2013年高考辽宁卷)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 解析:(1)由|a |2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1. 又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,所以x =π6.(2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎫2x -π6+12, 当x =π3∈[0,π2]时,sin ⎝⎛⎭⎫2x -π6取最大值1.所以f (x )的最大值为32.11.(2013年高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b = (3sin x ,cos 2x ),x ∈R ,设函数f (x )=a ·b .(1)求f (x )的最小正周期;(2)求f (x )在⎣⎡⎦⎤0,π2上的最大值和最小值.解析:f (x )=⎝⎛⎭⎫cos x ,-12·(3sin x ,cos 2x )=3cos x sin x -12cos 2x =32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x =sin ⎝⎛⎭⎫2x -π6. (1)f (x )的最小正周期为T =2πω=2π2=π,即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6.由正弦函数的性质,知当2x -π6=π2,即x =π3时,f (x )取得最大值1.当2x -π6=-π6,即x =0时,f (x )取得最小值-12. 因此,f (x )在[0,π2]上的最大值是1,最小值是-12.1.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( ) A .22+ 3 B .2 3 C .4 D .12答案 B解析 |a +b |2=|a |2+|b |2+2|a ||b |cos60°=4+4+2×2×2×12=12,|a +b |=2 3. 2.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( ) A .2 3 B. 3 C .0 D .- 3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m ,a ·b =12+32×32+m 2×cos π6, ∴3+3m =12+32×32+m 2×cos π6,∴m = 3.3.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为邻边的三角形的面积为12,则k 的值为( )A.32B.22C.52D.72 答案 A4.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形答案 C解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0, 即CB →·(AB →+AC →)=0,∵AB →-AC →=CB →, ∴(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|, 所以△ABC 是等腰三角形,故选C.5.在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →等于( )A.89B.109C.259D.269答案 B解析 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即有AB →·AC →=0.E ,F 为BC 边的三等分点,则AE →·AF →=(AC →+CE →)·(AB →+BF →)=⎝⎛⎭⎫avs4alco1(o(AC ,sup6(→))+13CB →)·⎝⎛⎭⎫avs4alco1(o(AB ,sup6(→))+13BC→)=⎝⎛⎭⎫avs4alco1(f(2,3)AC →+13AB →)·⎝⎛⎭⎫avs4alco1(f(1,3)AC →+23AB →)=29AC →2+29AB →2+59AB →·AC →=29×(1+4)+0=109.故选B.6.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则PA →·(PB →+PC →)的值为________.答案 -4解析 由题意得,AP =2,PM =1, 所以PA →·(PB →+PC →)=PA →·2PM → =2×2×1×cos180°=-4.7.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),所以AO →2=14(1+3+9)=134,所以|OA →|=132.8.在△ABC 中,若OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的________(填“重心”、“垂心”、“内心”、“外心”).答案 垂心解析 ∵OA →·OB →=OB →·OC →, ∴OB →·(OA →-OC →)=0,∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线.同理OA →·BC →=0,OC →·AB →=0,故O 是△ABC 的垂心.9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61.又∵|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12, 又∵0≤θ≤π,∴θ=2π3.