钻井毕业设计
- 格式:doc
- 大小:3.25 MB
- 文档页数:72
西南石油大学《石油设备与工具方案设计课程设计》题目名称:JC70D2钻井绞车学生姓名:**学生学号**********专业年级:机械工程及自动化2009(矿机)指导教师:钟功祥、何畏评阅教师:钟功祥、何畏完成日期:2013.1.111选题目的和意义从国内外石油钻井的现状及发展趋势和研究方向来看,为了适应浅海、海滩、沙漠和丘陵等不同地带油气藏的勘探和开发,美国、德国、法国、意大利、加拿大、墨西哥和罗马尼亚等国先后开发了各种类型的石油钻机。
其中美国的钻机技术和销售业绩在世界上稳居首位,所以与国际技术接轨,实际上是与以美国为代表的钻机技术及API规范接轨。
就我国目前普遍使用的机械驱动钻机而言,美国在20世纪60年代已经成熟,到70年代得到迅速发展。
近年来,国外钻机在传动方式和结构形式方面的改进发展很快,交流变频电驱动已经广泛使用,以及绞车无级调速和新型的刹车系统的设计和改进有着突飞猛进的发展。
我国目前的深井是塔里木塔河油田的塔深(井深8408米2006年)其被誉为亚洲第一深井,而美国早在1974年在世界上最深的地质井深12226米。
这些惊人的数字都是离不开钻机绞车这一重要设备的。
石油钻机在规模上有两极发展的趋势,即深井钻机大型化和轻便钻机小型化。
2国内外研究现状分析国内外钻机绞车在传动方式和结构形式方面的改进发展很快,交流变频电驱动、步进电机已经广泛使用,以及绞车无级调速和新型的刹车系统的设计和改进有着突飞猛进的发展。
深井钻机趋向大型化,钻深能力已达15000m,最大钩载达12500 kN。
为了提高起升工作效率,绞车功率趋向于提高。
一般大型绞车由4台大扭矩的直流电动机驱动,采用强制水冷盘式刹车,起升钢丝绳直径50mm。
钻井泵单台最大功率1618 kW,最高压力52.7 MPa。
原苏联、罗马尼亚的钻机系列中,绞车输人功率最大1838 kW。
通过对绞车的转动原理、电机的选择、主滚筒的力性能核算、刹车系统的改进使得ZJ70钻机绞车整体得到了良好的改进与优化3总体设计方案3.1. JC70D2绞车概述JC-70D2绞车传动是ZJ70D系列钻机的传动系统之一,它不但担负钻机起下钻具和下套管及上卸扣, 还担负着钻头钻进过程中控制钻压、处理事故,以及提取岩芯筒,试油等作业。
毕业设计(论文)题目深水无隔水管钻井关键技术及水力参数设计方法研究学院石油与天然气工程学院专业班级石油工程2012-02学生姓名王雪威学号2012440329指导教师郭晓乐职称教授评阅教师职称2016年5 月18 日学生毕业设计(论文)原创性声明本人以信誉声明:所呈交的毕业设计(论文)是在导师的指导下进行的设计(研究)工作及取得的成果,设计(论文)中引用他(她)人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的学位或证书而使用其材料。
与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
毕业设计(论文)作者(签字):2016年5 月18 日摘要随着石油资源一步步的被开发,勘探新的石油资源就迫在眉睫。
而随着石油勘探技术不断的发展,世界范围内油气资源开发也逐渐向深水进军。
而深水钻井环境恶劣,其中有会出现不少的问题,易造成严重的钻井事故。
在深水环境中进行钻井作业会有相当多的挑战,为了解除这些困难,国外经过一系列研究,开发出了无隔水管钻井液回收钻井技术(RMR),该技术摒弃了传统的隔水管,利用相对较小的回流管线将钻井液和钻屑从海底泵送回钻井平台。
深水无隔水管钻井技术主要解决海洋钻井中地层破裂压力与坍塌压力之间余量较小的问题,采用海底泵举升系统将钻井液和岩屑通过返回管线泵送回海面钻井船,实时调速来调节流量,以满足保持海底钻井液举升泵入口压力恒定的要求。
由于RMR技术是最新发展的技术,目前尚无合适的水力学计算理论和方法。
因此,有必要结合无隔水管钻井液回收钻井技术特点,建立相应的水力参数计算模型,为深水钻井设计提供指导。
本文探讨研究了无隔水管钻井技术,结合了我国的实际情况进行了分析,以及对其所涉及的一系列参数的计算方法。
关键词无隔水管钻井关键技术水力参数AbstractWith the development of oil resources, exploration of new oil resources is imminent. With the development of petroleum exploration technology, the development of oil and gas resources in the world has gradually entered into the deep water. The deepwater drilling environment is poor, which will have a lot of problems, easy to cause serious drilling accident.In order to solve a series of problems encountered in the process of deepwater drilling, foreign research issued without riser drilling fluid recovery drilling technology (RMR), the technique removed riser, using relative smaller reflux pipelines will be drilling fluids and cuttings from submarine pump back to drilling platform. Deep water without riser drilling technology is mainly to solve the ocean drilling fracturing a smaller margin between pressure and collapse pressure, the subsea pump lifting system through drilling fluids and cuttings to return pipeline pump back to the sea drilling ship, real-time control to regulate the flow, to meet the protection to subsea mudlift pump inlet pressure constant. As RMR technology is the latest development of the technology, there is no suitable theory and method of hydraulic calculation. Therefore, it is necessary to establish the corresponding calculation model of the hydraulic parameters, and provide guidance for the deepwater drilling design.This paper discusses the research on the drilling technology of the non riser,combining the actual situation in ourcountry,and the calculation method of a series of parameters.Key Words:No riser ;Drilling Key Technology;hydraulic parameter目录摘要PAGEREF _Toc19667 IAbstract II1 绪论11.1 研究目的及意义11.2 国内外研究现状11.3 无隔水管钻井技术的优势22 无隔水管钻井液回收技术32.1 RMR技术原理及优点32.2井内压力的计算42.2最小钻井液排量的计算52.3 循环系统压力损耗及泵功率计算52.4 深水无隔水管钻井液多级举升技术62.5 钻井液举升系统参数分析62.6 影响举升泵泵效的因素83 无隔水管钻井浅部地层井筒循环压耗分析10 3.1 模型的建立103.2 压耗模型的求解113.2.1钻柱内循环压耗计算113.2.2环空中循环压耗计算123.2.3钻头压降及环空携岩123.3 分析与结论134 深水无隔水管钻井MRL选型以及参数优化16 4.1 MRL压耗分析164.2 MRL参数优化174.2 MRL选型194.2.1 刚性管线194.1.2 柔性管线195 总结21参考文献22致谢231 绪论1.1 研究目的及意义石油对于现代工业来说,是极其重要的,作为一种不可再生的能源,在国家的经济与工业发展中都起到了举足轻重的作用。
山东科技大学
本科毕业设计(论文)开题报告
题目梁宝寺二号井主井冻结井壁设计
学院名称土木建筑学院
专业班级矿井建设 06 学生姓名冀虎
学号 0603026013 指导教师付厚利(教授)
填表时间: 2010 年 3 月 31 日
填表说明
1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。
2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。
3.学生应按照学校统一设计的电子文档标准格式,用A4纸打印。
4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。
5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一同存档。
新型抑制性钻井液的研究毕业论文目录任务书 (Ⅰ)开题报告 (Ⅱ)指导教师审查意见 (Ⅲ)评阅教师评语 (Ⅳ)答辩会议记录 (Ⅴ)中文摘要 (Ⅵ)外文摘要 (Ⅶ)前言 (1)1泥页岩井壁失稳机理分析 (3)1.1泥页岩井壁失稳机理分析 (3)1.2 泥页岩水化膨胀机理分析 (4)1.3 稳定泥页岩井壁的相关措施 (5)2强抑制性高钙盐聚合物钻井液体系的研究 (6)2.1 室内研究 (6)2.2 现场应用 (10)2.3 结论 (14)3强抑制性乳酸高分子聚合物钻井液体系的研究 (15)3.1室内研究 (15)3.2 现场应用 (19)3.3 结论 (20)4结论与建议 (21)参考文献 (21)致谢 (24)1 题目来源生产与社会实践2 研究目的和意义目的及意义:随着石油勘探开发技术的不断发展,特别是复杂地层深井、超深井一级特殊工艺井油气钻探的越来越多,对钻井液技术提出了更高的要求。
目前现场使用的钻井液普遍存在抑制性不足的问题,从而使钻井液综合性能难以提高,特别是随着我国稳定东部发展西部战略方针的开展,勘探领域向新区拓展,钻遇地层日趋复杂,钻井液抑制能力已不能满足勘探开发形势发展的需要。
钻井液体系抑制性的不足,可能导致一系列复杂情况的出现。
如,泥页岩失稳引起的井壁坍塌和缩径;上部地层大井眼、高钻速时,低密度固相污染引起的钻井液流变性能控制困难及井眼的清洁;钻遇盐、膏、盐水层是钻井液稳定性的恶化等问题。
因此,新型抑制性钻井液的开发迫在眉睫。
抑制剂是新型抑制性钻井液体系的核心。
因此开展高性能的抑制剂的研究,评价与优选,对于有效抑制泥页岩膨胀,保持井壁稳定,实现安全生产,提高深部钻探经济效益等都具有重要的意义。
3 国内外发展现状现今常用的抑制性钻井液较多,主要分为有机和无机两类。
无机类抑制性钻井液是使用较早的一类。
常用的处理剂有氯化钾和氯化钙。
氯化钾的主要抑制机理是中和作用和镶嵌作用;氯化钙的主要抑制机理是中和作用、同离子效应和渗透水化效应。
毕业设计(论文)题目:欠平衡钻井技术研究摘要欠平衡钻井是国际上90年代初再次兴起的提高勘探开发效益的钻井新技术。
