苏科版数学八年级下册《第10章分式》单元过关检测卷【含答案】
- 格式:doc
- 大小:132.16 KB
- 文档页数:5
苏科版八年级数学下册单元质量检测卷(一)第10章分式姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共27题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.分式可变形为()A.B.﹣C.D.2.x取何值时,在实数范围内有意义()A.x>1B.x≥1C.x<1D.x≤13.下列各式中,分式的个数有()、、、﹣、、2﹣.A.2个B.3个C.4个D.5个4.若a2+2a﹣1=0,则(a﹣)的值是()A.﹣3B.﹣1C.1D.35.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务.设原计划每小时生产口罩x个,根据题意,所列方程正确的是()A.=5B.=5C.=5D.=56.若关于x的不等式组至少有六个整数解,且关于y的分式方程+1=的解为整数,则符合条件的所有整数a有()个A.1个B.2个C.3个D.4个7.已知:m=++,且abc>0,a+b+c=0.则m共有x个不同的值,若在这些不同的m值中,最小的值为y,则x+y=()A.﹣1B.1C.2D.38.从﹣,﹣1,,,,2,这七个数字中,随机抽取一个数,记为a,若数a使得关于x的分式方程﹣3=有整数解,且使关于y的不等式组无解,那么这七个数中所有满足条件的a的值之和为()A.﹣B.0C.1D.9.下列分式中,最简分式是()A.B.C.D.10.已知a、b为实数且满足a≠﹣1,b≠﹣1,设,,则下列两个结论()①ab=1时,M=N,ab>1时,M>N;ab<1时,M<N.②若a+b=0,则M•N≤0.A.①②都对B.①对②错C.①错②对D.①②都错二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在横线上)11.计算:•=.12.如果分式有意义,那么x的取值范围是.13.已知,那么=.14.如果x+=4,那么x2+=.15.如果x+=2,则的值等于.16.如果a,b是任意两个不等于零的数,定义运算⊕如下(其余符号意义如常):a⊕b=,那么[(1⊕2)⊕3]的值是.17.如图是一个数值转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x,y,z时,对应输出的新数依次为,,.例如,输入1,2,3,则输出,,.那么当输出的新数为,,时,输入的3个数依次为18.如果a,b,c是正数,且满足a+b+c=9,++=,则++的值为.三、解答题(本大题共9小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)a2•a6+(﹣2a4)2;(2)()2÷()2•.20.先化简,再求值(﹣)÷,其中x=(﹣2)0.21.(1)解不等式<x﹣5,并把解集在数轴上表示出来.(2)解方程:=.(3)先化简:(1﹣)+,再从﹣3<x<1中选一个合适的整数代入求值.22.为防控新冠肺炎,某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?23.某企业在甲地一工厂(简称甲厂)生产某产品,2017年的年产量过百万,2018年甲厂经过技术改造,日均生产的该产品数是该厂2017年的2倍还多2件.(1)若甲厂2018年生产200件该产品所需的时间与2017年生产98件该产品所需的时间相同,则2017年甲厂日均生产该产品多少件?(2)由于该产品深受顾客喜欢,2019年该企业在乙地建立新厂(简称乙厂)生产该产品,乙厂的日均生产的该产品数是甲厂2017年的3倍还要多5件,同年该企业要求甲、乙两厂分别生产m,n件产品(甲厂的日均产量与2018年相同),m:n=12:17,若甲、乙两厂同时开始生产,谁先完成任务?请说明理由.24.某学校在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲种足球2个,乙种足球1个,购买的足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,则直接写出这所学校购买这两种足球的数量.25.某学生化简分式出现了错误,其解答过程如下:原式=(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第步开始出错的,其错误原因是;(2)请写出此题正确的解答过程.26.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:,求代数式x2+的值.解:∵,∴=4即=4∴x+=4∴x2+﹣2=16﹣2=14材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题.例:若2x=3y=4z,且xyz≠0,求的值.解:令2x=3y=4z=k(k≠0)则x=,y=,z=,∴根据材料回答问题:(1)已知,求x+的值.(2)已知(abc≠0),求的值.(3)若,x≠0,y≠0,z≠0,且abc=5,求xyz的值.27.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:==+=1+,==+=2+,则和都是“和谐分式”.(1)下列分式中,属于“和谐分式”的是(填序号);①;②;③;④(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式为:=﹣+;(3)应用:先化简﹣÷,并求x取什么整数时,该式的值为整数.参考答案与解析一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.分式可变形为()A.B.﹣C.D.【答案】B【分析】利用分式的基本性质变形即可.【解答】解:=﹣.故选:B.【知识点】分式的基本性质2.x取何值时,在实数范围内有意义()A.x>1B.x≥1C.x<1D.x≤1【答案】A【分析】分母中有二次根式时,被开方数为非负数并且分母不能为0.【解答】解:根据二次根式的意义及分母不能为0,得x﹣1>0,解得x>1.故选A.【知识点】二次根式有意义的条件、分式有意义的条件3.下列各式中,分式的个数有()、、、﹣、、2﹣.A.2个B.3个C.4个D.5个【答案】C【分析】根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式可得答案.【解答】解:、﹣、、2﹣是分式,共4个,故选:C.【知识点】分式的定义4.若a2+2a﹣1=0,则(a﹣)的值是()A.﹣3B.﹣1C.1D.3【答案】C【分析】先将分式进行化简,然后将a2+2a=1代入原式即可求出答案.【解答】解:原式=•=•=a(a+2)=a2+2a,当a2+2a=1时,原式=1.故选:C.【知识点】分式的化简求值5.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务.设原计划每小时生产口罩x个,根据题意,所列方程正确的是()A.=5B.=5C.=5D.=5【答案】D【分析】设原计划每小时生产口罩x个,则实际每小时生产口罩2x个,根据工作时间=工作总量÷工作效率结合提前5小时完成任务,即可得出关于x的分式方程,此题得解.【解答】解:设原计划每小时生产口罩x个,则实际每小时生产口罩2x个,依题意得:﹣=5.故选:D.【知识点】由实际问题抽象出分式方程6.若关于x的不等式组至少有六个整数解,且关于y的分式方程+1=的解为整数,则符合条件的所有整数a有()个A.1个B.2个C.3个D.4个【答案】A【分析】不等式组整理后,由整数解至少有六个确定出a的范围,再由分式方程的解为整数确定出满足题意a的值即可.【解答】解:不等式组整理得:,解得:﹣5<x≤a,∵不等式组至少有六个整数解,∴a≥1,分式方程去分母得:﹣2+y﹣2=﹣ay,即(a+1)y=4,解得:y=(a≠﹣1且a≠1),∵分式方程解为整数,∴a+1=±1,±2,±4,解得:a=0,﹣2,1,﹣3,3,﹣5,∵a>1,∴a=3,只有1个.故选:A.【知识点】一元一次不等式组的整数解、分式方程的解7.已知:m=++,且abc>0,a+b+c=0.则m共有x个不同的值,若在这些不同的m值中,最小的值为y,则x+y=()A.﹣1B.1C.2D.3【答案】A【分析】根据abc>0,a+b+c=0.可得出a、b、c中负数的个数,再分情况进行讨论解答即可.【解答】解:∵abc>0,a+b+c=0,∴a、b、c中有两个负数,一个正数,因此有三种情况,即①a、b为负,c为正,②a、c为负,b为正,③b、c为负,a为正,∵a+b+c=0,∴a+b=﹣c,a+c=﹣b,b+c=﹣a,∴m=++=++,①当a、b为负,c为正时,m=1﹣2﹣3=﹣4,②当a、c为负,b为正时,m=﹣1﹣2+3=0,③当b、c为负,a为正时,m=﹣1+2﹣3=﹣2,又∵m共有x个不同的值,若在这些不同的m值中,最小的值为y,∴x=3,y=﹣4,∴x+y=3+(﹣4)=﹣1,故选:A.【知识点】分式的加减法、绝对值8.从﹣,﹣1,,,,2,这七个数字中,随机抽取一个数,记为a,若数a使得关于x的分式方程﹣3=有整数解,且使关于y的不等式组无解,那么这七个数中所有满足条件的a的值之和为()A.﹣B.0C.1D.【答案】C【分析】分式方程去分母转化为整式方程,把数字代入判断确定出a的值,表示出不等式组的解集,由不等式组无解找出满足题意a的值,求和即可.【解答】解:分式方程去分母得:x+3a﹣3(x﹣2)=a﹣1,去括号得:x+3a﹣3x+6=a﹣1,移项合并得:﹣2x=﹣2a﹣7,解得:x=,当a=﹣时,x=2,分式方程无解,不符合题意;当a=﹣1时,x=2.5,不符合题意;当a=﹣时,x=3,符合题意;当a=时,x=5,符合题意;当x=时,x=5.25,不符合题意;当x=2时,x=5.5,不符合题意;当x=时,x=6,符合题意,将不等式组整理得:,由不等式组无解,得到<,解得:a<,综上,a=﹣或a=符合题意,∴这七个数中所有满足条件的a的值之和为:﹣+=1,故选:C.【知识点】分式方程的解、解一元一次不等式组9.下列分式中,最简分式是()A.B.C.D.【答案】A【分析】最简分式的标准是分子、分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、该分式的分子、分母不能约分,是最简分式,故本选项符合题意.B、该分式的分子、分母中含有公因式(x+1),它不是最简分式,故本选项不符合题意.C、该分式的分子、分母中含有公因式(x﹣y),它不是最简分式,故本选项不符合题意.D、该分式的分子、分母中含有公因式(x+4),它不是最简分式,故本选项不符合题意.故选:A.【知识点】最简分式10.已知a、b为实数且满足a≠﹣1,b≠﹣1,设,,则下列两个结论()①ab=1时,M=N,ab>1时,M>N;ab<1时,M<N.②若a+b=0,则M•N≤0.A.①②都对B.①对②错C.①错②对D.①②都错【答案】D【分析】①根据分式的加法法则计算,然后分情况讨论即可得结论;②根据方式的乘法运算法则计算,再进行分类讨论即可得结论.【解答】解:∵,,∴M﹣N=﹣(),=,=,=,①当ab=1时,M﹣N=0,∴M=N,当ab>1时,2ab>2,∴2ab﹣2>0,当a<0时,b<0,(a+1)(b+1)>0或(a+1)(b+1)<0,∴M﹣N>0或M﹣N<0,∴M>N或M<N;当ab<1时,a和b可能同号,也可能异号,∴(a+1)(b+1)>0或(a+1)(b+1)<0,而2ab﹣2<0,∴M>N或M<N;∴①错②M•N=()•()=++,∵a+b=0∴原式===∵a≠﹣1,b≠﹣1,∴(a+1)2(b+1)2>0,当a和b同号时,ab≥0,M•N≥0,当a和b异号时,ab≤0,M•N≤0.∴②错.故选:D.【知识点】分式的加减法二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在横线上)11.计算:•=.【答案】1【分析】直接利用分式的乘除运算法则计算得出答案.【解答】解:原式=•=1.故答案为:1.【知识点】分式的乘除法12.如果分式有意义,那么x的取值范围是.【分析】根据分式有意义的条件列出不等式,解不等式得到答案.【解答】解:要使分式有意义,必须3x﹣1≠0,解得,x≠,故答案为:x≠.【知识点】分式有意义的条件13.已知,那么=.【分析】先将分式化为最简,然后运用倒数法可求出的值,继而得出答案.【解答】解:原式==÷=﹣,由已知得:=1﹣=1﹣,∴可得:﹣=﹣﹣.故答案为:﹣﹣.【知识点】分式的化简求值14.如果x+=4,那么x2+=.【答案】14【分析】根据完全平方公式即可求出答案.【解答】解:∵(x+)2=x2+2+且x+=4,∴x2+2+=16,∴x2+=14.故答案为:14.【知识点】分式的化简求值、完全平方公式15.如果x+=2,则的值等于.【分析】直接利用完全平方公式将原式变形进而化简得出答案.【解答】解:∵x+=2,∴(x+)2=4,则x2+2+=4,故x2+=2,则原式===.故答案为:.【知识点】分式的值、分式的加减法16.如果a,b是任意两个不等于零的数,定义运算⊕如下(其余符号意义如常):a⊕b=,那么[(1⊕2)⊕3]的值是.【分析】按照定义运算⊕的计算法则代入求值即可.【解答】解:根据题意,得[(1⊕2)⊕3]=⊕3==.