(2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC=12×4×3×32=3 3.10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n=(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝⎛⎭⎫-352=45.11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足PA →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.解 设M (x ,y )为所求轨迹上任一点,设A (a,0),Q (0,b )(b >0),则PA →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ),由PA →·AM →=0,得a (x -a )+3y =0.①由AM →=-32MQ →,得 (x -a ,y )=-32(-x ,b -y )=⎝⎛⎭⎫32x ,32y -b , ∴⎩⎨⎧ x -a =32x ,y =32y -32b ,∴⎩⎨⎧ a =-x 2,b =y 3.∴b >0,y >0, 把a =-x 2代入①,得-x 2⎝⎛⎭⎫x +x 2+3y =0,整理得y =14x 2(x ≠0).所以动点M 的轨迹方程为y =14x 2(x ≠0).12.已知向量a =⎝⎛⎭⎫sin x ,34,b =(cos x ,-1). (1)当a ∥b 时,求cos 2x -sin2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求f (x )+4cos ⎝⎛⎭⎫2A +π6⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π3的取值范围. 解 (1)因为a ∥b , 所以34cos x +sin x =0,所以tan x =-34.cos 2x -sin2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. (2)f (x )=2(a +b )·b =2sin ⎝⎛⎭⎫2x +π4+32. 由正弦定理a sin A =b sin B ,得sin A =22,所以A =π4,或A =3π4.因为b >a ,所以A =π4.f (x )+4cos ⎝⎛⎭⎫2A +π6=2sin ⎝⎛⎭⎫2x +π4-12, 因为x ∈⎣⎡⎦⎤0,π3,所以2x +π4∈⎣⎡⎦⎤π4,11π12, 32-1≤f (x )+4cos ⎝⎛⎭⎫2A +π6≤2-12. ∴所求范围是⎣⎢⎡⎦⎥⎤32-1,2-12. 13.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61.又|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12. 又0≤θ≤π,∴θ=2π3.(2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a|=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n=(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝⎛⎭⎫-352=45. (2)由正弦定理,得a sin A =b sin B ,则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1,c =-7舍去,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.15.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上,且OP →=mAB →+nAC →(m ,n ∈R).(1)若m =n =23,求|OP →|;(2)用x ,y 表示m -n ,并求m -n 的最大值.解 (1)∵m =n =23,AB →=(1,2),AC →=(2,1),∴OP →=23(1,2)+23(2,1)=(2,2),∴|OP →|=22+22=2 2.。
课 题:平面向量数量积的坐标表示教学目的:⑴要求学生掌握平面向量数量积的坐标表示⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式⑶能用所学知识解决有关综合问题教学重点:平面向量数量积的坐标表示教学难点:平面向量数量积的坐标表示的综合运用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1.两个非零向量夹角的概念已知非零向量a 与b ,作=a ,OB =b ,则∠A OB =θ(0≤θ≤π)叫a 与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a 与b ,它们的夹角是θ,则数量|a ||b |c os θ叫a 与b 的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |c os θ,(0≤θ≤π).并规定0 与任何向量的数量积为03.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |c os θ的乘积4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量1︒e ⋅a = a ⋅e =|a |c os θ;2︒a ⊥b ⇔ a ⋅b = 03︒当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |特别的a ⋅a = |a |2或a a a ⋅=||4︒c os θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 5. 