近几年我国来在油、气田勘探开发方面已进行了大量技术研究和现场试验,并取得了显著的成果。
欠平衡钻井的相关理论和技术研究已经成为钻井工作者的一个研究热点。
本文介绍了欠平衡钻井技术国外的发展状况,实施欠平衡钻井的优缺点。
分析和总结了欠平衡钻井相关理论研究成果,为技术的应用提供理论依据。
关键技术从三个方面入手:在考虑了影响负压值各方面的因素后,提出了合理的设计程序;通过计算出的钻井液密度选择适应于实际条件的最优钻井液类型;分析了井底压力波动和气侵后的环空压力变化,给出了一些井底压力控制措施。
最后介绍了欠平衡钻井的信息采集处理系统,通过全过程的监测和指导保证欠平衡钻井的安全进行关键词:欠平衡;钻井液;信息采AbstractUnderbalanced drilling is the international at the beginning of the 90's the rise once again improve the benefit of exploration and development of new drilling technology. In recent years, our country in the exploration and development of oil and gas field, has done a lot of research and field test, and achieved remarkable results. Related theory and technology research of underbalanced drilling has become a research hotspot in drilling workers.This paper introduces the development status of balanced drilling technology at home and abroad, the advantages and disadvantages of underbalanced drilling. Analyzes and summarizes the relevant research results of underbalanced drilling, and provide a theoretical basis for the application of technology. The key technology from three aspects: in consideration of various factors influencing the value of negative pressure, the reasonable design program; the drilling fluid density calculated to select the optimal drilling fluid types suitable for actual conditions; analyzed the change of the annulus pressure bottomhole pressure fluctuation and after intruding, gives some bottom hole pressure control measures. Finally introduced the underbalanced drilling information acquisition and processing system, through monitoring and guiding the whole process to ensure the safety of underbalanced drillingKeywords: underbalanced drilling fluid; information collection;目录摘要IAbstract ............................................. 错误!未定义书签。
钻井工程设计报告范文一、引言钻井工程设计是石油和天然气开发过程中至关重要的一环。
其目的是开展钻探作业以获得地下油气资源。
本文将详细介绍钻井工程设计的内容,包括设计原则、工程方案、工作流程以及设计参数等。
二、设计原则1. 安全第一:钻井工程设计的首要原则是确保操作人员和设备的安全。
所有设计决策都应以安全为前提,遵循相关规范和标准,采取适当的安全措施,预防事故和灾难的发生。
2. 经济性:钻井工程设计应在安全的前提下追求经济效益。
设计师应通过选择适当的装备和工艺流程,优化钻探时间和成本,并确保提高钻井速度和效率。
3. 环境友好:钻井工程设计应注重保护环境,减少对自然资源的消耗和污染。
设计师应遵循环保法规和政策,采取相应措施减少废弃物的产生,妥善处理和回收利用可回收资源。
三、工程方案1. 钻井井型选择:根据地质勘探和地下构造的情况,选择合适的钻井井型,如水平井、垂直井或斜井等。
同时考虑目标层位、井壁稳定性等因素,确定最佳井型。
2. 钻井液选择:根据地质状况和钻探目标,选择合适的钻井液类型,如泥浆、泡沫液或气体钻井液等。
确保钻井液的性能符合要求,同时降低钻井液对地下水和环境的影响。
3. 钻具设计:根据井深、井径和钻井液性质等因素,选择合适的钻具,包括钻头、钻柱、钻杆等。
进行钻具强度校核,确保钻具能够承受地层压力和摩擦力的作用。
四、工作流程1. 钻探前期准备:包括设计井勘探方案、编制施工程序、准备设备和材料等。
2. 钻具组装:将各类钻具进行组装,包括钻头、钻柱、钻杆等。
3. 井下作业:进行井下操作,包括井探、起下钻井具、置换钻井液等。
4. 钻层评价:对钻探过程中碰到的地层进行评价,包括地层性质、含油气性能等。
5. 钻层完井:根据地质勘探结果,决定是否完成钻层作业,布套并进行封井作业。
五、设计参数1. 井深和井径:决定井筒的长度和直径,根据地质状况和勘探需求确定。
2. 钻井液参数:包括密度、粘度、流变性等,根据地质勘探需求和目标层位选择合适的参数。
ZJ50型石油钻机用动力绞车传动系统设计专业:机械设计制造及其自动化学生:指导教师:完成日期:2014.05.20石油钻机是油田油气勘探开发极其重要的工具。
石油钻机一般由旋转设备、循环系统设备、起升系统设备、动力驱动设备、传动系统设备、控制系统设备、钻机底座和辅助设备组成。
绞车是石油钻机速度变化及维持外头恒定钻压的重要机构,是钻机的核心部件,直接决定着钻机钻进能力。
传统机械传动绞车体积大、质量重、结构复杂,很难较好地满足新型钻井工艺的要求。
ZJ50 绞车传动简单,结构紧凑,功率大且利用率高,调速性能好,安全可靠。
本文在对ZJ50型绞车的整体结构及工作原理认真研究的基础上,运用Pro/E 对ZJ50绞车传动系统的所有组成元件进行三维建模;并对滚筒、滚筒轴等重要部件进行安全校核;最后运用ANSYS对滚筒、滚筒轴和滚筒轴装配体进行有限元分析,根据分析结果判断ZJ50型绞车设计是否合理,能否满足正常工作要求。
ZJ50型绞车传动系统的设计优化为绞车发展提供理论参考,具有一定的工程应用价值。
关键词:绞车传动系统,Pro/E,滚筒和滚筒轴,ANSYS,静态和模态分析Oil drilling rig is a very important tool in exploration and development of oil and gas. Oil drilling rig generally consists of Rotating equipment, recycling equipment, lifting equipment, power equipment, transmission equipment, control systems and equipment, drilling rig substructure and auxiliary equipment. The winch is an important mechanism of drill speed changes in oil and maintains constant drilling pressure and is also a core component of a drilling rig, directly determining the drilling ability. Traditional mechanical draw works bulky, heavy, complicated construction, so it is difficult to satisfy the requirement of new drilling technology.ZJ50 winch is simple, compact structure, large power and high utilization rate, good speed performance, safe and reliable.Base on the study of the overall structure and working principle of ZJ50 winch, we make three-dimensional modeling of components of transmission system by Pro/E. And then check the safety of drum, drum shaft and other important components. Last, finite element analysis on the drum, drum shaft and drum shaft assembly by ANSYS. From the results of the verification ,we know that the design of ZJ50 winch is reasonable, and it can meet the normal requirements. The optimization of ZJ50 transmission system provides a theoretical reference for the winch development, and has certain engineering application value.Key Words: Winch transmission system, Pro/E,Roller and roller shaft, ANSYS,The static and modal analysis摘要Abstract第一章绪论 (1)1.1石油钻机结构简介 (1)1.2绞车的结构简介 (1)1.3绞车的功能及分类 (2)1.4本次毕业设计的研究背景与意义 (3)1.5石油钻机国内外的发展状况 (4)1.5.1石油钻机国内的发展状况 (4)1.5.2石油钻机国外的发展状况 (5)1.6本次毕业设计目的 (7)1.7本次毕业设计的任务及要求 (9)第二章 ZJ50型绞车传动系统介绍 (10)2.1 ZJ50型绞车的主要技术标准及设计原则 (10)2.1.1 绞车的使用工况及要求 (10)2.1.2主要技术标准及设计原则 (11)2.2 ZJ50型绞车结构及工作原理 (11)2.2.1绞车结构组成 (11)2.2.2 绞车工作原理 (12)2.3 绞车传动系统参数 (13)第三章零件的三维造型 (14)3.1三维造型概念 (14)3.2 Pro/E 概述 (14)3.3 Pro/E的特点和优势 (14)3.4具体的零部件造型 (16)3.4.1中间轴链轮的绘制 (16)3.4.2整个传动系统零部件的装配图及爆炸图 (26)3.5零件图绘制总结 (29)第四章 