故答案是:.【知识点】分式有意义的条件、有理数的混合运算17.如图是一个数值转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x,y,z时,对应输出的新数依次为,,.例如,输入1,2,3,则输出,,.那么当输出的新数为,,时,输入的3个数依次为【分析】根据题意得到关于xyz的3个等式,先让3个式子相加得6(x+y+z)=xy+yz+zx④,再求④﹣①,④﹣②,④﹣③,得到⑤,⑥,⑦,然后⑥÷⑤可求,⑥÷⑦可求z=2y,再把,z=2y代入⑦,可求y,从而可求x、z.【解答】解:由=,=,=,得3(x+y+z)=xy+zx①,4(x+y+z)=xy+yz②,5(x+y+z)=yz+zx③,①+②+③,得6(x+y+z)=xy+yz+zx,④④﹣①,得3(x+y+z)=yz⑤,④﹣②,得2(x+y+z)=zx⑥,④﹣③,得x+y+z=xy⑦.∴,z=2y,把,z=2y代入⑦,得y(2y﹣11)=0,19.计算:(1)a2•a6+(﹣2a4)2;(2)()2÷()2•.【分析】(1)根据同底数幂的乘法法则、积的乘方法则、合并同类项法则计算;(2)根据分式的乘除法法则计算.【解答】解:(1)a2•a6+(﹣2a4)2=a2+6+4a4×2=a8+4a8=5a8;(2)()2÷()2•=••=.【知识点】幂的乘方与积的乘方、同底数幂的乘法、分式的乘除法20.先化简,再求值(﹣)÷,其中x=(﹣2)0.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由非零数的零指数幂求出x的值,代入计算即可.【解答】解:原式=[﹣]•=[﹣]•=•=,当x=(﹣2)0=1时,原式===1.【知识点】分式的化简求值、零指数幂21.(1)解不等式<x﹣5,并把解集在数轴上表示出来.(2)解方程:=.(3)先化简:(1﹣)+,再从﹣3<x<1中选一个合适的整数代入求值.【分析】(1)根据不等式的解法即可求出答案.(2)根据分式方程的解法即可求出答案.(3)根据分式的运算法则即可求出答案.【解答】解:(1)∵,∴x﹣8<2x﹣10,∴x﹣2x<8﹣10,∴﹣x<﹣2,∴x>2,如图,在数轴上表示,.(2)∵+=,∴1+x﹣2=﹣6,∴x﹣1=﹣6,∴x=﹣5,经检验,x=﹣5是原分式方程的解.(3)原式=+===x+1,由分式有意义的条件可知:x可取0,当x=0时,原式=1.【知识点】分式的化简求值、在数轴上表示不等式的解集、一元一次不等式组的整数解、解分式方程、解一元一次不等式22.为防控新冠肺炎,某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?【分析】设第一批口罩每只的进价是x元,则第二批口罩每只的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购口罩的数量是第一批所购口罩数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设第一批口罩每只的进价是x元,则第二批口罩每只的进价是(x+0.5)元,依题意,得:=2×,解得:x=2,经检验,x=2是原方程的解,且符合题意.答:第一批口罩每只的进价是2元.【知识点】分式方程的应用23.某企业在甲地一工厂(简称甲厂)生产某产品,2017年的年产量过百万,2018年甲厂经过技术改造,日均生产的该产品数是该厂2017年的2倍还多2件.(1)若甲厂2018年生产200件该产品所需的时间与2017年生产98件该产品所需的时间相同,则2017年甲厂日均生产该产品多少件?(2)由于该产品深受顾客喜欢,2019年该企业在乙地建立新厂(简称乙厂)生产该产品,乙厂的日均生产的该产品数是甲厂2017年的3倍还要多5件,同年该企业要求甲、乙两厂分别生产m,n件产品(甲厂的日均产量与2018年相同),m:n=12:17,若甲、乙两厂同时开始生产,谁先完成任务?请说明理由.【分析】(1)设2017年甲厂日均生产该产品x件,根据题意列出方程即可求出答案.(2)设甲厂完成m件产品需要的时间为p,乙厂完成n件产品需要的时间为q,由题意可知=,求出p与q的比值即可求出答案.【解答】解:(1)设2017年甲厂日均生产该产品x件,则改造后日均生产该产品(2x+2)件,∵=,解得:x=49,经检验,x=49是原分式方程的解,答:2017年甲厂日均生产该产品49件;(2)由题意可知:2019年乙厂日均生产是152件,2018年甲厂日均生产100件,设甲厂完成m件产品需要的时间为p,乙厂完成n件产品需要的时间为q,∴==,∴=,故乙厂先完成.【知识点】分式方程的应用24.某学校在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲种足球2个,乙种足球1个,购买的足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,则直接写出这所学校购买这两种足球的数量.【分析】(1)设购买一个甲种足球需x元,则购买一个乙种足球(x+20)元,由题意列出分式方程,解方程即可;(2)由(1)可知该校购买甲种足球40个,购买乙种足球20个,进而得出结论;(3)设这学校购买甲种足球2x个,乙种足球3x个,由题意列出方程,解方程即可.【解答】解:(1)设购买一个甲种足球需x元,则购买一个乙种足球(x+20)元,由题意得:解得:x=50,经检验,x=50是原方程的解,且符合题意,答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)由(1)可知该校购买甲种足球个,购买乙种足球20个,∵每个班须配备甲足球2个,乙种足球1个,答:购买的足球能够配备20个班级;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意得:2x×50+3x×70=3100,解得:x=20,∴2x=40,3x=60,答:这学校购买甲种足球40个,乙种足球60个.【知识点】分式方程的应用25.某学生化简分式出现了错误,其解答过程如下:原式=(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第步开始出错的,其错误原因是;(2)请写出此题正确的解答过程.【答案】【第1空】二【第2空】括号前是负号,去括号时未变号【分析】(1)根据分式加减法的计算方法逐步进行验证即可;(2)按照分式加减法的计算法则计算即可.【解答】解:(1)学生的解答过程从第二步出现错误,原因是括号前是负号,去括号时未变号,故答案为:二,括号前是负号,去括号时未变号;(2)原式=﹣====﹣.【知识点】分式的加减法26.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:,求代数式x2+的值.解:∵,∴=4即=4∴x+=4∴x2+﹣2=16﹣2=14材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题.例:若2x=3y=4z,且xyz≠0,求的值.解:令2x=3y=4z=k(k≠0)则x=,y=,z=,∴根据材料回答问题:(1)已知,求x+的值.(2)已知(abc≠0),求的值.(3)若,x≠0,y≠0,z≠0,且abc=5,求xyz的值.【分析】(1)根据题意,可知,然后变形整理,即可得到所求式子的值;(2)根据材料2中的例子,可以求得所求式子的值;(3)根据材料中的例子,将题目中的式子整理,化简,即可得到所求式子的值.【解答】解:(1)∵,∴,∴,∴;(2)设,则a=5k,b=4k,c=3k,∴;(3)设,∴①,②,③,①+②+③,得,④,④﹣①,得:,④﹣②,得:,④﹣③,得:,∴,,,∵∴,∴,解得,k=4,∴,,,∴.【知识点】完全平方公式、分式的化简求值27.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:==+=1+,==+=2+,则和都是“和谐分式”.(1)下列分式中,属于“和谐分式”的是(填序号);①;②;③;④(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式为:=﹣+;(3)应用:先化简﹣÷,并求x取什么整数时,该式的值为整数.【分析】(1)由“和谐分式”的定义对①③④变形即可得;(2)由原式===a﹣1+可得;(3)将原式变形为=2+,据此得出x+1=±1或x+1=±2,即x=0或﹣2或1或﹣3,又x≠0、1、﹣1、﹣2,据此可得答案.【解答】解:(1)①=1+,是和谐分式;③==1+,是和谐分式;④=1+,是和谐分式;故答案为:①③④;(2)===a﹣1+,故答案为:a﹣1、;(3)原式=﹣•=﹣===2+,∴当x+1=±1或x+1=±2时,分式的值为整数,此时x=0或﹣2或1或﹣3,又∵分式有意义时x≠0、1、﹣1、﹣2,∴x=﹣3.【知识点】分式的化简求值、分式的定义。
第10章 分式 单元自测卷(满分:100分 时间:90分钟)一、选择题(每题3分,共30分)1.下列各式:其中分式有 ( )11,,,1,,52235a n a a b y m b xπ++-A .2个 B .3个 C .4个 D .5个2.把分式中的x 和y 都扩大2倍,则分式的值 ( )3xy x y-A .不变B .扩大为原来的2倍C .缩小为原来的D .扩大为原来的4倍3.要使分式的值为0,你认为x 可取的数是 ( )2939x x -+ A .9 B .±3 C .-3 D .34.若,则w=( )241()142w a a +=-- A. B. C.D. 2(2)a a +≠-2(2)a a -+≠2(2)a a -≠2(2)a a --≠-5.化简的结果是( ) A .x +1B .x ﹣1C .﹣x D .x 6.下列计算错误的是 ( ) A .B .C .D .0.220.77a b a b a b a b ++=--3223x y x x y y =1a b b a -=--123c c c+=7.(2014.孝感)分式方程的解为 ( )2133x x x =-- A .x =-B .x =C .x =1D .x =1623568.关于x 的方程=0可能产生的增根是 ( )12n m x x +--A .x =1 B .x =2 C .x =1或2 D .x =-1或29.若,则 ( )()()412121a m n a a a a -=++-+- A .m =4,n =-1B .m =5,n =-1C .m =3,n =1D .m =4,n =110.在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x,矩形的周长是2(x +);当矩形成为正方形时,就有x = (x>0),解得x =1,这时矩形的周长1x 1x 1x2(x +)=4最小,因此x + (x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是 1x 1x29x x +( )A .2B .1C .6D .10二、填空题(每题2分,共14分)11.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a 克,再称得剩余电线的质量为b 克,那么原来这卷电线的总长度是_______米.12.代数式有意义时,x 应满足的条件为x_______.11x -13.计算:_______.2422x x x+=--14.如果实数x 、y 满足方程组,那么代数式的值为_______.30233x y x y +=⎧⎨+=⎩12xy x y x y ⎛⎫+÷ ⎪++⎝⎭15.若关于x 的分式方程无解,则m 的值为_______.2213m x x x+-=-16.若,则的值为_______.1171m n m +=+n m m n +17.化简(1+)÷的结果为 _________ .三、解答题(共56分)18.(8分)计算:(1) ;(2)22211x x x x --+22691933m m m m m m m ⎛⎫-+--÷ ⎪-++⎝⎭19.(8分)解方程:(1) (2)15121x x =-+11322y y y-+=--20.(10分)已知关于x 的方程的解是一个正数,求m 的取值范围.233x m x x =---21.(10分)先化简,再求值:,其中x 是不等式3x +7>1的负整数解.2214244x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭22.(10分)已知三个数x 、y 、z 满足,,,求的值.2xy x y =-+43yz y z =+43zx z x =-+xyz xy yz zx++23.(10分)某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价为多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B 款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a 万元,要使(2)中所有的方案获利相同,a 的值应是多少?此时,哪种方案对公司更有利?参考答案一、1.B 2.B 3.D 4.D 5.D 6.A 7.B 8.C 9.C 10.C二、11. 12.≠±1 13.x +2 14.1 15. -12或- 16.5a b a +3217.x ﹣1三、18.(1) (2) 19.(1)x =2 (2)无解 20.m<6且m ≠3 1x x -31m --21.x =-1 3 22.-423.(1)9万元 (2)有5种进货方案 (3)(2)中所有的方案获利相同,此时购买A 款汽车6辆,B 款汽车9辆对公司更有利。