平面向量数量积的运算律交换律:a ⋅ b = b ⋅ a数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb)分配律:(a + b )⋅c = a ⋅c + b ⋅c二、讲解新课:⒈平面两向量数量积的坐标表示已知两个非零向量),(11y x a = ,),(22y x b = ,试用a 和b 的坐标表示b a ⋅设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+=所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+=又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i所以b a ⋅2121y y x x +=这就是说:两个向量的数量积等于它们对应坐标的乘积的和即b a ⋅2121y y x x +=2.平面内两点间的距离公式(1)设),(y x a = ,则222||y x a += 或22||y x a +=(2)如果表示向量a的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-= (平面内两点间的距离公式)3.向量垂直的判定设),(11y x a = ,),(22y x b = ,则b a ⊥ ⇔02121=+y y x x4.两向量夹角的余弦(πθ≤≤0)c o s θ =||||b a b a ⋅⋅ 222221212121y x y x y y x x +++=三、讲解范例:例1 设a = (5, -7),b = (-6, -4),求a ⋅b解:b a ⋅ = 5×(-6) + (-7)×(-4) = -30 + 28 = -2例2 已知a (1, 2),b (2, 3),c (-2, 5),求证:△ABC 是直角三角形 证明:∵AB =(2-1, 3-2) = (1, 1), AC = (-2-1, 5-2) = (-3, 3)∴⋅AC =1×(-3) + 1×3 = 0 ∴⊥AC∴△ABC 是直角三角形例3 已知a = (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x解:设x = (t , s ),由⎩⎨⎧-=+=-⇒-=⋅=⋅429349s t s t b x a x ⎩⎨⎧-==⇒32s t ∴x = (2, -3) 例4 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少?分析:为求a 与b 夹角,需先求b a ⋅及|a |·|b |,再结合夹角θ的范围确定其值.解:由a =(1,3),b =(3+1,3-1)有a ·b =3+1+3(3-1)=4,|a |=2,|b |=22.记a 与b 的夹角为θ,则cos θ=22=⋅⋅ba b a 又∵0≤θ≤π,∴θ=4π 评述:已知三角形函数值求角时,应注重角的范围的确定.例5 如图,以原点和A (5, 2)为顶点作等腰直角△ABC ,使∠b = 90︒,求点b 和向量AB 的坐标解:设b 点坐标(x , y ),则= (x , y ),AB = (x -5, y -2) ∵OB ⊥AB ∴x (x -5) + y (y -2) = 0即:x 2 + y 2 -5x - 2y = 0又∵|OB | = || ∴x 2 + y 2 = (x -5)2 + (y -2)2即:10x + 4y = 29 由⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧==-==⇒⎩⎨⎧=+=--+2723232729410025221122y x y x y x y x y x 或 ∴b 点坐标)23,27(-或)27,23(;=)27,23(--或)23,27(- 例6 在△ABC 中,=(2, 3),=(1, k ),且△ABC 的一个内角为直角,求k 值解:当a = 90︒时,⋅= 0,∴2×1 +3×k = 0 ∴k =23-当b = 90︒时,⋅BC = 0,BC =AC -= (1-2, k -3) = (-1, k -3)∴2×(-1) +3×(k -3) = 0 ∴k =311 当C = 90︒时,⋅= 0,∴-1 + k (k -3) = 0 ∴k =2133± 四、课堂练习:1.若a =(-4,3),b =(5,6),则3|a |2-4b a ⋅=( )A .23B .57C .63 D.832.已知a (1,2),b (2,3),c (-2,5),则△a b c 为( )A .直角三角形B .锐角三角形C .钝角三角形 D.不等边三角形3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( )A .)54,53(或)53,54( B .)54,53(或)54,53(--C .)54,53(-或)53,54(- D.)54,53(-或)54,53(- 4.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .5.已知a (3,2),b (-1,-1),若点P (x ,-21)在线段a b 的中垂线上,则x = . 6.已知a (1,0),b (3,1),c (2,0),且a =,b =,则a 与b 的夹角为 .参考答案:1.D 2.A 3.D 4. –7 5.47 6.45° 五、小结 两向量数量积的坐标表示长度、夹角、垂直的坐标表示六、课后作业:1.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为( )A .13 B.513 C.565 D.652.已知a =(λ,2),b =(-3,5)且a 与b 的夹角为钝角,则λ的取值范围是( )A .