ZJ50型绞车传动系统主要部件的计算校核 (30)4.1主刹车带校核 (30) (30)4.1.1钢(刹)带两端的拉力和制动力的计算4.1.2钢(刹)带强度校核计算 (32)4.1.3钢(刹)带铆接强度校核计算 (32)4.2主刹车带校核结论 (33)第五章 ZJ50型绞车传动系统关键零部件的有限元分析 (33)5.1有限元法应用 (34)5.1.1 ANSYS软件简介 (34)5.2 ZJ50型绞车滚筒的静力分析 (34)5.2.1 建立滚筒模型 (34)5.2.2 滚筒材料温室性能参数 (35)5.2.3 模型的网格划分 (35)5.2.4 边界条件 (36)5.2.5 载荷工况分析 (36)5.2.6 求解并分析结果 (37)5.3 ZJ50型绞车滚筒的模态分析 (39)5.3.1 滚筒有限元模型的建立 (39)5.3.2 施加约束并求解 (39)5.3.3模态结果分析 (39)5.4 ZJ50型绞车滚筒轴的静力分析 (43)5.4.1建立滚筒轴模型 (43)5.4.2 滚筒轴材料温室性能参数 (44)5.4.3 模型的网格划分 (44)5.4.4 边界约束条件 (45)5.4.5 载荷工况分析 (45)5.4.6 求解并分析结果 (46)5.5 ZJ50型绞车滚筒轴的模态分析 (48)5.5.1 滚筒轴有限元模型的建立 (48)5.5.2 施加约束并求解 (48)5.5.3 模态结果分析 (49)5.6 ZJ50型绞车滚筒轴装配体有限元分析 (53)5.6.1 建立滚筒轴装配体有限元分析模型 (53)5.6.2 材料属性定义 (54)5.6.3 网格划分 (54)5.6.4 定义边界条件并施加载荷 (54)5.6.5 求解并分析结果 (55)总结与展望致谢参考文献第一章绪论1.1石油钻机结构简介在石油钻井中,带动钻具破碎岩石,向地下钻进,钻出规定深度的井眼,供采油机或采气机获取石油或天然气。
--毕业设计(论文)题目:复合钻进稳斜性能研究姓名:姚文达专业:石油工程学院:继续教育学院学习形式:自考助学单位:辽河石油职业技术学院指导教师:林洪义2014年1月复合钻进稳斜性能研究摘要复合钻进技术在油田的应用,可以提高机械钻速、控制井眼轨迹、减少扭方位次数,并可大幅降低钻井成本,从而提高油田开发速度。
木文对转盘与螺杆钻具联合钻进时的防斜打快机理进行了分析,采用纵横弯曲连续梁法,建立了这种下部钻具组合的力学模型,利用该模型定量分析了其控制井斜的力学特性,从理论上分析了这种下部钻具组合控制井斜的主要影响因素,为优化这种钻具组合和施工参数设计提供了理论依据。
对单弯螺杆防斜钻具组合分析表明:稳定器安放位置距钻头越远钻头侧向力越大;钻压对钻头侧向力影响不明显;弯角和肘点位置对钻头侧向力有明显的影响,这对专用防斜螺杆钻具的设计改进提供了理论依据;复合钻进在井斜角较大时显示出大的侧向力。
关键词:复合钻进;稳斜;纵横弯曲法;钻头侧向力Steadyinclinedproperties ofcomposite drillingAbstractThat the application of combineddrilling technology in oilfield can heightendrillingspeed,controlwell trace,reduce the number of directi on torsion and greatly reduce drillingcost which acceleratethe oil field developingspeed.Thispaperanalyzed the mechanismofwellstraighteningandimproving ROP as turnplate andscrewdrill rotate together,Usingcontinuous beam theory, themechanical model ofBHA isestablishe d.Applying the model,themechanicalcharacteristics ofBHA to cont rol deviation arestudiedquantitatively。
钻井故障与井下复杂问题的分析及处理前言在钻井过程中,钻头不断地破碎岩石、新井眼随之生成,新形成的井壁岩石失去了原来的支撑条件,呈现出不稳定状态,如果钻井措施不能适应这些变化,就会造成井下诸多复杂情况和事故。
因此,在钻井施工中正确认识和预防、处理井下事故及复杂情况是至关重要的。
本次毕业设计以此为论文题目对生产中面临相关的钻井故障及井下复杂问题进行细致分析研究,并且结合实际作出相关的预防措施和处理办法,并且在实践中取得相应的效果,为今后的施工和生产积累了宝贵的经验财富。
一、造成井下故障及复杂情况的原因1、地质因素1)异常的地层压力,孔隙压力,破裂压力,坍塌压力,特殊地层的蠕变应力。
2)不稳定的岩性层位:蠕变的盐岩层、膏岩层、沥青层、水软泥岩层、吸水膨胀泥岩层、容易坍塌剥落的泥岩层、煤层、特高渗透岩层、含硫化氢、二氧化碳层。
3)特殊的地质构造:断层,裂缝,溶洞。
2、工程因素1)地质资料的掌握程度;2)工程设计的科学性;3)技术措施的正确性;4)管理、操作人员的素质。
二、处理井下故障及复杂情况的原则1)安全坚持安全第一的原则,根据设备、工具、人员素质确定技术方案和措施,避免事故进一步复杂化。
2)快速决策正确,组织周密,准备充分。
3)灵活详实掌握现场信息,不失有利战机。
4)经济综合考虑技术方案的安全性、可行性、有效性,使事故损失减至最小。
三、卡钻处理通则1、顺利解除事故的必要条件1)力求钻井液循环畅通;2)尽量保持钻柱完整;3)防止钻具连接螺纹扭转过紧;4)建立专业化的队伍。
2、分类按卡钻产生的原因可分粘吸卡钻、坍塌卡钻、砂桥卡钻、缩径卡钻、键槽卡钻、泥包卡钻、干钻卡钻、落物卡钻等各种类型。
(一)、粘吸卡钻1、原因:(1)井壁因吸附、沉积形成滤饼;(2)地层孔隙压力与泥浆柱压力形成的压差。
2、特征:(1)钻柱有处于静止状态的过程;(2)卡点位置在钻柱部分;(3)卡钻前后泥浆循环正常;(4)卡点可随时间增长而上移。
本科生毕业设计(论文)翻译资料中文题目:空气及天然气钻井英文题目:Air and Gas Drilling学生姓名:学号:班级:专业指导教师:Chapter One IntroductionThis engineering practice book has been prepared for engineers, earth scientists,and technicians who work in modern rotary drilling operations. The book derives and illustrates engineering calculation techniques associated with air and gas drilling technology. Since this book has been written for a variety of professionals and potential applications, the authors have attempted to minimize the use of field equations. Also the technical terminology used in the book should be easily understood by all those who study this technology. In nearly all parts of the book,equations are presented that can be used with any set of consistent units. Although most of the example calculations use English units, a reader can easily convert to the Systeme Internationale d’Units (SI units) using the tables in Appendix A.Air and gas drilling technology is the utilization of compressed air or other gases as a rotary drilling circulating fluid to carry the rock cuttings to the surface that are generated at the bottom of the well by the advance of the drill bit. The compressed air or other gas (e.g., nitrogen or natural gas) can be used by itself, or can be injected into the well with incompressible fluids such as fresh water,formation water, or formation oil. There are three distinct operational applications for this technology: air or gas drilling operations (using only the compressed air or other gas as the circulating fluid), aerated drilling operations (using compressed air or other gas mixed with an incompressible fluid), and stable foam drilling operations (using the compressed air or other gas with an incompressible fluid to create a continuous foam circulating fluid).1.1 Rotary DrillingRotary drilling is a method used to drill deep boreholes in rock formations of the earth’s crust. This method is comparatively new, having been first developed by a French civil engineer, Rudolf Leschot, in 1863 [3]. The method was initially used to drill water wells using fresh water as the circulation fluid. Today this method is the only rock drilling technique used to drill deep boreholes (greater than 3,000 ft).It is not known when air compressors were first used for the drilling of water wells,but it is known that deep petroleum and natural gas wells were drilled utilizing portable air compressors in the 1920’s [4]. Pipeline gas was used to drill a natural gas well in Texas in 1935 using reverse circulation techniques [5].Today rotary drilling is used to drill a variety of boreholes. Most water wells and environmental monitoring wells drilled into bedrock are constructed using rotary drilling. In the mining industry rotary drilling is used to drill ore body test boreholes and pilot boreholes for guiding larger shaft borings. Rotary drilling techniques are used to drill boreholes for water, oil, gas, and other fluid pipelines that need to pass under rivers, highways, and other natural and man-made obstructions. Most recently, rotary drilling is being used to drill boreholes for fiber optics and other telecommunication lines in obstacle ridden areas such as cites and industrial sites. The most sophisticated application for rotary drilling is the drilling of deep boreholes for the recovery of natural resources such as crude oil, natural gas, and geothermal steam and water. Drilling boreholes for fluid resource recovery requires boreholes drilled to depths of 3,000 ft to as much as 20,000 ft.Rotary drilling is highly versatile. The rotary drilling applications given aboverequire the drilling of igneous, metamorphic, and sedimentary rock. However, the deep drilling of boreholes for the recovery of crude oil and natural gas are almost exclusively carried out in sedimentary rock. Boreholes for the recovery of geothermal steam and water are constructed in all three rock types. The rotary drilling method requires the use of a rock cutting or crushing drill bit. Figure 1-1 shows a typical mill tooth tri-cone roller cone bit. This type of drill bit uses more of a crushing action toadvance the bit in the rock (see Chapter 3 for more details).This type of bit is used primarily in the drilling of sedimentary rock.To advance the drill bit in rock requires the application of an axial force on the bit (to push the bit into the rock face), torque on the bit (to rotate the bit against the resistance of the rock face), and circulating fluid to clear the rock cuttings away from the bit as the bit generates more cuttings with its advance (see Figure 1-2).Rotary drilling is carried out with a variety of drilling rigs. These can be small“single”rigs, or larger “double”and “triple”rigs. Today most of the land rotary drilling rigs are mobile units with folding masts. A single drilling rig has a vertical space in its mast for only one joint of drill pipe. A double drilling rig has a vertical space in its mast for two joints of drill pipe and a triple drilling rig space for three joints. Table 1-1 gives the API length ranges for drill collars and drill pipe [6].Figure 1-3 shows a typical single drilling rig. Such small drilling rigs are highly mobile and are used principally to drill shallow (less than 3,000 ft in depth) water wells, environmental monitoring wells, mining related boreholes, and other geotechnical boreholes. These single rigs are usually self-propelled. The selfpropelled drilling rig in Figure 1-3 is a George E. Failing Company Star 30K.These rigs typically use Range 1 drill collars and drill pipe.Single rigs can be fitted with either an on-board air compressor, or an on-board mud pump. Some of these rigs can accommodate both subsystems. These rigs have either a dedicated prime mover on the rig deck, or have a power-take-off system which allows utilization of the truck motor as a prime mover for the drilling rig equipment (when the truck is stationary). These small drilling rigs provide axial force to the drill bit through the drill string via a chain or cable actuated pull-down system, or hydraulic pull-down system. A pull-down system transfers a portion of the weight of the rig to the top of the drill string and then to the drill bit. The torque and rotation at the top of the drill string is provided by a hydraulic tophead drive (similar to power swivel systems used on larger drilling rigs) which is moved up and down the mast (on a track) by the chain drive pull-down system. Many ofthese small single drilling rigs are capable of drilling with their masts at a 45˚ angle to the vertical. The prime mover for these rigs is usually diesel fueled.Figure 1-4 shows a typical double drilling rig. Such drilling rigs are also mobileand can be self-propelled or trailer mounted. Figure 1-5 shows the schematic of a self-propelled double drilling rig.The trailer mounted drilling rig in Figure 1-4 is a George E. Failing Company SS-40. These double rigs have the capability to drill to depths of approximately 10,000 ft and are used for oil and gas drilling operations, geothermal drilling operations, deep mining and geotechnical drilling operations, and water wells. Double rigs typically use Range 2 drill collars or drill pipe. These rigs are fitted with an on-board prime mover which operates the rotary table, drawworks, and mud pump. The axial force on the drill bit is provided by drill collars. The torque and rotation at the top of the drill string is provided by the kelly and the rotary table.The double drilling rigs have a “crows nest”or “derrick board”nearly midway up the mast. This allows these rigs to pull stands of two drill collar joints or two drill pipe joints. These rigs can carry