2022-2023学年八年级数学下册第10章【分式】单元复习测试卷(满分120分)一.选择题(本大题共有8小题,每小题3分,共24分)1.代数式25x ,1π,224x +,223x -,1x ,12x x ++中,属于分式的有()A .2个B .3个C .4个D .5个2.分式13x+有意义的条件是()A .3x =-B .3x ≠C .3x ≠-D .0x ≠3.计算1122a a a ++++的结果是()A .1B .22a +C .2a +D .2a a +4.分式13x-可变形为()A .13x+B .13x-+C .13x -D .13x --5.如果把5xx y+的x 与(y x ,y 均为正)都扩大10倍,那么这个代数式的值()A .不变B .扩大50倍C .扩大10倍D .缩小到原来的1106.已知关于x 的分式方程23111x m x x--=--的解是正数,则m 的取值范围是()A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠7.《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x 天,则可列出正确的方程为()A .900900231x x =⨯+-B .900900231x x =⨯-+C .900900213x x =⨯-+D .900900213x x =⨯+-8.试卷上一个正确的式子11()a b a b +÷+-★2a b =+被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为()A .aa b-B .a b a-C .a a b+D .224a a b -二、填空题(本大题共有8小题,每小题3分,共24分)9.当1a =时,分式1a a+的值是.10.当x =时,分式22xx +的值为零.11.若分式21x -有意义,则x 的取值范围是.12.化简:239m nm =.13.分式13x -和分式219x -的最简公分母是.14.已知3a b +=,4ab =-,则11a b+=.15.若关于x 的分式方程33122x m x x +=+--有增根,则m =.16.若关于x 的方程1211ax x x =+--无解,则a 的值是.三、解答题(本大题共有8小题,共72分)17.(20分)计算:(1)222xx x ---;(2)21644a a a+--;(3)22242a a aa a a -⋅+-+;(4)21()(1)x x x x++÷.18.(8分)先化简,再求值:2344(1)11x x x x x -+--÷--,其中3x =.19.(10分)解分式方程:(1)143x x =+.(2)21122xx x +=+--;20.(8分)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?21.(12分)探索发现:111122=-⨯;1112323=-⨯;1113434=-⋯⨯根据你发现的规律,回答下列问题:(1)145=⨯1145-,1(1)n n =⨯+;(2)利用你发现的规律计算:1111122334(1)n n ++++=⨯⨯⨯⨯+ ;(3)灵活利用规律解方程:1111(1)(1)(2)(2022)(2023)2023x x x x x x x +++=++++++ .22.(14分)如果两个分式M 与N 的和为常数k ,且k 正整数,则称M 与N 互为“和整分式”,常数k 称为“和整值”.如分式1x M x =+,11N x =+,111x M N x ++==+,则M 与N 互为“和整分式”,“和整值”1k =.(1)已知分式72x A x -=-,22696x x B x x ++=+-,判断A 与B 是否互为“和整分式”,若不是,请说明理由;若是,请求出“和整值”k ;(2)已知分式342x C x -=-,24GD x =-,C 与D 互为“和整分式”,且“和整值”3k =,若x 为正整数,分式D 的值为正整数t .①求G 所代表的代数式;②求x 的值;(3)在(2)的条件下,已知分式353x P x -=-,33mx Q x-=-,且P Q t +=,若该关于x 的方程无解,求实数m 的值.答案:1.B 2.C 3.A 4.D 5.A 6.C 7.B 8.A9.210.-211.1x ¹12.3mn13.()()33x x +-14.34-15.316.1或217.18.解:原式223(1)11(2)x x x x ---=⋅--2(2)(2)11(2)x x x x x +--=-⋅--22x x +=--,当3x =时,原式3232+=--5=-.19.(1)解:143x x =+左右两边同时乘以(3)x x +得34x x +=,33x =,解得1x =.检验:当1x =时,分母(3)0x x +≠,1x ∴=是原分式方程的解.(2)解:(1)去分母得:212x x =++-,解得:32x =,检验:当32x =时,20x -≠,∴原分式方程的解为32x =;20.解:设乙班平均每小时挖x 千克土豆,根据题意,得15001200100x x=+,解得400x =,经检验,400x =是原方程的根,且符合题意;答:乙班平均每小时挖400千克土豆.21.(1)1145-,111n n -+;(2)1n n +;(3)2023x =.22.(1)A 与B 是互为“和整分式”,“和整值”2k =;(2)①24G x =--;②1x =;(3)m 的值为:1或73.。
《第10章分式》一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④2.当x为任意实数时,下列各式中一定有意义的是()A. B.C.D.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍4.使式子从左到右变形成立,应满足的条件是()A.x+2>0 B.x+2=0 C.x+2<0 D.x+2≠05.把分式中x的值变为原来的2倍,而y的值缩小到原来的一半,则分式的值()A.不变B.为原来的2倍C.为原来的4倍D.为原来的一半6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.8.akg盐溶于bkg水,所得盐水含盐的百分比是.9.某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧天.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m=时,该分式的值为0.12.在①﹣3x、②、③x2y﹣7xy2、④﹣x、⑤、⑥、⑦其中,整式有,分式有(填序号).13.分式所表示的实际意义可以是.14.已知分式的值为0,则x的值是.15.若分式的值为负数,则x的取值范围是.16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=.17.用分式的基本性质填空:(1)=(b≠0);(2)=;(3)=3a﹣b.18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.19.填空:=﹣=﹣=,﹣===﹣;(2)填空:﹣===,﹣===;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.三、判断正误(正确的打“√”,错误的打“×”)20.=;.(判断对错)21.==;.(判断对错)22.3x﹣2=..(判断对错)四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.25.当a取什么值时,分式的值是正数?26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).《第10章分式》参考答案与试题解析一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④【考点】分式的定义.【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:①,③这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选C.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.2.当x为任意实数时,下列各式中一定有意义的是()A. B.C.D.【考点】分式有意义的条件.【专题】计算题.【分析】这几个式子有意义的条件是分式有意义,即分母一定不等于零.【解答】解:A、当x=0时,分母为零,分式没有意义,故选项错误;B、当x=±1时,分母为零,分式没有意义,故选项错误;C、无论x为何值,分母都不为零,分式有意义,故选项正确;D、当x=﹣1时,分母为零,分式没有意义,故选项错误.故选C.【点评】本题考查了分式有意义的条件:分母不为零,分式有意义.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍【考点】分式的基本性质.【分析】根据分式的基本性质进行解答即可.【解答】解:将分式中的m、n都扩大为原来的3倍可变为==.故选A.【点评】本题考查的是分式的基本性质,熟知分式的基本性质3是解答此题的关键.4.使式子从左到右变形成立,应满足的条件是()A.x+2>0 B.x+2=0 C.x+2<0 D.x+2≠0【考点】分式的基本性质.【分析】把等式右边的式子与左边相比较即可得出结论.【解答】解:∵等式的左边=,右边=,∴x+2≠0.故选D.【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.5.把分式中x的值变为原来的2倍,而y的值缩小到原来的一半,则分式的值()A.不变B.为原来的2倍C.为原来的4倍D.为原来的一半【考点】分式的基本性质.【分析】把x,y换为2x,y代入所给分式化简后和原来分式比较即可.【解答】解:新分式为:==4•,∴分式的值是原来的4倍.故选C.【点评】本题考查了分式的基本性质的应用,解决本题的关键是得到把相应字母的值扩大或缩小后新分式的值.6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.【考点】分式的基本性质.【分析】要不改变分式的值,将分子分母中x的最高次项的系数变为正数,即要上下同乘﹣1.【解答】解:依题意得:原式=,故选D.【点评】此题利用分式的性质变形时必须注意所乘的(或所除的)整式上下相同,且不为0.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.【考点】列代数式(分式).【分析】根据题意利用路程÷时间=速度进而得出答案.【解答】解:∵小明th走了skm的路,∴小明走路的速度是:km/h.故答案为:.【点评】此题主要考查了列代数式,根据路程与速度和时间直接的关系得出是解题关键.8.akg盐溶于bkg水,所得盐水含盐的百分比是.【考点】列代数式(分式).【分析】利用盐的质量÷(盐+水)的质量可得答案.【解答】解:由题意得:×100%=,故答案为:.【点评】此题主要考查了由实际问题列出代数式,关键是正确理解题意.9.(2016春•泰兴市校级期中)某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧(﹣)天.【考点】列代数式(分式).【分析】根据“多用的天数=节约后用的天数﹣原计划用的天数”列式整理即可.【解答】解:这些煤可比原计划多用的天数=实际所烧天数﹣原计划所烧天数=(﹣)天.故答案为:(﹣).【点评】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.本题的等量关系为:多用的天数=后来可用的天数﹣原计划用的天数.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.【考点】列代数式(分式);加权平均数.【分析】首先根据题意得出总环数除以总次数得出即可.【解答】解:∵a次投了m环,b次投了n环,∴则小华此次比赛的平均成绩是:.故答案为:.【点评】此题主要考查了列代数式以及加权平均数,正确利用加权平均数得出是解题关键.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m=3时,该分式的值为0.【考点】分式的值;分式的定义;分式的值为零的条件.【分析】除法运算中,被除式为分子,除式为分母,即可写成分式的形式,要使分式的值为0,分式的分子为0,分母不能为0.【解答】解:将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为==;当3﹣m=0且m+2≠0,即m=3时,该分式的值为0.故答案为:,;3.【点评】考查了分式的值,分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.12.