λ>310 B.λ≥310 C.λ<310 D.λ≤310 3.给定两个向量a =(3,4),b =(2,-1)且(a +x b )⊥(a -b ),则x 等于( )A .23 B.223 C. 323 D. 4234.已知|a |=10,b =(1,2)且a ∥b ,则a 的坐标为 .5.已知a =(1,2),b (1,1),c =b -k a ,若c ⊥a ,则c = .6.已知a =(3,0),b =(k ,5)且a 与b 的夹角为43π,则k 的值为 . 7.已知a =(3,-1),b =(1,2),求满足条件x ·a =9与x ·b =-4的向量x .8.已知点A (1,2)和B (4,-1),问能否在y 轴上找到一点C ,使∠ABC =90°,若不能,说明理由;若能,求C 点坐标.9.四边形ABC D 中=AB (6,1), BC =(x ,y ),CD =(-2,-3),(1)若BC ∥,求x 与y 间的关系式;(2)满足(1)问的同时又有AC ⊥BD ,求x ,y 的值及四边形ABC D 的面积.参考答案:1.C 2.A 3.C 4.(2,22)或(-2,-22)5.(51,52-) 6.-5 7.(2,-3) 8.不能(理由略) 9.(1)x +2y =0 (2)⎩⎨⎧-==⎩⎨⎧=-=1236y x y x 或 S 四边形ABC D =16 七、板书设计(略)八、课后记及备用资料:已知a =(3,4),b =(4,3),求x ,y 的值使(x a +y b )⊥a ,且|x a +y b |=1.分析:这里两个条件互相制约,注意体现方程组思想.解:由a =(3,4),b =(4,3),有x a +y b =(3x +4y ,4x +3y )又(x a +y b )⊥a ⇔(x a +y b )·a =0⇔3(3x +4y )+4(4x +3y )=0即25x +24y =0 ①又|x a +y b |=1⇔|x a +y b |2=1⇔(3x +4y )2+(4x +3y )2=1整理得:25x 2+48xy +25y 2=1即x (25x +24y )+24xy +25y 2=1 ②由①②有24xy +25y 2=1 ③将①变形代入③可得:y =±75再代回①得:⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==753524753524y x y x 和。
《平面向量数量积》教案教案:平面向量数量积一、教学目标:1.理解平面向量的数量积的概念和性质。
2.掌握平面向量的数量积的运算法则。
3.能够利用平面向量的数量积解决实际问题。
二、教学内容:1.平面向量的数量积的概念和性质。
2.平面向量的数量积的运算法则。
3.平面向量数量积的应用。
三、教学步骤:1.引入平面向量的数量积的概念。
首先通过提问和示例,引导学生思考两个平面向量的乘积是否有意义,以及该乘积有什么特殊的性质。
然后给出平面向量的数量积的定义:设有两个非零向量a和b,数量积定义为,a,·,b,·cosθ,其中,a,和,b,分别表示向量a和b的模长,θ表示向量a和b之间的夹角。
2.平面向量的数量积的性质。
通过具体的例子,讲解平面向量数量积的性质:(1)数量积的结果是一个数。
(2)数量积满足交换律、分配律。
(3)数量积的结果为0时,表示两个向量垂直,即cosθ=0。
(4)数量积的结果为正数时,表示两个向量同向,即θ为锐角。
(5)数量积的结果为负数时,表示两个向量反向,即θ为钝角。
3.平面向量的数量积的运算法则。
通过示例演算,教导学生具体的运算法则:(1)计算向量的模长:,a,=√(a1²+a2²)。
(2)计算向量的数量积:a·b = ,a,·,b,·cosθ。
(3)计算两个向量的夹角:cosθ = (a·b) / (,a,·,b,)。
(4)根据数量积的定义,解方程组:a·b=0,求出向量a与向量b 互相垂直的条件。
4.平面向量数量积的应用。
通过实际问题解决的例子,帮助学生将平面向量数量积的概念和运算法则应用到实际问题的解决中。
例如:已知有三个向量a、b和c,其中a·b=30,a·c=40,求b与c的夹角。
五、教学反思:在教学过程中,可以通过举一些具体的实际问题,提高学生的兴趣和参与度。
《平面向量数量积》教案一、教学目标1. 理解平面向量的概念,掌握向量的表示方法。
2. 掌握向量的数量积运算,了解数量积的性质和运算规律。
3. 能够运用数量积解决实际问题,提高数学应用能力。
二、教学内容1. 向量的概念及表示方法2. 向量的数量积定义及计算公式3. 数量积的性质和运算规律4. 数量积在坐标系中的运算5. 数量积的应用三、教学重点与难点1. 重点:向量的概念,数量积的计算公式,数量积的性质和运算规律。
2. 难点:数量积在坐标系中的运算,数量积的应用。
四、教学方法1. 采用讲授法,讲解向量及数量积的基本概念、性质和运算规律。
2. 利用案例分析法,分析数量积在实际问题中的应用。
3. 利用数形结合法,直观展示数量积在坐标系中的运算。
4. 引导学生通过小组讨论、探究,提高学生的参与度和自主学习能力。
五、教学安排1. 第一课时:向量的概念及表示方法2. 第二课时:向量的数量积定义及计算公式3. 第三课时:数量积的性质和运算规律4. 第四课时:数量积在坐标系中的运算5. 第五课时:数量积的应用六、教学过程1. 导入:通过复习实数乘法的分配律,引导学生思考向量数量积的定义。
2. 讲解向量的概念,向量的表示方法,向量的几何直观。
3. 引入向量数量积的概念,讲解数量积的计算公式。
4. 通过实例,演示数量积的运算过程,让学生感受数量积的意义。
5. 总结数量积的性质和运算规律,引导学生发现数量积与向量坐标的关系。
七、案例分析1. 利用数量积解释物理学中的力的合成与分解。
2. 利用数量积解决几何问题,如求解平行四边形的对角线长度。
3. 利用数量积判断两个向量是否垂直。
八、数量积在坐标系中的运算1. 讲解坐标系中向量的表示方法,向量的坐标运算。