out drilling operations using drilling mud (with the on-board mud pump) or using compressed air or gas drilling fluids (with external compressors). A few of these drilling rigs are capable of drilling with their masts at a 45˚ angle to the vertical. The prime mover for these rigs is usually diesel fueled,butcan easily be converted to propane or natural gas fuels.Triple drilling rigs are available in a variety of configurations. Nearly all of these drilling rigs are assembled and erected from premanufactured sections. The vertical tower structure on these drilling rigs are called derricks. The smaller triple land rigs can drill to approximately 20,000 ft and utilize Range 2 drill collars and drill pipe. Very large triple drilling rigs are used on offshore platforms. These rigs can utilize Range 3 drill collars and drill pipe.The schematic layout in Figure 1-5 shows a typical self-propelled double drilling rig. This example rig is fitted with a mud pump for circulating drilling mud. There is a vehicle engine that is used to propel the rig over the road. The same engine is used in a power-take-off mode to provide power to the rotary table,drawworks, and mudpump. For this rig, this power-take-off engine operates a hydraulic pump which provides fluid to hydraulic motors to operate the rotary table,drawworks, and mud pump. The “crows nest”on the mast indicates that the rig is capable of drilling with a stand of two joints of drill pipe. This drilling rig utilizes a rotary table and a kelly to provide torque to the top of the drill string. The axial force on the bit is provided by the weight of the drill collars at the bottom of the drill string (there is no chain pull-down capability for this drilling rig). Thisexample schematic shows a rig with on-board equipment that can provide only drilling mud or treated water as a circulate fluid. The small air compressor at the front of the rig deck is to operate the pneumatic controls of the rig. However, this rig can easily be fitted for air and gas drilling operations. This type of drilling rig(already fitted with a mud pump), would require an auxiliary hook up to external air compressor(s) to carry out an air drilling operation. Such compressor systems and associated equipment for air drilling operations are usually provided by asubcontractor specializing in these operations.1.2 Circulation SystemsTwo types of circulation techniques can be used for either a mud drilling system or an air or gas drilling system. These are direct circulation and reverse circulation.1.2.1 Direct CirculationFigure 1-6 shows a schematic of a rotary drilling, direct circulation mud system that would be used on a typical double (and triple) drilling rig. Direct circulation requires that the drilling mud (or treated water) flow from the slush pump (or mud pump), through the standpipe on the mast, through the rotary hose, through the swivel and down the inside of the kelly, down the inside of the drill pipe and drill collars, through the drill bit (at the bottom of the borehole) into the annulus space between the outside of the drill string and the inside of the borehole. The drilling mud entrains the rock bit cuttings and then flows with the cuttings up the annulus to the surface wherethe cuttings are removed from the drilling mud by the shale shaker;the drilling mud is returned to the mud tanks (where the slush pump suction side picks up the drilling mud and recirculates the mud back into the well). The slush pumps used on double (and triple) drilling rigs are positive displacement piston typepumps.For single drilling rigs, the drilling fluid is often treated fresh water in a pit dug in the ground surface and lined with an impermeable plastic liner. A heavy duty hose is run from the suction side of the on-board mud pump (see Figure 1-5) to the mud pit. The drilling water is pumped from the pit, through the pump, through an on-board pipe system, through the rotary hose, through the hydraulic tophead drive, down the inside of the drill pipe, and through the drill bit to the bottom of the well.The drilling water entrains the rock cuttings from the advance of the bit and carries the cuttings to the surface via the annulus between the outside of the drill pipe and the inside of the borehole. At the surface the drilling fluid (water) from the annulus with entrained cuttings is returned to the pit where the rock cuttings are allowed to settle out to the bottom. The pumps on single drilling rigs are small positive displacement reciprocating piston or centrifugal type.Figure 1-7 shows a detailed schematic of a direct circulation compressed air drilling system that would be used on a typical double or triple drilling rig. Direct circulation requires that atmospheric air be compressed by the compressor and then forced through the standpipe on the mast, through the rotary hose, through the swivel and down the inside of the kelly, down the inside of the drill pipe and drill collars, through the drill bit (at the bottom of the borehole) into the annulus space between the outside of the drill string and the inside of the borehole. The compressed air