在①﹣3x、②、③x2y﹣7xy2、④﹣x、⑤、⑥、⑦其中,整式有①③④⑥⑦,分式有②⑤(填序号).【考点】分式的定义;整式.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在式子:①﹣3x;②;③x y﹣7xy;④﹣x;⑤;⑥;⑦中,整式有①③④⑥⑦,分式有②⑤.故答案为:①③④⑥⑦;②⑤.【点评】本题考查整式、分式的概念,要熟记这些概念.13.分式所表示的实际意义可以是如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【考点】分式的定义.【专题】开放型.【分析】根据分式的意义进行解答即可.【解答】解:本题答案不唯一,如:如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【点评】考查了分式的定义,本题属开放性题目,答案不唯一,只要写出的题目符合此分式即可.14.已知分式的值为0,则x的值是﹣1.【考点】分式的值为零的条件.【分析】分式等于零时:分子等于零,且分母不等于零.【解答】解:由分式的值为零的条件得|x|﹣1=0且x2+x﹣2≠0,由|x|﹣1=0,得x=﹣1或x=1,由x2+x﹣2≠0,得x≠﹣2或x≠1,综上所述,分式的值为0,x的值是﹣1.故答案为:﹣1.【点评】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.若分式的值为负数,则x的取值范围是x>1.5.【考点】分式的值.【分析】因为分子大于0,整个分式的值为负数,所以让分母小于0列式求值即可.【解答】解:由题意得:3﹣2x<0,解得:x>1.5.故答案为:x>1.5.【点评】考查了分式的值,分式的值为负数,则分式的分子分母异号.16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=6.【考点】分式的值为零的条件;分式有意义的条件.【专题】计算题.【分析】根据分式无意义可以求出a,分式值为0求出b,进而求出a+b.【解答】解:当x=﹣2时,分式无意义,即﹣2+a=0,a=2;当x=4时,分式的值为0,即b=4.则a+b=6.故当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=6.故答案为6.【点评】分式有意义分母不为0,分式值为0,分子为0,分母不为0.17.用分式的基本性质填空:(1)=(b≠0);(2)=;(3)=3a﹣b.【考点】分式的基本性质.【分析】(1)分式的分子、分母同乘以2b;(2)分子、分母同时乘以(x﹣2y);(3)分子、分母同时除以2a.【解答】解:(1)==.故答案是:2(a+b)b;(2)==.故答案是:(x﹣2y);(3)=3a﹣b.故答案是:2a.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.【考点】分式的基本性质.【分析】(1)根据分式的性质,分母的变化,可得分子;(2)根据分式的分子分母都乘以或除以同一个不为0 的整式,分式的值不变,分母的变化,可得分子.【解答】解:(1);(2);故答案为:a2+ab,x+y.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为0 的整式,分式的值不变.19.填空:=﹣=﹣=,﹣===﹣;(2)填空:﹣===﹣,﹣==﹣=;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.【考点】分式的基本性质.【分析】根据分式的性质,可得分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【解答】解:(2):﹣===﹣,﹣==﹣=;(3)分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【点评】本题考查了分式的性质,分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.三、判断正误(正确的打“√”,错误的打“×”)20.=;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断.【解答】解:分式的分子、分母同时乘以x(x≠0)可以得到.故答案应为“×”.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.21.==;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断即可.【解答】解:根据分式的基本性质得出:原式不正确,即==错误,故答案为:×.【点评】本题考查了分式的基本性质的应用,主要考查学生的理解能力和辨析能力.22.3x﹣2=.×.(判断对错)【考点】约分.【分析】根据分式有意义的条件进而得出.【解答】解:当3x+2≠0时,3x﹣2=,∴原式错误.故答案为:×.【点评】此题主要考查了分式的基本性质,熟练根据分式性质得出是解题关键.四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).【考点】分式的值为零的条件;分式有意义的条件.【分析】分式无意义时:分母等于零;分式有意义时:分母不等于零;分式等于零时:分子等于零,且分母不等于零.【解答】解:(1)当分母x=0时,分式无意义;当分母x≠0时,分式有意义;当分子x+1=0,且分母x≠0时,分式值为0;(2)当分母x﹣1=0,即x=1时,分式无意义;当分母x﹣1≠0,即x≠1时,分式有意义;当分子x+3=0且分母x﹣1≠0,即x=﹣3时,分式值为0.【点评】本题考查了分式的值为零的条件、分式有意义的条件.注意:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.【考点】分式的值.【分析】(1)将a=﹣2代入,列式计算即可求解;(2)先化简,再将x=﹣2,y=2代入化简后的式子,列式计算即可求解.【解答】解:(1)∵a=﹣2,∴==﹣8;(2)==﹣,∵x=﹣2,y=2,∴原式=1.【点评】本题考查了分式的值,约分.分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.25.当a取什么值时,分式的值是正数?【考点】分式的值.【分析】根据分式的值是正数得出不等式组,进而得出x的取值范围.【解答】解:∵分式的值是正数,∴或,解得a<﹣1或a>3.故当a<﹣1或a>3时,分式的值是正数.【点评】此题主要考查了分式的值以及不等式组的解法,得出分子与分母的符号是解题关键.26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).【考点】分式的基本性质.【分析】(1)先将分母按字母a进行降幂排列,添上带负号的括号,再根据分式的符号法则,将分母的负号提到分式本身的前边;(2)先将分子、分母均按字母y进行降幂排列,并且都添上带负号的括号,再根据分式的基本性质,将分子、分母都乘以﹣1.【解答】解:(1)==;(2)==.【点评】本题考查了分式的基本性质及分式的符号法则,解题的关键是正确运用分式的基本性质.规律总结:(1)同类分式中操作可总结成口诀:“一排二添三变”,“一排”即按同一个字母的降幂排列;“二添”是把第一项系数为负号的分子或分母添上带负号的括号;“三变”是按分式符号法则把分子与分母的负号提到分式本身的前边.(2)分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).【考点】分式的基本性质.【分析】(1)先找出各式分子与分母的分母的公因式,再根据分式的基本性质进行解答即可;(2)把分子与分母同时乘以100即可得出结论.【解答】解:(1)分式的分子与分母同时乘以6得,原式=.(2)分式的分子与分母同时乘以100得,原式=.【点评】本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的数(或整式),分式的值不变.28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).【考点】分式的基本性质.【分析】(1)把分式的分子、分母同时乘以10即可得出结论;(2)把分式的分子、分母同时乘以100,再同时除以5即可.【解答】解:(1)分式的分子、分母同时乘以10得,=;(2)分式的分子、分母同时乘以100得,==.【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.。
第十章分式方程单元测试一.选择题1.下列各式:,,分式有()A.1个B.2个C.3个D.4个2.分式的值是零,则x的值为()A.2B.3C.﹣2D.﹣33.下列分式,,,中,最简分式有()A.1个B.2个C.3个D.4个4.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.分式与的最简公分母是a3b2D.当x≠3时,分式有意义5.下列计算正确的是()A.=B.C.D.6.已知分式A=,B=+,其中x≠±2,则A与B的关系是()A.A=B B.A=﹣B C.A>B D.A<B7.计算的结果是()A.x﹣1B.C.D.8.老师设计了接力游戏,甲、乙、丙、丁四位同学用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示,接力中,自己负责的一步出现错误的同学是()A.甲B.乙C.丙D.丁9.工人A加工180个零件与工人B加工240个零件所用时间相同,已知两人每天共加工70个零件,若设A每天加工x个零件,则可列方程为()A.B.C.D.10.若关于x的分式方程有增根,则m的值是()A.4B.3C.2D.1二.填空题11.分式有意义,字母x满足的条件为.12.若分式的值大于0,则x满足的条件是.13.分式,,﹣的最简公分母是.14.将分式约分可得,依据为.15.计算:+=.16.计算:=.17.当时,计算=.18.分式方程的解是.19.某商场分别用2000元和2400元购进相同数量的甲、乙两种商品,已知乙种商品每件进价比甲种商品每件进价多8元,则甲种商品每件进价为元.20.若关于x的分式方程﹣=5的解为非负数,则a的取值范围为.三.解答题21.当x为何值时,分式﹣有意义?22.按要求答题:(1)约分(2)通分,.23.解分式方程:①;②.24.先化简,再求值(﹣)÷,其中m满足m2+2m﹣6=0.25.某学生化简分式出现了错误,其解答过程如下:原式=(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第步开始出错的,其错误原因是;(2)请写出此题正确的解答过程.26.某商店五月份销售A型电脑的总利润为4320元,销售B型电脑的总利润为3060元,且销售A型电脑数量是销售B型电脑的2倍,已知销售一台B型电脑比销售一台A型电脑多获利50元.(1)求每台A型电脑和B型电脑的利润;(2)该商店计划一次购进两种型号的电脑共100台且全部售出,其中B型电脑的进货量不超过A型电脑的2倍,该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?27.在新冠肺炎疫情发生后,某企业引进A,B两条生产线生产防护服.已知A生产线比B生产线每小时多生产4套防护服,且A生产线生产160套防护服和B生产线生产120套防护服所用时间相等.(1)求两条生产线每小时各生产防护服多少套?(2)因疫情期间,防护服的需求量急增,企业又引进C生产线.已知C生产线每小时生产24套防护服,三条生产线一天共运行了25小时,设A生产线运行a小时,B生产线运行b小时,a,b为正整数且不超过12.①该企业防护服的日产量(用a,b的代数式表示).②若该企业防护服日产量不少于440套,求C生产线运行时间的最小值.参考答案一.选择题1.解:,,是分式,故选:C.2.解:由题意得,x+3=0且x﹣2≠0,解得x=﹣3.故选:D.3.解:∵=﹣,=,∴,,,中,最简分式有,,一共2个.故选:B.4.解:A、B中含有字母的式子才是分式,故本选项不符合题意.B、分式的分子、分母中不含有公因式,是最简分式,故本选项不符合题意.C、分式与的最简公分母是a2b,故本选项不符合题意.D、x≠3时,分子x﹣3≠0,分式有意义,故本选项符合题意.故选:D.5.解:(A)原式==,故A错误.(C)原式=,故C错误.(D)原式==﹣1,故D错误.故选:B.6.解:∵B==,∴A和B互为相反数,即A=﹣B.故选:B.7.解:=[﹣]•(x﹣3)=()•(x﹣3)=1﹣==,故选:C.8.解:老师到甲:=,故选项A不符合题意;甲到乙:=﹣,故选项B符合题意;乙到丙:=,故选项C不符合题意;丙到丁:=,故选项D不符合题意;故选:B.9.解:设甲每天做x个零件,根据题意得:.故选:A.10.解:,方程两边都乘(x﹣1)得2m﹣1﹣7x=5(x﹣1),∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,2m﹣1﹣7=0,解得m=4.故选:A.二.填空题11.解:由题意得,x+3≠0,解得,x≠﹣3,故答案为:x≠﹣3.12.解:∵>0,∴x﹣1>0,∴x>1,∵x﹣1≠0,∴x≠1;故答案为:x>1.13.解:∵2、4、5的最小公倍数为20,x的最高次幂为1,y的最高次幂为2,∴最简公分母为20xy2,故答案为:20xy2.14.