2. 推导数量积在坐标系中的运算公式。
3. 通过实例,演示数量积在坐标系中的运算过程。
4. 引导学生掌握数量积在坐标系中的运算方法,提高运算能力。
九、数量积的应用1. 利用数量积解决线性方程组。
课 题:平面向量的数量积及运算律(1)教学目的:1掌握平面向量的数量积及其几何意义; 2掌握平面向量数量积的重要性质及运算律;3了解用平面向量的数量积可以处理有关长度、角度和垂直的问题; 4掌握向量垂直的条件教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 内容分析:本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律 教学过程:一、复习引入:1. 向量共线定理 向量b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 4.平面向量的坐标运算 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ= 若),(11y x A ,),(22y x B ,则()1212,y y x x --=5.a ∥b (b≠)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比8点P 的位置与λ的范围的关系:①当λ>0时,P 1与2PP 同向共线,这时称点P 为21P P 的内分点②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点 9线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1=a,2OP =b, 可得=b a b a λλλλλ+++=++111110.力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向;(3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的范围0︒≤θ≤180︒2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π)并规定0与任何向量的数量积为0 ⋅探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定C(2)两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而a ⋅b 是两个向量的数量的积,书写时要严格区分符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替(3)在实数中,若a ≠0,且a ⋅b =0,则b =0;但是在数量积中,若a ≠0,且a ⋅b =0,不能推出b =0因为其中cos θ有可能为0(4)已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c 但是a ⋅b = b ⋅c a = c如右图:a ⋅b = |a ||b |cos β = |b ||OA|,b ⋅c = |b ||c |cos α = |b ||OA|⇒ a ⋅b = b ⋅c 但a ≠ c(5)在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )c ≠ a (b ⋅c )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线 3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b | 4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积 5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量 1︒e ⋅a = a ⋅e =|a |cos θ 2︒a ⊥b ⇔ a ⋅b = 03︒当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b | 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a ba ⋅5︒|a ⋅b | ≤ |a ||b | 三、讲解范例:例1 判断正误,并简要说明理由①a·0=0;②0·a=0;③0-=;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0; 对于②:应有0·a=0;对于④:由数量积定义有|a·b|=|a|·|b|·|cos θ|≤|a||b|,这里θ是a与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0; 对于⑥:由a·b=0可知a⊥b可以都非零; 对于⑦:若a与с共线,记a=λс 则a·b=(λс)·b=λ(с·b)=λ(b·с), ∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a 若a与с不共线,则(a·b)с≠(b·с)a评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律例2 已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b解:①当a∥b时,若a与b同向,则它们的夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18; 若a与b反向,则它们的夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18; ②当a⊥b时,它们的夹角θ=90°, ∴a·b=0;③当a与b的夹角是60°时,有a·b=|a||b|cos60°=3×6×21=9 