entrains the rock bit cuttings and then flows with the cuttings up the annulus to the surface where the compressed air with the entrained cuttings exit the circulation system via the blooey line. The compressed air and cuttings exit the blooey line into a large pit dug into the ground surface (burn pit). These pits arelined with an impermeable plastic liner.In order to safely drill boreholes to these deposits heavily weighted drilling muds are utilized. The heavy fluid column in the annulus provides the high bottomhole pressure needed to balance (or overbalance) the high pore pressure of the deposit.Figure 1-13 also shows that the heavier the drilling fluid column in the annulus the more useful the drilling fluid is for controlling high pore pressure (the arrow points downward to increasing capability to control high pore pressure). There are limits to how heavy a drilling mud can be. As was discussed above, too heavy a drilling mud results in overbalanced drilling and this can result in formation damage. But there is a greater risk to overbalanced drilling. If the drilling mud is too heavy the rock formations in the openhole section can fracture. These fracturescould result in a loss of the circulating mud which could result in a blowout.In the past decade it has been observed that drilling with a circulation fluid that has a bottomhole pressure slightly below that of the pore pressure of the fluid deposit gives near optimum results. This type of drilling is denoted as underbalanced drilling. Underbalanced drilling allows the formation to produce fluid as the drilling progresses. This lowers or eliminates the risk of formation damage and eliminates the possibility of formation fracture and loss of circulation. In general, if the pore pressure of a deposit is high, an engineered adjustment to the drilling mud weight (with additives) can yield the appropriate drilling fluid to assure underbalanced drilling. However, if the pore pressure is not unusually high then air and gas drilling techniques are required to lighten the drilling fluid column in the annulus.Figure 1-14 shows a schematic of the various drilling fluids and their respective potential for keeping formation water out of the drilled borehole. Formation water is often encountered when drilling to a subsurface target depth. This water can be in fracture and pore structures of the rock formations above the target depth. If drilling mud is used as the circulating fluid, the pressure of the mud column in the annulus is usually sufficient to keep formation water from flowing out of the exposed rock formations in the borehole. The lighter drilling fluids have lower bottomhole pressure, thus, the lower the pressure on any water in the exposed fracture or pore structures in the drilled rock formations. Figure 1-14 shows that the heavier drilling fluids have agreater ability to cope with formation water flow into to the borehole(the arrow points downward to increasing control of formation water).1.3.2 Flow CharacteristicsA comparison is made of the flow characteristics of mud drilling and air drilling in an example deep well. A schematic of this example well is shown in Figure 1-15. The well is cased from the surface to 7,000 ft with API 8 5/8 inch diameter,28.00 lb/ft nominal, casing. The well has been drilled out of the casing shoe with a 7 7/8 inch diameter drill bit. The comparison is made for drilling at 10,000 ft. The drill string in the example well is made up of (bottom to top), 7 7/8 inch diameterdrill bit, ~ 500 ft of 6 3/4 inch outside diameter by 2 13/16 inch inside diameter drill collars, and ~ 9,500 ft of API 4 1/2 inch diameter, 16.60 lb/ft nominal, EUS135,NC 50, drill pipe.The mud drilling hydraulics calculations are carried out assuming the drilling mud weight is 10 lb/gal (75 lb/ft3), the Bingham mud yield is 10 lb/100 ft2, and the plastic viscosity is 30 centipose. The drill bit is assumed to have three 13/32 inch diameter nozzles and the drilling mud circulation flow rate is 300 gals/minute. Figure 1-16 shows the plots of the pressures in the incompressible drilling mud as a function of depth. In the figure is a plot of the pressure inside the drill string. The pressure is approximately 1,400 psig at injection and 6,000 psig at the bottom of the inside of the drill string just above the bit nozzles. Also in the figure is a plot of the pressure in theannulus. The pressure is approximately 5,440 psig at the bottom of the annulus justbelow the bit nozzles and 0 psig at the top of the annulus at the surface.The pressures in Figure 1-16 reflects the hydrostatic weight of the column of drilling mud and the resistance to fluid flow from the inside surfaces of the drill string and the surfaces of the annulus. This resistance to flow results in pressure losses due to friction. The total losses due to friction are the sum of pipe wall, openhole wall, and drill bit orifice resistance to flow. This mud drilling exampleshows a drilling string design which has a open orifice or large diameter nozzle openings in the drill bit. This is reflected by the approximate 700 psi loss through the drill