解:=(根据分式的基本性质,分式的分子和分母都除以2xy3),故答案为:,分式的基本性质.15.解:原式=+=+==1,故答案为:1.16.解:原式=[﹣]•=﹣•=﹣•=﹣2(a+3)=﹣2a﹣6.故答案为:﹣2a﹣6.17.解:==÷=•=,当x=﹣1时,原式==,故答案为:.18.解:,﹣=2,方程两边都乘以x﹣3得:2﹣(x﹣1)=2(x﹣3),解得:x=3,检验:当x=3时,x﹣3=0,所以x=3是增根,即原方程无解,故答案为:无解.19.解:设甲种商品每件进价为x元,则乙种商品每件进价为(x+8)元,依题意得:=,解得:x=40,经检验,x=40是原方程的解,且符合题意.故答案为:40.20.解:方程两边同时乘以(2x﹣2)得:6﹣(a﹣1)=5(2x﹣2),解得:x=1.7﹣0.1a,∵解为非负数,∴1.7﹣0.1a≥0,解得:a≤17,∵x﹣1≠0,∴x≠1,∴1.7﹣0.1a≠1,∴a≠7.故答案为:a≤17且a≠7.三.解答题21.解:由题意得,x﹣1≠0,x+2≠0,解得x≠1,x≠﹣2.22.解:(1)=﹣;(2)=,=.23.解:①分式方程变形得:+=1,去分母得:3x+2=x﹣1,解得:x=﹣,检验:把x=﹣代入得:x﹣1=﹣≠0,则x=﹣是分式方程的解;②去分母得:(x+3)2=4(x﹣3)+(x+3)(x﹣3),整理得:x2+6x+9=4x﹣12+x2﹣9,移项合并得:2x=﹣30,解得:x=﹣15,检验:把x=﹣15代入得:(x+3)(x﹣3)=﹣12×(﹣18)=216≠0,则x=﹣15是分式方程的解.24.解:(﹣)÷=[+]=()===,∵m2+2m﹣6=0,∴m2+2m=6,当m2+2m=6时,原式==3.25.解:(1)学生的解答过程从第二步出现错误,原因是括号前是负号,去括号时未变号,故答案为:二,括号前是负号,去括号时未变号;(2)原式=﹣====﹣.26.解:(1)设每台A型电脑的利润为x元,则每台B型电脑的利润为(x+50)元,根据题意得=×2,解得x=120.经检验,x=120是原方程的解,则x+50=170.答:每台A型电脑的利润为120元,每台B型电脑的利润为170元;(2)设购进A型电脑a台,这100台电脑的销售总利润为y元,据题意得,y=120a+170(100﹣a),即y=﹣50a+17000,100﹣a≤2a,解得a≥33,∵y=﹣50a+17000,∴y随a的增大而减小,∵a为正整数,∴当a=34时,y取最大值,此时y=﹣50×34+17000=15300.即商店购进34台A型电脑和66台B型电脑,才能使销售总利润最大,最大利润是15300元.27.解:(1)设B生产线每小时生产防护服x套,则A生产线每小时生产防护服(x+4)套,依题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=16.答:A生产线每小时生产防护服16套,B生产线每小时生产防护服12套.(2)①设A生产线运行a小时,B生产线运行b小时,则C生产线运行(25﹣a﹣b)小时,依题意得:该企业防护服的日产量=16a+12b+24(25﹣a﹣b)=(600﹣8a﹣12b)套.②∵该企业防护服日产量不少于440套,∴600﹣8a﹣12b≥440,∴2a+3b≤40.设k=a+b,则2k+b≤40,∴b值越小,k值越大.∵a,b为正整数且不超过12,∴当a=12时,b≤,b可取的最大值为5,此时k的最大值为17,25﹣a﹣b=25﹣k=8;当a=11时,b≤6,b可取的最大值为6,此时k的最大值为17,25﹣a﹣b=25﹣k=8;当a=10时,b≤,b可取的最大值为6,此时k的最大值为16,25﹣a﹣b=25﹣k=9;当a=9时,b≤,b可取的最大值为7,此时k的最大值为16,25﹣a﹣b=25﹣k=9.∴C生产线运行时间的最小值为8小时.。
《第10章分式》一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④2.当x为任意实数时,下列各式中一定有意义的是()A.B.C.D.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍4.使式子从左到右变形成立,应满足的条件是()A.x+2>0 B.x+2=0 C.x+2<0 D.x+2≠05.把分式中x的值变为原来的2倍,而y的值缩小到原来的一半,则分式的值()A.不变B.为原来的2倍C.为原来的4倍D.为原来的一半6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.8.akg盐溶于bkg水,所得盐水含盐的百分比是.9.某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧天.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m= 时,该分式的值为0.12.在①﹣3x 、②、③x 2y ﹣7xy 2、④﹣x 、⑤、⑥、⑦其中,整式有 ,分式有 (填序号).13.分式所表示的实际意义可以是 .14.已知分式的值为0,则x 的值是 .15.若分式的值为负数,则x 的取值范围是 .16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b= .17.用分式的基本性质填空:(1)=(b ≠0);(2)=;(3)=3a ﹣b .18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.19.填空:=﹣=﹣=,﹣===﹣;(2)填空:﹣ = = = ,﹣ = = = ;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.三、判断正误(正确的打“√”,错误的打“×”)20.=; .(判断对错)21.==; .(判断对错)22.3x﹣2=..(判断对错)四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.25.当a取什么值时,分式的值是正数?26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).《第10章分式》参考答案与试题解析一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④【考点】分式的定义.【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:①,③这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选C.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.2.当x为任意实数时,下列各式中一定有意义的是()A.B.C.D.【考点】分式有意义的条件.【专题】计算题.【分析】这几个式子有意义的条件是分式有意义,即分母一定不等于零.【解答】解:A、当x=0时,分母为零,分式没有意义,故选项错误;B、当x=±1时,分母为零,分式没有意义,故选项错误;C、无论x为何值,分母都不为零,分式有意义,故选项正确;D、当x=﹣1时,分母为零,分式没有意义,故选项错误.故选C.【点评】本题考查了分式有意义的条件:分母不为零,分式有意义.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍【考点】分式的基本性质.【分析】根据分式的基本性质进行解答即可.【解答】解:将分式中的m 、n 都扩大为原来的3倍可变为==.故选A .【点评】本题考查的是分式的基本性质,熟知分式的基本性质3是解答此题的关键. 4.使式子从左到右变形成立,应满足的条件是( )A .x+2>0B .x+2=0C .x+2<0D .x+2≠0 【考点】分式的基本性质.【分析】把等式右边的式子与左边相比较即可得出结论.【解答】解:∵等式的左边=,右边=,∴x+2≠0. 故选D .【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.5.把分式中x 的值变为原来的2倍,而y 的值缩小到原来的一半,则分式的值( ) A .不变 B .为原来的2倍 C .为原来的4倍 D .为原来的一半 【考点】分式的基本性质.【分析】把x ,y 换为2x , y 代入所给分式化简后和原来分式比较即可.【解答】解:新分式为: ==4•, ∴分式的值是原来的4倍. 故选C .【点评】本题考查了分式的基本性质的应用,解决本题的关键是得到把相应字母的值扩大或缩小后新分式的值.6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.【考点】分式的基本性质.【分析】要不改变分式的值,将分子分母中x的最高次项的系数变为正数,即要上下同乘﹣1.【解答】解:依题意得:原式=,故选D.【点评】此题利用分式的性质变形时必须注意所乘的(或所除的)整式上下相同,且不为0.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.【考点】列代数式(分式).【分析】根据题意利用路程÷时间=速度进而得出答案.【解答】解:∵小明th走了skm的路,∴小明走路的速度是: km/h.故答案为:.【点评】此题主要考查了列代数式,根据路程与速度和时间直接的关系得出是解题关键.8.akg盐溶于bkg水,所得盐水含盐的百分比是.【考点】列代数式(分式).【分析】利用盐的质量÷(盐+水)的质量可得答案.【解答】解:由题意得:×100%=,故答案为:.【点评】此题主要考查了由实际问题列出代数式,关键是正确理解题意.9.(2016春•泰兴市校级期中)某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧(﹣)天.【考点】列代数式(分式).【分析】根据“多用的天数=节约后用的天数﹣原计划用的天数”列式整理即可.【解答】解:这些煤可比原计划多用的天数=实际所烧天数﹣原计划所烧天数=(﹣)天.故答案为:(﹣).【点评】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.本题的等量关系为:多用的天数=后来可用的天数﹣原计划用的天数.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.【考点】列代数式(分式);加权平均数.【分析】首先根据题意得出总环数除以总次数得出即可.【解答】解:∵a次投了m环,b次投了n环,∴则小华此次比赛的平均成绩是:.故答案为:.【点评】此题主要考查了列代数式以及加权平均数,正确利用加权平均数得出是解题关键.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m= 3 时,该分式的值为0.【考点】分式的值;分式的定义;分式的值为零的条件.【分析】除法运算中,被除式为分子,除式为分母,即可写成分式的形式,要使分式的值为0,分式的分子为0,分母不能为0.【解答】解:将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为==;当3﹣m=0且m+2≠0,即m=3时,该分式的值为0.故答案为:,;3.【点评】考查了分式的值,分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.12.在①﹣3x、②、③x2y﹣7xy2、④﹣x、⑤、⑥、⑦其中,整式有①③④⑥⑦,分式有②⑤(填序号).【考点】分式的定义;整式.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在式子:①﹣3x;②;③ x y﹣7xy;④﹣ x;⑤;⑥;⑦中,整式有①③④⑥⑦,分式有②⑤.故答案为:①③④⑥⑦;②⑤.【点评】本题考查整式、分式的概念,要熟记这些概念.13.分式所表示的实际意义可以是如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【考点】分式的定义.【专题】开放型.【分析】根据分式的意义进行解答即可.【解答】解:本题答案不唯一,如:如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【点评】考查了分式的定义,本题属开放性题目,答案不唯一,只要写出的题目符合此分式即可.14.已知分式的值为0,则x的值是﹣1 .【考点】分式的值为零的条件.【分析】分式等于零时:分子等于零,且分母不等于零.【解答】解:由分式的值为零的条件得|x|﹣1=0且x2+x﹣2≠0,由|x|﹣1=0,得x=﹣1或x=1,由x2+x﹣2≠0,得x≠﹣2或x≠1,综上所述,分式的值为0,x的值是﹣1.故答案为:﹣1.【点评】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.若分式的值为负数,则x的取值范围是x>1.5 .【考点】分式的值.【分析】因为分子大于0,整个分式的值为负数,所以让分母小于0列式求值即可.【解答】解:由题意得:3﹣2x<0,解得:x>1.5.故答案为:x>1.5.【点评】考查了分式的值,分式的值为负数,则分式的分子分母异号.16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b= 6 .