评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能 四、课堂练习:五、小结 通过本节学习,要求大家掌握平面向量的数量积的定义、重要性质、运算律,并能运用它们解决相关的问题 六、课后作业: 七、板书设计(略) 八、课后记及备用资料:1概念辨析:正确理解向量夹角定义对于两向量夹角的定义,两向量的夹角指从同一点出发的两个向量所构成的较小的非负角,因对向量夹角定义理解不清而造成解题错误是一些易见的错误,如:1已知△ABC 中,a=5,b=8,C=60°,求BC ·CA对此题,有同学求解如下:解:如图,∵||=a=5,||=b=8,C=60°, ∴BC ·CA =|BC |·|CA |cos C=5×8cos60°=20分析:上述解答,乍看正确,但事实上确实有错误,原因就在于没能正确理解向量夹角的定义,即上例中与两向量的起点并不同,因此,C并不是它们的夹角,而正确的夹角应当是C 的补角120°2向量的数量积不满足结合律 分析:若有(a·b)с=a·(b·с),设a、b夹角为α,b、с夹角为β,则(a·b)с=|a|·|b|cos α·с,a·(b·с)=a·|b||с|cos β∴若a=с,α=β,则|a|=|с|,进而有:(a·b)с=a·(b·с) 这是一种特殊情形,一般情况则不成立举反例如下:已知|a|=1,|b|=1,|с|=2,a与b夹角是60°,b与с夹角是45°,则:(a·b)·с=(|a|·|b|cos60°)с=21с, a·(b·с)=(|b|·|с|cos45°)a=a而21с≠a,故(a·b)·с≠a·(b·с)课 题:平面向量的数量积及运算律(2)教学目的:1掌握平面向量数量积运算规律;2能利用数量积的5个重要性质及数量积运算规律解决有关问题;3掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题 教学重点:平面向量数量积及运算规律 教学难点:平面向量数量积的应用 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 内容分析:启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质教学过程: 一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π)并规定0与任何向量的数量积为0 3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b | 4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积 5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量 1︒e ⋅a = a ⋅e =|a |cos θ;2︒a ⊥b ⇔ a ⋅b = 03︒当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b | 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a ba ⋅ ;5︒|a ⋅b | ≤ |a ||b |7.判断下列各题正确与否:C1︒若a = 0,则对任一向量b ,有a ⋅b = 0 ( √ ) 2︒若a ≠ 0,则对任一非零向量b ,有a ⋅b ≠ 0 ( × ) 3︒若a ≠ 0,a ⋅b = 0,则b = 0 ( × ) 4︒若a ⋅b = 0,则a 、b 至少有一个为零 ( × ) 5︒若a ≠ 0,a ⋅b = a ⋅c ,则b = c ( × ) 6︒若a ⋅b = a ⋅c ,则b = c 当且仅当a ≠ 0时成立 ( × ) 7︒对任意向量a 、b 、c ,有(a ⋅b )⋅c ≠ a ⋅(b ⋅c ) ( × ) 8︒对任意向量a ,有a 2 = |a |2 ( √ ) 二、讲解新课:平面向量数量积的运算律 1.交换律:a ⋅ b = b ⋅ a证:设a ,b 夹角为θ,则a ⋅ b = |a ||b |cos θ,b ⋅ a = |b ||a |cos θ ∴a ⋅ b = b ⋅ a2.数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )证:若λ> 0,(λa )⋅b =λ|a ||b |cos θ, λ(a ⋅b ) =λ|a ||b |cos θ,a ⋅(λb ) =λ|a ||b |cos θ,若λ< 0,(λa )⋅b =|λa ||b |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ, λ(a ⋅b ) =λ|a ||b |cos θ,a ⋅(λb ) =|a ||λb |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ 3.