bit. Smaller diameter nozzles would yield higher pressure losses across the drill bit and higher injection pressures at the surface.The air drilling calculations are carried out assuming the drilling operation is atsea level. There are two compressors capable of 1,200 scfm each, so the total volumetric flow rate to the drill string is 2,400 scfm. The drill bit is assumed tohave three open orifices (~0.80 inches diameter). Figure 1-17 shows the plots of the pressures in the compressible air as a function of depth. In the figure is a plot of the pressure inside the drill string. The pressure is approximately 260 psia at injection and 270 psia at the bottom of the inside of the drill string just above the bit orifices. Also in the figure is a plot of the pressure in the annulus. The pressure is approximately 260 psia at the bottom of the annulus just below the bit orifices and 14.7 psia at the end of the blooey line at the surface (top of the annulus).As in the mud drilling example, the pressures in Figure 1-17 reflects the hydrostatic weight of the column of compressed air and the resistance to air flow from the inside surfaces of the drill string and the surfaces of the annulus. This resistance to flow results in pressure losses due to friction. In this example the fluid is compressible. Considering the flow inside the drill string, the hydrostatic weight of the column dominates the flow (relative to friction losses) and this results in theinjection pressure at the surface being less than the pressure at the bottom of the drillstring (inside the drill string above the bit open orifices).Figure 1-18 shows the plots of the temperature in the incompressible drilling mud as a function of depth. The geothermal gradient for this example is 0.01˚F/ft. Subsurface earth is nearly an infinite heat source. The drilling mud in a mud drilling circulation system is significantly more dense than compressed air or other gases. Thus, as the drilling mud flows down the drill string and up through the annulus to the surface, heat is transferred from the rock formations through the surfaces of the borehole, through the drilling mud in the annulus, through the steel drill string to the drilling mud inside. It is assumed that the drilling mud is circulatedinto the top of the drill string at 60˚F.As the drilling mud flows down the inside of the drill string the drilling mud heats up as heat flows from the higher temperature rock formations and drilling mudi n the annulus. At the bottom of the well the drilling mud temperature reaches the bott omhole temperature of 160˚F. The drilling mud flowing up the annulus (usually laminar flow conditions) is heated by the geothermal heat in the rock formation.The heated drilling mud flowing in the annulus heats the outside of the drilling string and this in turn heats the drilling mud flowing down the drill string. Because of its good heat storage capabilities, the drilling mud exits the annulus with a temperature greater than the injection temperature but less than the bottomhole temperature. In this example, the temperature of the drilling mud exiting the annulus is approximately130˚F.Figure 1-19 shows the plots of the temperature in the compressible air drilling fluid as a function of depth. The compressed air drilling fluid is significantly less dense than drilling mud. Thus, compressed air has poor heat storage qualities relative to drilling mud. Also, compressed air flowing in the drilling circulation system is flowing rapidly and therefore the flow is turbulent inside the drill string and in the annulus. Turbulent flow is very efficient in transferring heat from the surface of the borehole to the flowing air in the annulus and in the inside the drill string. Assuming the compressed air entering the top of the drill string is at 60˚F the heat rapidly transfers to heat (or cool) the air flow in the well. Under these conditions the compressed air exiting the annulus has approximately the same temperature as the air entering the top of the drill string.Figure 1-19 shows that the temperature of the compressed air at any position in the borehole is approximately the geothermal temperature at that depth. Thus, the temperature of the flowing air at the bottom of the hole is the bottomhole temperature of 160˚F. There is some local coolin g of the air as it exits the open orifices of the drill bit at the bottom of the hole. This cooling effect is more pronounced if nozzles are used in the drill bit (when using a downhole motor ). This cooling effect is known as the Joule-Thomson effect and can be estimated [8]. However, it is assumed that this effect is small and that the air flow returns very quickly to the bottomhole geothermal temperature.Figure 1-20 shows the plot of the specific weight of drilling mud for thisexample calculation. The drilling mud is incompressible and, therefore, the specificweight is 75 lb/ft3 (or 10 lb/gal) at any position in the circulation system. There is some slight expansion of the drilling mud due to the increase in temperature as the drilling mud flows to the bottom of the well. This effect is quite small and is neglected in these engineering calculations.Figure 1-21 shows the plot of the specific weight of the compressed air in this example. The compressed air is injected into the top of the drill string at a specific weight of 1.3 b/ft3 (at a pressure of 260 psia and temperature of 60˚F). As the air flows down the drill string the pressure remains approximately the same. At the bottom of the drill string the specific weight is 1.2 lb/ft3 (at a pressure of 270 psia anda temperature of 160˚F). The compressed air exits the drill bit orifices into the bottom of the annulus (bottom of the well) with a specific weight of 1.1 lb/ft3 (at a pressure of 260 psia and a temperature of 160˚F).第一章:引言此书来源于工程实践,适用于工程师,地球科学家,以及现代旋转钻探的工程技术人员。