【考点】分式的值为零的条件;分式有意义的条件.【专题】计算题.【分析】根据分式无意义可以求出a,分式值为0求出b,进而求出a+b.【解答】解:当x=﹣2时,分式无意义,即﹣2+a=0,a=2;当x=4时,分式的值为0,即b=4.则a+b=6.故当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=6.故答案为6.【点评】分式有意义分母不为0,分式值为0,分子为0,分母不为0.17.用分式的基本性质填空:(1)=(b≠0);(2)=;(3)=3a﹣b.【考点】分式的基本性质.【分析】(1)分式的分子、分母同乘以2b;(2)分子、分母同时乘以(x﹣2y);(3)分子、分母同时除以2a.【解答】解:(1)==.故答案是:2(a+b)b;(2)==.故答案是:(x﹣2y);(3)=3a﹣b.故答案是:2a.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.【考点】分式的基本性质.【分析】(1)根据分式的性质,分母的变化,可得分子;(2)根据分式的分子分母都乘以或除以同一个不为0 的整式,分式的值不变,分母的变化,可得分子.【解答】解:(1);(2);故答案为:a2+ab,x+y.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为0 的整式,分式的值不变.19.填空: =﹣=﹣=,﹣ ===﹣;(2)填空:﹣ = = = ﹣,﹣ = = ﹣= ;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.【考点】分式的基本性质.【分析】根据分式的性质,可得分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【解答】解:(2):﹣===﹣,﹣ ==﹣=;(3)分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【点评】本题考查了分式的性质,分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.三、判断正误(正确的打“√”,错误的打“×”)20.=;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断.【解答】解:分式的分子、分母同时乘以x(x≠0)可以得到.故答案应为“×”.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.21.==;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断即可.【解答】解:根据分式的基本性质得出:原式不正确,即==错误,故答案为:×.【点评】本题考查了分式的基本性质的应用,主要考查学生的理解能力和辨析能力.22.3x﹣2=.×.(判断对错)【考点】约分.【分析】根据分式有意义的条件进而得出.【解答】解:当3x+2≠0时,3x﹣2=,∴原式错误.故答案为:×.【点评】此题主要考查了分式的基本性质,熟练根据分式性质得出是解题关键.四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).【考点】分式的值为零的条件;分式有意义的条件.【分析】分式无意义时:分母等于零;分式有意义时:分母不等于零;分式等于零时:分子等于零,且分母不等于零.【解答】解:(1)当分母x=0时,分式无意义;当分母x≠0时,分式有意义;当分子x+1=0,且分母x≠0时,分式值为0;(2)当分母x﹣1=0,即x=1时,分式无意义;当分母x﹣1≠0,即x≠1时,分式有意义;当分子x+3=0且分母x﹣1≠0,即x=﹣3时,分式值为0.【点评】本题考查了分式的值为零的条件、分式有意义的条件.注意:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.【考点】分式的值.【分析】(1)将a=﹣2代入,列式计算即可求解;(2)先化简,再将x=﹣2,y=2代入化简后的式子,列式计算即可求解.【解答】解:(1)∵a=﹣2,∴==﹣8;(2)==﹣,∵x=﹣2,y=2,∴原式=1.【点评】本题考查了分式的值,约分.分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.25.当a取什么值时,分式的值是正数?【考点】分式的值.【分析】根据分式的值是正数得出不等式组,进而得出x的取值范围.【解答】解:∵分式的值是正数,∴或,解得a<﹣1或a>3.故当a<﹣1或a>3时,分式的值是正数.【点评】此题主要考查了分式的值以及不等式组的解法,得出分子与分母的符号是解题关键.26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).【考点】分式的基本性质.【分析】(1)先将分母按字母a进行降幂排列,添上带负号的括号,再根据分式的符号法则,将分母的负号提到分式本身的前边;(2)先将分子、分母均按字母y进行降幂排列,并且都添上带负号的括号,再根据分式的基本性质,将分子、分母都乘以﹣1.【解答】解:(1)==;(2)==.【点评】本题考查了分式的基本性质及分式的符号法则,解题的关键是正确运用分式的基本性质.规律总结:(1)同类分式中操作可总结成口诀:“一排二添三变”,“一排”即按同一个字母的降幂排列;“二添”是把第一项系数为负号的分子或分母添上带负号的括号;“三变”是按分式符号法则把分子与分母的负号提到分式本身的前边.(2)分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).【考点】分式的基本性质.【分析】(1)先找出各式分子与分母的分母的公因式,再根据分式的基本性质进行解答即可;(2)把分子与分母同时乘以100即可得出结论.【解答】解:(1)分式的分子与分母同时乘以6得,原式=.(2)分式的分子与分母同时乘以100得,原式=.【点评】本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的数(或整式),分式的值不变.28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).【考点】分式的基本性质.【分析】(1)把分式的分子、分母同时乘以10即可得出结论;(2)把分式的分子、分母同时乘以100,再同时除以5即可.【解答】解:(1)分式的分子、分母同时乘以10得, =;(2)分式的分子、分母同时乘以100得, ==.【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.。
第10章分式单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列式子中是分式的是()A.1πB.x3C.1x−1D.252. 当a为任意有理数时,下列式子一定有意义的是()A.a−5a B.3a2C.a+1(a+1)2D.aa2+13. 把分式方程xx−2+2=12−x化为整式方程,正确的是()A.x+2=−1B.x+2(x−2)=1C.x+2(x−2)=−1D.x+2=−14. 要使分式x2+5x+4x+4的值为0,则x应该等于()A.−4或−1B.−4C.−1D.4或15. 已知关于x的分式方程2x−2+mxx2−4=0有增根,则m=()A.0B.−4C.2或1D.0或−46. 化简(y−1x )÷(x−1y)的结果是()A.−yx B.−xyC.xyD.yx7. 已知a+b3=b+c6=a+c5,则ba+c的值为()A.3:7B.7:5C.2:5D.6:78. 甲、乙两人各自安装10台仪器,甲比乙每小时多安装2台,结果甲比乙少用1小时完成了安装任务,如果设乙每小时安装x台,则根据题意可得()A.10x −10x+2=1 B.10x−2−10x=1 C.10x+2−10x=1 D.12x−10x+2=19. 下列说法:①平面直角坐标系中的点与有序实数对一一对应;②方程x−2x2−4x+4=0的根为x=2;③方程12x =12x−4的最简公分母为2(x−4);④6y9x2是最简分式.其中正确的个数是()A.1个B.2个C.3个D.4个10. 一项工程需在规定日期完成,如果甲队独做,就要超规定日期1天,如果乙队单独做,要超过规定日期4天,现在由甲、乙两队共做3天,剩下工程由乙队单独做,刚好在规定日期完成,则规定日期为()A.6天B.8天C.10天D.7.5天二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 化简:x2−25x2−5x=________.12. 一般地,如果A、B表示是________,并且B中含有________,AB叫做分式,其中A叫做分式的________,B叫做分式的________.13. 代数式m2m−2中字母m的取值范围是________.14. 关于x的分式方程7xx−1+5=2m−1x−1有增根,则m的值为________.15. 如果x+y x=154,则yx =________.16. 把分式12x+2、1x 2−1、1(x−1)2通分,最简公分母是________.17. 分式32x 2y 与5−4xy 2的最简公分母是________.18. 计算:a 2−b 22a−2b 的结果是________.19. 已知x2=y3=z4,则x+3y−z2x−y+z 的值是________.20. 成渝城际双层空调列车于2006年5月1日正式运行,列车总里程350千米,比老成渝铁路缩短路程150千米,速度提高了20千米/时,因此时间为原时间的一半,则该空调列车的运行时间为________小时.三、 解答题 (本题共计 6 小题 ,共计60分 , ) 21. 计算:(1)3x+3x 2−1−2x−1; (2)4x 2−4xy+y 22x−y÷(4x 2−y 2).22. 先化简,再求值:1x+1−3−x x 2−6x+9÷x 2+x x−3,其中x =√2.23. 计算:(1)3x −61−x−x+5x2−x(2)(−a2bc)3⋅(−c2ab)2÷(bca)4(3)xx−y ⋅y2x+y−x4yx4−y4÷x2x2+y2;(4)(a+2a2−2a−a−1a2−4a+4)÷4−aa2−2a.24. 先化简,再求值:1a−2÷a2+4a+4a2−4,其中a=4.25. 先化简(a2−4a2−4a+4−2a−2)÷a2+2aa−2,再对a取一个你喜欢的数代入求值.26. 请阅读某同学解下面分式方程的具体过程. 解方程1x−4+4x−1=2x−3+3x−2.解:1x−4−3x−2=2x−3−4x−1,①−2x+10x 2−6x+8=−2x+10x 2−4x+3,② 1x 2−6x+8=1x 2−4x+3,③∴ x 2−6x +8=x 2−4x +3. ④ ∴ x =52.把x =52代入原方程检验知x =52是原方程的解. 请你回答:(1)得到①式的做法是________;得到②式的具体做法是________;得到③式的具体做法是________;得到④式的根据是________.(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答:________.错误的原因是________(若第一格回答“正确”的,此空不填).(3)给出正确答案(不要求重新解答,只需把你认为应改正的进行修改或加上即可).参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】C【解答】解:1π、x3、25的分母中不含有字母,属于整式,1x−1的分母中含有字母,属于分式.故选C.2.【答案】D【解答】解:A,当a=0时,a−5a没有意义,故本选项错误;B,当a=0时,3a2没有意义,故本选项错误;C,当a=−1时,a+1(a+1)2没有意义,故本选项错误;D,对任意的a的值,a2+1>0有意义,故选项正确.故选D.3.【答案】C【解答】解:方程两边都乘(x−2),得x+2(x−2)=−1.故选C.4.【答案】C【解答】解:∴ x2+5x+4=0,x+4≠0,∴ x=−1,或x=−4,又∴ x≠−4∴ x=−1,故选:C.5.B【解答】解:分式方程去分母得:2x +4+mx =0, 由分式方程有增根,得到x =2或x =−2, 把x =2代入整式方程得:m =−4, 把x =−2代入整式方程得:m =0, 因为当m =0时方程无解, 所以m =−4时方程有增根. 故选B .6. 【答案】 D【解答】解:(y −1x )÷(x −1y )=(xyx −1x )÷(xyy −1y )=xy−1x÷xy−1y=xy−1x×y xy−1=yx .故选D .7. 【答案】 C【解答】 解:设a+b 3=b+c 6=a+c 5=k ,则a +b =3k ,b +c =6k ,a +c =5k ,即:{a +b =3kb +c =6k a +c =5k解得a =k ,b =2k ,c =4k . 则ba+c =2kk+4k =25.故选C . 8. 【答案】 A【解答】 解:依题意得10x−10x+2=1.故选A . 9.A【解答】①正确,②中,x2−4x+4≠0,即x≠2,故错误,③中,最简公分母为2x(x−2),故错误,④中,6xy9z2=2xy3z2,故错误。
