高一数学上册课堂练习题21
- 格式:doc
- 大小:91.00 KB
- 文档页数:7
章末检测时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )中元素的个数为( )A .1B .2C .3D .4解析:A ={1,2},B ={x |x =2a ,a ∈A }={2,4}∴A ∪B ={1,2,4},∴∁U (A ∪B )={3,5}.答案:B2.设集合A ={a ,b },B ={a +1,6},且A ∩B ={1},则A ∪B =( )A .{1,6}B .{0,6}C .{0,1}D .{0,1,6}解析:∵A ∩B ={1},∴1∈A,1∈B ,∴a +1=1,∴a =0,b =1.∴A ={0,1},B ={1,6},∴A ∪B ={0,1,6}.答案:D3.已知f (x )=ax +b x (a ,b 为常数),且f (1)=1,则f (-1)=( )A .1B .-1C .0D .不能确定解析:∵f (x )是奇函数,∴f (-1)=-f (1)=-1.答案:B4.f (x )=⎩⎨⎧x 2-2x ,x ≥0,-x ,x <0,则f (3)=( ) A .3B .-3C .0D .6解析:∵3≥0,∴f (3)=32-2×3=3.答案:A5.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+2xy ,f (1)=2,则f (3)等于( )A .10B .6C .12D .16解析:令x =y =1得f (2)=f (1)+f (1)+2=6,令x =2,y =1得f (3)=f (1)+f (2)+2×2=2+6+4=12.答案:C6.若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( ) A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1) 解析:要使g (x )有意义,则⎩⎨⎧0≤2x ≤2,x -1≠0,解得0≤x <1,故定义域为[0,1),选B. 答案:B 7.设f (x )=⎩⎨⎧ 1,x >0,0,x =0,-1,x <0,g (x )=⎩⎨⎧ 1,x 为有理数,0,x 为无理数, 则f (g (π))的值为( )A .1B .0C .-1D .π解析:∵g (π)=0,∴f [g (π)]=f (0)=0,选B.答案:B8.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .4解析:由已知得⎩⎨⎧ a 2-4a =-2,b 2-4b +1=-1,⇒⎩⎨⎧a 2-4a +2=0,b 2-4b +2=0, ∴a ,b 为方程x 2-4x +2=0两个根,∴a +b =4.答案:D9.已知集合A ={x |-2≤x ≤7},集合B ={x |m +1<x <2m -1},若A ∪B =A ,则实数m 的取值范围是( )A .-3≤m ≤4B .-3<m <4C .2<m ≤4D .m ≤4解析:由题设可知B ⊆A .(1)当B =∅,即m +1≥2m -1,m ≤2时满足题设 (2)B ≠∅时,⎩⎨⎧ 2m -1>m +1,m +1≥-2,2m -1≤7,解得2<m ≤4 综上所述,m 的取值范围是m ≤4. 答案:D10.y =1x -2+1在[3,4]的最大值为( ) A .2 B.32C.52 D .4解析:y =1x -2+1在[3,4]上是减函数, ∴y 的最大值为13-2+1=2. 答案:A11.奇函数f (x )在(0,+∞)上的解析式是f (x )=x (1-x ),则在(-∞,0)上,函数f (x )的解析式是( )A .f (x )=-x (1-x )B .f (x )=x (1+x )C .f (x )=-x (1+x )D .f (x )=x (x -1)解析:当x ∈(-∞,0)时,-x ∈(0,+∞),由于函数f (x )是奇函数,故f (x )=-f (-x )=x (1+x ).答案:B12.若函数f (x )是奇函数,且在(-∞,0)上是增函数,又f (-2)=0,则x ·f (x )<0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(2,+∞)解析:因为函数f (x )是奇函数,且在(-∞,0)上是增函数,又f (-2)=0,所以可画出符合条件的奇函数f (x )的图象,如图所示.因为x ·f (x )<0,所以⎩⎨⎧ x >0f (x )<0或⎩⎨⎧ x <0f (x )>0,结合图象,x 的范围是(-2,0)∪(0,2). 答案:A二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上)13.已知f (2x +1)=x 2,则f (5)=________.解析:f (5)=f (2×2+1)=22=4.答案:414.已知f (x )为奇函数,g (x )=f (x )+9且g (-2)=3,则f (2)=________.解析:g (-2)=f (-2)+9=3,∴f (-2)=-6,又∵f (x )是奇函数,∴f (2)=-f (-2)=6.答案:615.已知U ={0,2,3,4},A ={x ∈U |x 2+mx =0},若∁U A ={2,3},则实数m =________.解析:由题设可知A ={0,4},故0,4是方程x 2+mx =0的两根,∴x 1+x 2=4=-m ,∴m =-4.答案:-416. 已知f (x )=⎩⎨⎧ (3-a )x -4a ,x <1,(x -1)2,x ≥1,若f (x )是R 上的增函数,则实数a 的范围是________.解析:⎩⎨⎧3-a >0(3-a )×1-4a ≤(1-1)2解得35≤a <3.