中国石油大学(华东)现代远程教育毕业设计(论文)题目:一口井的设计学习中心:胜利职业学院教学服务站年级专业:网络12秋石油工程(钻井)学生姓名:学号:指导教师:职称:教授导师单位:山东胜利职业学院中国石油大学(华东)远程与继续教育学院论文完成时间:2014 年月日摘要为了培养一口井钻井设计的能力,解决设计中遇到的实际问题,培养和锻炼独立思考和解决问题的能力和习惯,为以后工作和进一步学习打下坚实的基础,在老师的指导下进行此次论文设计。
本论文主要包括五部分,分别为地质设计、钻机主要设备介绍,工程设计、钻井液设计、钻井液设计及安全环境管理。
地质设计部分主要是地质剖面设计和钻井工程设计的主要地质依据;钻机主要设备介绍钻井用的各种机械,并选择该井所用的钻井设备;钻井液主要介绍钻井液性能、基本配方及维护处理要求;工程设计部分着重论述井身结构剖面设计、钻柱强度设计、水利参数设计、固井设计、完井设计等;健康、安全与环境管理主要介绍它们各自的要求。
通过本次论文的成功顺利完成,使自己对大学所学知识进行了梳理和应用,并得到了进一步巩固,掌握了对一口井工程设计的基本过程,为以后走向工作岗位和进一步学习打下了基础。
关键词:高890-斜13;钻井;注水井;设计ABSTRACTIn order to cultivate a well ability of drilling design, solve the problems encountered in the design of training and tempering, independent thinking and problem solving ability and habits, and lay a solid foundation for further study,I designed this paper under the guidance of teachers.This thesis mainly includes five parts, respectively for main equipment design, drilling geological drilling, engineering design, design, drilling and safe environment design. Geological design part mainly geological section and drilling engineering design of the main geological basis, Main equipments introduced drilling rig all kinds of machinery, and the choice of drilling equipment, Drilling fluid properties, mainly introduced the basic formula and maintenance requirements processing, Engineering design part focuses on well profile design and drillstrings strength design, parameter design and cementing design, completion design; etc. Health, safety and environmental management mainly introduces their requirements.Through the prosses of completing this paper, I not only further carded the university knowledge and the ability of application, but masted the basic process of an oil-hole engineering designing, and laid a foundation for further study jobs.Keywords:High 890- cable 13;water injection well;Engineering Design目录前言 (1)第一章地质资料 (2)1.地质概况 (2)2.施工要求及注意事项 (6)3.附图及附表 (8)第二章钻机主要设备 (11)1.钻机介绍 (11)2.本井钻机选型 (14)第三章钻井液设计 (20)1.钻井液概况 (20)2.本井钻井液设计 (25)第四章钻井工程设计 (30)1.井身结构设计 (30)2.轨道设计 (31)3.钻具组合设计 (34)4.钻头选择 (40)6.油气井压力控制 (43)7.油气层保护 (50)8.固井设计 (51)9.取心设计 (58)10.完井设计 (58)第五章健康、安全与环境管理要求 (65)结论 (70)致谢 (71)参考文献 (72)前言“一口井设计”是对四年来所学知识的全面综合应用,是检验所学知识牢固性的依据。
通过这次设计培养了自己独立思考,查阅资料和解决问题的能力,树立了信心,为今后工作打下坚实的基础,同时也是做好今后工作的前提和保障。
因此,充分认识这一教学环节是很必要的,是非常重要的。
本次论文选择高890-斜13位于正理庄油田高890-3井井口方位98°距离353m,此位于济阳坳陷东营凹陷博兴洼陷带正理庄-樊家鼻状构造地带东部高890-1块。
一开地层胶结疏松,井径大,钻屑携带困难钻井液体系为膨润土浆。
在近一学期的毕业设计中,遇到的一个个问题,通过请教老师和同学,查找相关资料而逐步得到解决。
每一给细节问题的解决都是设计成功的保证,是保证设计成功的前提。
这次毕业论文的成功设计是与各位老师的悉心教导分不开的,尤其是李效新老师,为了达到设计的准确性,每一个微小细节,李老师都不辞劳苦的为我们查阅资料,并结合自己的经验,倾囊相授。
借此,对所有的指导老师表示衷心的感谢。
由于本人水平有限,知识掌握不够深入,加上时间仓促,设计中难免有疏漏和贻误之处,敬请读者批评指正。
谢谢!第一章地质资料钻井是石油、天然气勘探与开发的主要手段。
钻井工程质量的优劣和钻井速度的快慢,直接关系到钻井成本的高低、油田勘探开发的综合经济效益及石油工业发展速度。
钻井设计设计前提是掌握给经所在区域的地质资料,包括地层岩石、土壤类型及其工程力学性质、地质结构、地层中流体情况及地层情况等等。
在一个地区钻井前,充分认识和了解该地区的工程地质资料是进行一口井设计的重要基础。
1. 地质设计概况1.1 基本数据1.1.1 井号:高890-斜13。
1.1.2 井位:1)井口地理位置:位于正理庄油田高890-3井井口方位98°距离353m,2)构造位置:此位于济阳坳陷东营凹陷博兴洼陷带正理庄-樊家鼻状构造地带东部高890-1块3)井位坐标:井口纵X : 4111 308.37m 横Y : 20 585 309.65m靶点A 纵X : 4111 430.00m 横Y : 20 585 360.00m1.1.3 井别:注水井(新区产能建设井、斜井)。
1.1.4 设计井深:2685.00m。
A靶点垂深2580.00米,1.1.5 完钻层位:沙四上纯下亚段。
1.1.6 完钻原则:定深完钻。
1.1.7 钻探目的:开发沙四上油藏。
1.1.8 下套管原则:表层套管:(1)直径273.1mm 钢级J55 壁厚8.89mm 具体下入深度执行钻井工程设计。
(2)水泥返高;返至地面。
油层套管(1)直径139.7mm 钢级P110 壁厚9.17mm 油层套管,阻流环下过最下一层又层、油水同层、含油水层底界以下30m,具体下入深度测井后由地质局测定。
(2)短套管:预计下入短套管1根,具体下入深度测井后确定。
(3)水泥返高:反至地面,满足使用低密度泡沫水泥浆古井。
1.2地质分层数据1.2.1 设计井及依据井地层分层对比与岩性提示见表1-1:表1—1 地质分层数据_____代表整合﹏﹏代表不整合1.2.2 邻井测井及钻探成果:高890—3井井口位于设计井井口方位:278°距离:353m。
A靶点位于设计井A靶方位:259°距离:407m。
测井解释:纯下亚段:2550.5~2598.8m 油层 6.9m/3层高890 井井口位于设计井井口方位:340°距离827mA靶点位于设计井A靶方位:334°距离734m。
综合解释:纯下亚段:12594.2~2601.9m 油层 1.3m∕1层油水同层 4.8m/1层1.3 取资料要求地球物理测井(具体测井项目见附表)(1)完钻测井生产井砂泥岩剖面测井系列组合1:200 井段:自井底测至1500m标准1:500 井段:自人工井底测至井口(2)固井取资料要求按一般开发井要求执行1.4 邻井资料1.4.1 邻井实测压力成果表1—2 邻井实测压力成果据高斜890井的资料,地层压力为31.55Mpa,饱和压力7.2Mpa,油气比33.8m3 /t 1.4.2 邻井钻井液使用情况表1—3 临井钻井液使用情况储层孔隙度15.2%,渗透率6.1×10-3 um2,地下原油粘度2.1mPa.s,地面原油粘度12.6mPa.s。
储层敏感性:非速敏、弱盐敏、非酸敏、弱碱敏。
1.4.3 钻井液类型及性能使用原则要求(1)钻井液类型:聚合物润滑防塌钻井液体系;(2)钻井液性能:1.井段:井口~1008m;相对密度:1.05~1.152. 井段:1800m~井底;相对密度:1.15~1.201.5故障提示及注意事项1.5.1邻井注水情况。
目前附近300m内无注水井。
开钻前井队要详细了解附近有无新注水井,若有新注水井,则有关停注事宜按胜油发(90)第269号文件执行1.5.2本井故障提示:1)馆陶组及以上地层成岩性差,防坍塌,防漏2)钻遇砂岩地层、不整合面及断层面附近,防井漏3)钻入油气层段,防井喷2. 施工要求及注意事项2.1 工程施工(1)要求使用失水率下于5ml的聚合物润滑防坍塌钻井液体系钻进和测井。
钻井液相对密度满足近平衡钻进要求。
钻井过程中要加强油层保护,防止污染。
(2)钻入油、气层段,注意观察钻井液变化,若槽面有油气显示,及时向甲方汇报,并请示是否加重,可先加重,后汇报,保证安全。
(3)钻开油气层后,每次起钻前,要充分循环好钻井液;起钻时要控制起钻速度,防抽吸引起的井喷。