分配律:(a + b )⋅c = a ⋅c + b ⋅c在平面内取一点O ,作= a , = b ,= c ,∵a + b (即)在c 方向上的投影等于a 、b 在c 方向上的投影和, 即 |a + b | cos θ = |a | cos θ1 + |b | cos θ2∴| c | |a + b | cos θ =|c | |a | cos θ1 + |c | |b | cos θ2 ∴c ⋅(a + b ) = c ⋅a + c ⋅b 即:(a + b )⋅c = a ⋅c + b ⋅c 说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2, (a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2三、讲解范例:例1 已知a 、b 都是非零向量,且a + 3b 与7a - 5b 垂直,a - 4b 与7a - 2b 垂直,求a 与b 的夹角解:由(a + 3b )(7a - 5b ) = 0 ⇒ 7a 2 + 16a ⋅b -15b 2 = 0 ① (a - 4b )(7a - 2b ) = 0 ⇒ 7a 2 - 30a ⋅b + 8b 2 = 0 ② 两式相减:2a ⋅b = b 2 代入①或②得:a 2 = b 2设a 、b 的夹角为θ,则cos θ =21222==⋅||||||b b b a b a ∴θ = 60︒ 例2 求证:平行四边形两条对角线平方和等于四条边的平方和中,=,=,=+∴||2=⋅++=+2||222而=-∴|BD |2=⋅-+=-2||222∴|AC |2+ ||2= 2222+= 2222||||||||+++例3 四边形ABCD 中,=a,=b,=с,DA =d,且a·b=b·с=с·d=d·a,试问四边形ABCD 是什么图形?分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量 解:四边形ABCD 是矩形,这是因为:一方面:∵a+b+с+d=0,∴a+b=-(с+d),∴(a+b)2=(с+d)2即|a|2+2a·b+|b|2=|с|2+2с·d+|d|2由于a·b=с·d,∴|a|2+|b|2=|с|2+|d|2①同理有|a|2+|d|2=|с|2+|b|2②由①②可得|a|=|с|,且|b|=|d|即四边形ABCD 两组对边分别相等 ∴四边形ABCD 是平行四边形另一方面,由a·b=b·с,有b(a-с)=0,而由平行四边形ABCD 可得a=-с,代入上式得b·(2a)=0即a·b=0,∴a⊥b也即AB ⊥BC 综上所述,四边形ABCD 是矩形评述:(1)在四边形中,,BC ,CD ,是顺次首尾相接向量,则其和向量是零向量,即a+b+с+d=0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系四、课堂练习:1下列叙述不正确的是( )A 向量的数量积满足交换律B 向量的数量积满足分配律C 向量的数量积满足结合律D a ·b 是一个实数2已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A72 B -72 C36 D-36 3|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A 平行 B 垂直 C 夹角为3πD 不平行也不垂直4已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2= 5已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= 6设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ=参考答案:1C 2B 3B 42 5-1+23 535 23 6±53 五、小结 通过本节学习,要求大家掌握平面向量数量积的运算规律,掌握两个向量共线、垂直的几何判断,能利用数量积的5个重要性质解决相关问题 六、课后作业1已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( ) A60°B 30° C135° D 45°2已知|a |=2,|b |=1,a 与b 之间的夹角为3π,那么向量m =a -4b 的模为( ) A2B 23C6D123已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的( ) A 充分但不必要条件 B 必要但不充分条件 C 充要条件 D 既不充分也不必要条件 4已知向量a 、b 的夹角为3π,|a |=2,|b |=1,则|a +b |·|a -b |= 5已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b =6已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______ 7已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角8设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角9对于两个非零向量a 、b ,求使|a +t b |最小时的t 值,并求此时b 与a +t b 的夹角 参考答案:1D 2B 3C 421 5 –63 6 11 7 (1)- 2 (2)23+ (3)45° 8 120° 9 90°七、板书设计(略)八、课后记及备用资料:1常用数量积运算公式在数量积运算律中,有两个形似实数的完全平方和(差)公式在解题中的应用较为广泛即(a +b )2=a 2+2a ·b +b 2,(a -b )2=a 2-2a ·b +b 2上述两公式以及(a +b )(a -b )=a 2-b 2这一类似于实数平方差的公式在解题过程中可以直接应用2应用举例[例1]已知|a |=2,|b |=5,a ·b =-3,求|a +b |,|a -b |解:∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=22+2×(-3)+52=23∴|a +b |=23,∵(|a -b |)2=(a -b )2=a 2-2a ·b +b 2=22-2×(-3)×52=35,∴|a -b |=35.[例2]已知|a |=8,|b |=10,|a +b |=16,求a 与b 的夹角θ(精确到1°)解:∵(|a +b |)2=(a +b )2=a 2+2a ·b +b 2=|a |2+2|a |·|b |cosθ+|b |2∴162=82+2×8×10cosθ+102,∴cosθ=4023,∴θ≈55°。