第10章分式单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题 3 分,共计30分,)1. 下列式子中是分式的是()A.1πB.x3C.1x−1D.252. 当a为任意有理数时,下列式子一定有意义的是()A.a−5a B.3aC.a+1(a+1)D.aa+13. 把分式方程xx−2+2=12−x化为整式方程,正确的是()A.x+2=−1B.x+2(x−2)=1C.x+2(x−2)=−1D.x+ 2=−14. 要使分式x2+5x+4x+4的值为0,则x应该等于()A.−4或−1B.−4C.−1D.4或15. 已知关于x的分式方程2x−2+mxx2−4=0有增根,则m=()A.0B.−4C.2或1D.0或−46. 化简(y−1x )÷(x−1y)的结果是()A.−yx B.−xyC.xyD.yx7. 已知a+b3=b+c6=a+c5,则ba+c的值为()A.3:7B.7:5C.2:5D.6:78. 甲、乙两人各自安装10台仪器,甲比乙每小时多安装2台,结果甲比乙少用1小时完成了安装任务,如果设乙每小时安装x台,则根据题意可得()A.10x −10x+2=1 B.10x−2−10x=1 C.10x+2−10x=1 D.12x−10x+2=19. 下列说法:①平面直角坐标系中的点与有序实数对一一对应;②方程x−2x2−4x+4=0的根为x=2;③方程12x=12x−4的最简公分母为2(x−4);④6y9x2是最简分式.其中正确的个数是()A.1个B.2个C.3个D.4个10. 一项工程需在规定日期完成,如果甲队独做,就要超规定日期1天,如果乙队单独做,要超过规定日期4天,现在由甲、乙两队共做3天,剩下工程由乙队单独做,刚好在规定日期完成,则规定日期为()A.6天B.8天C.10天D.7.5天二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 化简:x2−25x2−5x=________.12. 一般地,如果A、B表示是________,并且B中含有________,AB叫做分式,其中A叫做分式的________,B叫做分式的________.13. 代数式m2m−2中字母m的取值范围是________.14. 关于x的分式方程7xx−1+5=2m−1x−1有增根,则m的值为________.15. 如果x+yx =154,则yx=________.16. 把分式12x+2、1x 2−1、1(x−1)2通分,最简公分母是________.17. 分式32x y 与5−4xy 的最简公分母是________.18. 计算:a 2−b 22a−2b 的结果是________.19. 已知x2=y 3=z 4,则x+3y−z2x−y+z 的值是________.20. 成渝城际双层空调列车于2006年5月1日正式运行,列车总里程350千米,比老成渝铁路缩短路程150千米,速度提高了20千米/时,因此时间为原时间的一半,则该空调列车的运行时间为________小时. 三、 解答题 (本题共计 6 小题 ,共计60分 , ) 21. 计算:(1)3x+3x 2−1−2x−1; (2)4x 2−4xy+y 22x−y÷(4x 2−y 2).22. 先化简,再求值:1x+1−3−xx −6x+9÷x 2+x x−3,其中x =√2.23. 计算:(1)3x −61−x−x+5x2−x(2)(−a2bc)3⋅(−c2ab)2÷(bca)4(3)xx−y ⋅y2x+y−x4yx−y÷x2x+y;(4)(a+2a−2a−a−1a−4a+4)÷4−aa−2a.24. 先化简,再求值:1a−2÷a2+4a+4a2−4,其中a=4.25. 先化简(a2−4a2−4a+4−2a−2)÷a2+2aa−2,再对a取一个你喜欢的数代入求值.26. 请阅读某同学解下面分式方程的具体过程.解方程1x−4+4x−1=2x−3+3x−2.解:1x−4−3x−2=2x−3−4x−1,① −2x+10x −6x+8=−2x+10x −4x+3,②1x 2−6x+8=1x 2−4x+3,③∴ x 2−6x +8=x 2−4x +3. ④ ∴ x =52.把x =52代入原方程检验知x =52是原方程的解. 请你回答:(1)得到①式的做法是________;得到②式的具体做法是________;得到③式的具体做法是________;得到④式的根据是________.(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答:________.错误的原因是________(若第一格回答“正确”的,此空不填).(3)给出正确答案(不要求重新解答,只需把你认为应改正的进行修改或加上即可).答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】C【解答】解:1π、x3、25的分母中不含有字母,属于整式,1x−1的分母中含有字母,属于分式.故选C.2.【答案】D【解答】解:A,当a=0时,a−5a没有意义,故本选项错误;B,当a=0时,3a2没有意义,故本选项错误;C,当a=−1时,a+1(a+1)2没有意义,故本选项错误;D,对任意的a的值,a2+1>0有意义,故选项正确.故选D.3.【答案】C【解答】解:方程两边都乘(x−2),得x+2(x−2)=−1.故选C.4.【答案】C【解答】解:∴ x2+5x+4=0,x+4≠0,∴ x=−1,或x=−4,又∴ x≠−4∴ x=−1,故选:C.5.【答案】 B【解答】解:分式方程去分母得:2x +4+mx =0, 由分式方程有增根,得到x =2或x =−2, 把x =2代入整式方程得:m =−4, 把x =−2代入整式方程得:m =0, 因为当m =0时方程无解, 所以m =−4时方程有增根. 故选B .6. 【答案】 D【解答】解:(y −1x )÷(x −1y )=(xyx −1x )÷(xyy −1y )=xy−1x÷xy−1y=xy−1x×y xy−1=yx .故选D . 7. 【答案】 C【解答】 解:设a+b 3=b+c 6=a+c 5=k ,则a +b =3k ,b +c =6k ,a +c =5k ,即:{a +b =3kb +c =6k a +c =5k解得a =k ,b =2k ,c =4k . 则ba+c =2kk+4k =25.故选C . 8.【答案】 A【解答】 解:依题意得10x−10x+2=1.故选A .9.【答案】A【解答】①正确,②中,x2−4x+4≠0,即x≠2,故错误,③中,最简公分母为2x(x−2),故错误,④中,6xy9z2=2xy3z2,故错误。
第10章 分式 测试题〔时间: 总分值:120分〕 〔班级: 姓名: 得分: 〕一、选择题〔每题3分,共24分〕一、选择题(每题3分,共30分)1.以下各式:51〔1 – x 〕,34-πx,222y x -,x x 25,其中分式有〔 〕A .1个B .2个C .3个D .4个2.如果分式13-x 有意义,那么x 的取值范围是〔 〕 A .全体实数 B .x ≠1 C .x =1 D .x >1 3.以下约分正确的选项是〔 〕 A .313mm m +=+ B .212yx y x -=-+ C .123369+=+a ba bD .yxa b y b a x =--)()(4.假设x ,y 的值均扩大为原来的2倍,那么以下分式的值保持不变的是〔 〕A .yx 23B . 223yxC .y x 232D .2323yx 5.计算xx -++1111的正确结果是〔 〕 A .0B .212x x- C .212x- D .122-x 6.在一段坡路,小明骑自行车上坡时的速度为v 1千米/时,下坡时的速度为v 2千米/时,那么他在这段坡路上、下坡的平均速度是〔 〕 A .221v v +千米/时 B .2121v v v v +千米/时 C .21212v v v v +千米/时 D .无法确定7.假设关于x 的方程xmx m x -+-+333=3的解为正数,那么m 的取值范围是〔 〕 A .m <29 B .m <29且m ≠23 C .m >49- D .m >49-且m ≠43-8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,每天多做x 件才能按时交货,那么x 满足的方程为〔 〕A .54872048720=-+xB .x +=+48720548720C .572048720=-xD .54872048720=+-x9.对于实数a ,b ,定义一种新运算“⊗〞为:a ⊗b=21a b -,这里等式右边是通常的实数运算.例如:81311312-=-=⊗.那么方程142)2(--=-⊗x x 的解是〔 〕 A .x=4 B .x=5 C .x=6D .x=7 10.张华在一次数学活动中,利用“在面积一定的长方形中,正方形的周长最短〞的结论,推导出“式子x +x1〔x >0〕的最小值是2〞.其推导方法如下:在面积是1的长方形中,设长方形的一边长为x ,那么另一边长是x 1,长方形的周长是2〔x +x 1〕;当长方形成为正方形时,就有x =x1〔x>0〕,解得x =1,这时长方形的周长2〔x +x 1〕= 4最小,因此x +x1〔x >0〕的最小值是2.模仿张华的推导,你求得式子xx 92+〔x >0〕的最小值是〔 〕A .1B .2C .6D .10 二、填空题〔每题4分,共32分〕 11.分式x 21,221y ,xy 51-的最简公分母为____________. 12.约分:①ba ab2205=____________,②96922+--x x x =____________. 13.用科学记数法表示:0.000 002 016=____________. 14.要使15-x 与24-x 的值相等,那么x =____________. 15.计算:〔a 2b 〕-2〔a -1b -2〕-3=____________. 16.假设关于x 的方程12123++=+-x mx x 无解,那么m 的值为____________. 17.1424122-+-+=-y y y y x x ,那么y 2+ 4y + x 的值为____________. 18.如果记 221x y x =+ = f 〔x 〕,并且f 〔1〕表示当x =1时y 的值,即f 〔1〕=2211211=+;f (12)表示当x =12时y 的值,即f (12)=221()12151()2=+;那么f 〔1〕+ f 〔2〕+f (12)+f 〔3〕+f (13)+…+ f〔n 〕+f (1n)= ____________.〔结果用含n 的式子表示〕 三、解答题〔共58分〕19.〔每题6分,共12分〕计算:〔1〕224816x x x x --+; 〔2〕2m n m n n m m n n m-++---.20.〔每题6分,共12分〕解以下方程: 〔1〕1123x x =-; 〔2〕2124111x x x +=+--. 21.〔10分〕先化简,再求值:2222a a a b a ab b ⎛⎫- ⎪--+⎝⎭÷222a a a b a b ⎛⎫- ⎪+-⎝⎭+1,其中a=23,b = –3.22.〔10分〕x 为整数,且222218339x x x x ++++--为整数,求所有符合条件的x 的值. 23.〔14分〕甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.甲步行的速度是乙骑自行车速度的21,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟. 〔1〕求乙骑自行车的速度;〔2〕当甲到达学校时,乙同学离学校还有多远?附加题〔15分,不计入总分〕 24.一列按一定顺序和规律排列的数: 第1个数是112⨯; 第2个数是123⨯; 第3个数是134⨯; ……对任何正整数n ,第n 个数与第〔n +1〕个数的和等于2(2)n n +.〔1〕经过探究,我们发现:112⨯=1112-,123⨯=1123-,134⨯=1134-, 设这列数的第5个数为a ,那么a >1156-,a =1156-,a <1156-,哪个正确?请你直接写出正确的结论;〔2〕请你观察第1个数、第2个数、第3个数,猜测这列数的第n 个数〔即用正整数n 表示第n 个数〕,并且证明你的猜测满足“第n 个数与第〔n+1〕个数的和等于2(2)n n +〞;〔3〕设M 表示211,212,213,…,212016这2021个数的和,即M =211+212+213+ (212016)求证:2016403120172016M <<.参考答案一、1. A 2. B 3. C 4. A 5. C 6. C 7. B 8.D 9. B 10.C二、11. 10xy 212.①a 41 ②33-+x x 13.2.016×10-614.6 15.4b a16. -5 17. 2 18. 21-n三、19.解:〔1〕224816x xx x --+=2(4)(4)4x x x x x -=--; 〔2〕2m n m n n m m n n m -++---=2m n m n mn m n m n m n m --+=----. 20.解:〔1〕方程两边乘3x 〔x -2〕,得3x =x -2. 解得x =-1.检验:当x =-1时,3x 〔x -2〕≠0. 所以,原分式方程的解为x =-1. 〔2〕方程两边乘〔x +1〕〔x -1〕,得x -1+2〔x +1〕=4. 解得x =1.检验:当x =1时,〔x +1〕〔x -1〕=0,因此x =1不是原分式方程的解. 所以,原分式方程无解.21.解:原式=2()()1()ab a b a b a b ab -+-⋅+--=1a b a b ++-=2aa b -. 当a=23,b =-3时,原式=411. 22.解:原式=2(3)2(3)2182(3)(3)(3)(3)(3)x x x x x x x x --++++=+-+-=23x -. ∵x 为整数,且23x -为整数, ∴x -3=±2或x -3=±1,解得x =1或x=2或x=4或x=5. ∴所有符合条件的x 的值为1、2、4、5. 23.解:〔1〕设乙骑自行车的速度为x 米/分,那么甲步行的速度是12x 米/分,公交车的速度是2x 米/分,根据题意,得60012x +30006002x -=3000x -2. 解得x =300.经检验,x =300是原方程的解.答:乙骑自行车的速度为300米/分. 〔2〕300×2=600〔米〕.答:当甲到达学校时,乙同学离学校还有600米. 24.解:〔1〕由题意知第5个数a=156⨯=1156-.〔2〕∵第n 个数为1(1)n n +,第〔n+1〕个数为1(1)(2)n n ++,∴1(1)n n ++1(1)(2)n n ++=2(1)(2)n nn n n ++++=()()()2112n n n n +++=2(2)n n +,即第n 个数与第〔n+1〕个数的和等于2(2)n n +.〔3〕∵112-=112⨯<211=1,12-13=123⨯<212<112⨯=1-12,13-14=134⨯<213<123⨯=12-13,…,12015-12016=120152016⨯<212015<120142015⨯=12014-12015, 12016-12017=120162017⨯<212016<120152016⨯=12015-12016, ∴1-12017<211+212+213+…+212015+212016<122016-,即20162017<211+212+213+…+212015+212016<40312016. ∴20162017<M<40312016.。
第十章分式单元综合测试一.选择题1.在中,是分式的有()A.1个B.2个C.3个D.4个2.若分式有意义,则x满足的条件是()A.x=5B.x≠5C.x=0D.x≠03.下列分式中,最简分式是()A.B.C.D.4.下列约分正确的是()A.=x3B.=0C.=x+y D.=x﹣y5.如果把分式中的x,y同时扩大为原来的4倍,那么该分式的值()A.不变B.扩大为原来的4倍C.缩小为原来的D.缩小为原来的6.化简+的结果是()A.x+y B.x﹣y C.D.7.化简÷的结果是()A.x+3B.x﹣3C.3﹣x D.﹣6x8.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3B.1C.﹣1D.﹣39.为有效解决交通拥堵问题,营造路网微循环,某市决定对一条长860m的道路进行拓宽改造.为了减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加10%,结果提前6天完成任务.求实际每天改造道路的长度与实际施工天数.珍珍同学根据题意列出方程﹣=6;文文同学根据题意列出方程=×(1+10%).已知两人的答案均正确,则下列说法正确的是()A.x,y代表相同的含义B.x表示实际每天改造道路的长度C.y表示实际施工天数D.表示实际每天改造道路的长度10.如果关于x的不等式组有且只有四个整数解,且关于x的分式方程=﹣8的解为非负数,则符合条件的所有整数a的个数为()A.1B.2C.3D.4二.填空题11.若分式的值为0,则x=.12.化简:=.13.分式与的最简公分母为.14.计算:=.15.计算:=.16.计算的结果等于.17.方程=﹣2的解是.18.要使的值和的值互为相反数,则x的值是.19.如果方程+=0不会产生增根,那么k的取值范围是.20.某校要建立两个计算机教室,为此要购买相同数量的A型计算机和B型计算机.已知一台A 型计算机的售价比一台B型计算机的售价便宜400元,如果购买A型计算机需要224000元,购买B型计算机需要240000元.求一台A型计算机和一台B型计算机的售价分别是多少元.设一台B型计算机的售价是x元,依题意列方程为.三.解答题21.已知x=﹣4时,分式无意义,x=2时,此分式的值为零,求分式的值.22.约分:(1)(2)23.计算:.24.计算下列各式:(1)•;(2)÷(x﹣2)•.25.解方程:=1.26.某超市用4000元购进某种牛奶,面市后供不应求,超市又用1万元购进第二批这种牛奶,所购数量是第一批的2倍,但单价贵了2元.(1)第一批牛奶进货单价为多少元?(2)超市销售两批牛奶售价相同,两批全部售完后要求获利不少于4000元,则售价至少为多少元?27.我们定义:如果两个分式A与B的差为常数,且这个常数为正数,则称A是B的“雅中式”,这个常数称为A关于B的“雅中值”.如分式A=,B=,A﹣B=﹣()===2,则A是B的“雅中式”,A关于B的“雅中值”为2.(1)已知分式C=,D=,判断C是否为D的“雅中式”,若不是,请说明理由,若是,请证明并求出C关于D的“雅中值”;(2)已知分式P=,Q=,P是Q的“雅中式”,且P关于Q的“雅中值”是2,x为整数,且“雅中式”P的值也为整数,求E所代表的代数式及所有符合条件的x的值之和;(3)已知分式M=,N=(a,b,c为整数),M是N的“雅中式”,且M关于N的“雅中值”是1,求a﹣b+c的值.参考答案一.选择题1.解:的分母中含有字母,属于分式,其他的属于整式.故选:B.2.解:∵分式有意义,∴x﹣5≠0,∴x≠5,故选:B.3.解:A、=,所以A选项不符合;B、=,所以B选项不符合;C、==,所以C选项不符合;D、为最简分式,所以D选项符合.故选:D.4.解:A、原式=x4,所以A选项错误;B、原式=1,所以B选项错误;C、为最简分式,所以C选项错误;D、原式==x﹣y,所以D选项正确.故选:D.5.解:x,y同时扩大为原来的4倍,则有==•,∴该分式的值是原分式值的,故选:D.6.解:原式=﹣===x﹣y.故选:B.7.解:原式=•=x﹣3.故选:B.8.解:原式=(﹣)÷=•==,∵a2+a﹣1=0,∴a2+a=1,则原式==3,故选:A.9.解:若设原计划每天改造道路x米,则实际每天改造道路(1+10%)x米,根据题意,可列方程﹣=6;若设实际施工天数为y天,则原计划施工的天数为(y+6)天,根据题意,可列方程=×(1+10%);所以x,y代表不同的含义,表示计划每天改造道路的长度.故选:C.10.解:,不等式组化简为,由不等式组有且只有四个整数解,得到,2<解得:6≤a<10,即整数a=6,7,8,9,,分式方程去分母得:ax﹣28=﹣8(4﹣x)解得:x=,由分式方程的解为非负数以及分式有意义的条件,a﹣8<0,解得:a<8,故a=6和7.故选:B.二.填空题11.解:由题意得:x2﹣1=0,且1﹣x≠0,解得:x=﹣1.故答案为:﹣1.12.解:原式==.故答案为.13.解:分式与的分母为2x2y和6xy2,系数的最小公倍数是6,再取x2和y2,可得最简公分母为6x2y2,故答案为6x2y2.14.解:原式=+=+=+==.故答案为:.15.解:原式=[﹣]•=﹣•=﹣•=﹣2(a+3)=﹣2a﹣6.故答案为:﹣2a﹣6.16.解:原式=•=.故答案为:.17.解:去分母得:2x=3﹣2(2x﹣2),去括号得:2x=3﹣4x+4,移项合并得:6x=7,解得:x=,检验:把x=代入得:2x﹣2=﹣2=≠0,则x=是分式方程的解.故答案为:x=.18.解:根据题意可得:+=0,去分母得:x﹣5+2x﹣4=0,解得:x=3,经检验,x=3是原分式方程的解,故答案为3.19.解:+=0,去分母得,2k+x=0,当x=﹣2时,会产生增根,把x=﹣2代入整式方程得,2k﹣2=0,解得k=1,∴解方程+=0时,不会产生增根,实数k的取值范围为k≠1.故答案是:k≠1.20.解:设一台B型计算机的售价是x元,则一台A型计算机的售价是(x﹣400)元,依题意得:=.故答案为:=.三.解答题21.解:∵分式无意义,∴2x+a=0即当x=﹣4时,2x+a=0.解得a=8∵分式的值为0,∴x﹣b=0,即当x=2时,x﹣b=0.解得b=2∴.22.解:(1)=;(2)原式==.23.解:原式====.24.解:(1)原式=;(2)原式=••=.25.解:方程两边同乘以(x+3)(x﹣1)得:2x(x﹣1)﹣24=(x+3)(x﹣1),整理得:2x2﹣2x﹣24=x2+2x﹣3,则x2﹣4x﹣21=0,(x﹣7)(x+3)=0,解得:x1=7,x2=﹣3,检验:当x=﹣3时,(x+3)(x﹣1)=0,故x=﹣3是方程的增根,当x=7时,(x+3)(x﹣1)≠0,故x=7是原方程的根.26.解:(1)设第一批牛奶进货单价为x元,则第二批牛奶进货单价为(x+2)元,依题意可得:=2×,解得x=8.经检验x=8是方程的解,答:第一批牛奶进货单价为8元;(2)设售价为y元,依题意可得:×(y﹣8)+2××(y﹣10)≥4000,解得y≥12.答:售价至少为12元.27.(1)C是D的“雅中式”,理由如下,==.即:C不是D的“雅中式”.(2).∵P是Q的雅中式.又∵P关于Q的雅中值为2.∴E﹣2x2﹣6x=2(9﹣x2).∴E=6x+18.∴P===.∵P的值也为整数,且分式有意义.故3﹣x=±1,或3﹣x=±2,或者3﹣x=±3,或3﹣x=±6,∴x的值为:﹣3,0,1,2,4,5,6,9.∵x≠±3.∴x的值为:﹣3,0,1,2,4,5,6,9.符合条件的x的值之和为:0+1+2+4+5+9=27.(3)∵M是N的“雅中式”,且M关于N的“雅中值”是1.=1.整理得:(﹣b﹣c+a+4)x+bc﹣5a=0.由上式子恒成立,则:.消去a得:bc﹣5b﹣5c+20=0.∴b(c﹣5)﹣5(c﹣5)=5.∴(b﹣5)(c﹣5)=5.∵a、a、c的整数.∴b﹣5、c﹣5也是整数.当b﹣5=1、c﹣5=5时,b=5,c=10,此时a=12.∴a﹣b+c=16.当b﹣5=5、c﹣5=1时,b=10,c=6,此时a=12.∴a﹣b+c=8.当b﹣5=﹣1、c﹣5=﹣5时,b=4,c=0,此时a=0.∴a﹣b+c=﹣4.当b﹣5=﹣5、c﹣5=﹣1时,b=0,c=4,此时a=0.∴a﹣b+c=4.综上:a﹣b+c的值为:16或8或﹣4或4.。
苏科版数学八年级下册《第10章分式》单元过关检测卷一.选择题(共12小题)
1.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()
(第1题图)
A.B.C.D.
2.若分式,则分式的值等于()
A.﹣B.C.﹣D.
3.若分式的值为零,则x的值为()
A.0 B.1 C.﹣1 D.±1
4.要使分式有意义,则x的取值应满足()
A.x=﹣2 B.x≠2C.x>﹣2 D.x≠﹣2
5.下列各式:,,,+m,其中分式共有()
A.1个B.2个C.3个D.4个
6.下列三个分式、、的最简公分母是()
A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x2
7.下列分式中,最简分式是()
A.B.
C.D.
8.把,,通分过程中,不正确的是()A.最简公分母是(x﹣2)(x+3)2
B.=
C.=
D.=
9.化简的结果是()
A.B.C.D.
10.分式﹣可变形为()
A.﹣B.C.﹣D.
11.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()
A.=1 B.=1
C.=1 D.=1
12.下列方程中,关于x的分式方程的个数(a为常数)有()
①+4=0 ②③=3 ④⑤=6 ⑥.
A.2个B.3个C.4个D.5个
二.填空题(共4小题)
13.若关于x的方程+=2有增根,则m的值是.
14.已知关于x的方程+=,如果设=y,那么原方程化为关于y的方程是.
15.若关于x的分式方程无解,则m= .
16.已知关于x的方程的解是正数,则m的取值范围是.
三.解答题(共5小题)
17.计算:.
18.先化简,再求值:÷(1+),其中x=﹣1.
19.化简:÷(x+2﹣)
20.化简:+.
21.李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.
(1)求李老师步行的平均速度;
(2)请你判断李老师能否按时上班,并说明理由.
参考答案
一.1.A 2.B 3.C 4.D 5.B 6.D 7.A 8.D 9.A 10.D 11.B 12.B
二.13.0 14.3y+= 15.﹣4或6或1 16.m>﹣6且m≠﹣4 三.17.解:=•=.
18.解:
=÷(+)
=÷
=×
=,
把,代入原式====.
19.解:÷(x+2﹣)
=÷()
=•
=.
20.解:+
=
=
=
=1.
21.解:(1)设李老师步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,由题意得,﹣=20,
解得x=76,
经检验,x=76是原分式方程的解,且符合题意,
则5x=76×5=380,
答:李老师步行的平均速度为76m/分钟,骑电瓶车的平均速度为380m/分;
(2)由(1)得,李老师走回家需要的时间为:=12.5(分钟),
骑车走到学校的时间为:=5,
则李老师走到学校所用的时间为:12.5+5+4=21.5<23,
答:李老师能按时上班.。