答案:⎣⎢⎡⎭⎪⎫35,3 三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知集合A ={-2},B ={x |ax +1=0,a ∈R},B ⊆A ,求a 的值.解析:∵B ⊆A ,A ≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,B ={-1a },∴-1a ∈A ,即有-1a =-2,得a =12.综上所述,a =0或a =12.18.(本小题满分12分)已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x ,求f (x )在R 上的解析式f (x ).解析:设x <0,则-x >0,∵f (x )是定义在R 上的偶函数,f (x )=f (-x )=(-x )2-2(-x )=x 2+2x ,∴f (x )=⎩⎨⎧x 2-2x ,x ≥0x 2+2x ,x <0. 19.(本小题满分12分)某市乘出租车计费规定:2公里以内5元,超过2公里不超过8公里的部分按每公里1.6元计费,超过8公里以后按每公里2.4元计费.若甲、乙两地相距10公里,则乘出租车从甲地到乙地共需要支付乘车费为多少元? 解析:设乘出租车走x 公里,车费为y 元,由题意得y =⎩⎨⎧ 5,0<x ≤25+1.6×(x -2),2<x ≤8,14.6+2.4×(x -8),x >8即y =⎩⎨⎧ 5,0<x ≤21.8+1.6x ,2<x ≤8,2.4x -4.6,x >8因为甲、乙两地相距10公里,即x =10>8,所以车费y =2.4×10-4.6=19.4(元).所以乘出租车从甲地到乙地共需要支付乘车费为19.4元.20.(本小题满分12分)奇函数f (x )是定义在(-1,1)上的减函数,且f (1-a )+f (2a -1)<0,求实数a 的取值范围.解析:由f (1-a )+f (2a -1)<0,得f (1-a )<-f (2a -1),∵f (x )是奇函数,∴f (1-a )<f (1-2a )又∵f (x )是定义在(-1,1)上的减函数,∴⎩⎨⎧ -1<1-a <1-1<1-2a <1,1-a >1-2a解得0<a <1, 即所求实数a 的取值范围是0<a <1.21.(本小题满分13分)已知f (x )是R 上的奇函数,当x >0时,解析式为f (x )=2x +3x +1. (1)求f (x )在R 上的解析式;(2)用定义证明f (x )在(0,+∞)上为减函数.解析:(1)设x <0,则-x >0,所以f (-x )=-2x +3-x +1. 又因为f (x )是R 上的奇函数,所以f (-x )=-f (x )=-2x +3-x +1,所以f (x )=-2x +3x -1. 又奇函数在0点有意义,所以f (0)=0,函数的解析式为f (x )=⎩⎪⎨⎪⎧ -2x +3x -1,x <0,0,x =0,2x +3x +1,x >0.(2)设∀x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=2x 1+3x 1+1-2x 2+3x 2+1=(2x 1+3)(x 2+1)-(2x 2+3)(x 1+1)(x 1+1)(x 2+1)=-x 1+x 2(x 1+1)(x 2+1). 因为x 1,x 2∈(0,+∞),x 1<x 2,所以x 1+1>0,x 2+1>0,x 2-x 1>0,所以f (x 1)-f (x 2)>0,所以f (x 1)>f (x 2),所以函数f (x )在(0,+∞)上为减函数.22.(本小题满分13分)设函数f (x )的定义域为R ,并且图象关于y 轴对称,当x ≤-1时,y =f (x )的图象是经过点(-2,0)与(-1,1)的射线,又在y =f (x )的图象中有一部分是顶点在(0,2),且经过点(1,1)的一段抛物线.(1)试求出函数f (x )的表达式,作出其图象;(2)根据图象说出函数的单调区间,以及在每一个单调区间上函数是增函数还是减函数.解析:(1)当x ≤-1时,设f (x )=ax +b (a ≠0),由已知得⎩⎨⎧ -2a +b =0,-a +b =1,解得⎩⎨⎧ a =1,b =2,所以f (x )=x +2(x ≤-1). 由于函数图象关于y 轴对称,则由x ≥1,得-x ≤-1,f (-x )=-x +2, 且f (-x )=f (x ),所以f (x )=-x +2(x ≥1).当-1<x <1时,设f (x )=mx 2+2,由已知得m =-1,即f (x )=-x 2+2(-1<x <1),所以函数f (x )的表达式为f (x )=⎩⎨⎧ x +2,x ≤-1,-x 2+2,-1<x <1,-x +2,x ≥1,图象如图所示.(2)从图象可看出,函数f (x )的单调区间有(-∞,-1],(-1,0],(0,1),[1,+∞). 其中,f (x )在区间(-∞,-1]和(-1,0]上是增函数;在区间(0,1)和[1,+∞)上是减函数.。
高一数学上册《集合》课后练习题数学是一个要求大家严谨对待的科目,有时一不小心一个小小的小数点都会影响最后的结果。
下文就为大家送上了集合课后练习题,希望大家认真对待。
一、填空题.(每小题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 },A= {3 ,4 ,5 },B= {1 ,3 ,6 },那么集合{ 2 ,7 ,8}是( )2 . 如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满足{1,2,3} M {1,2,3,4,5,6}的集合M的个数是( )A.8B.7C.6D.56. 集合A={a2,a+1,-1},B={2a-1,| a-2 |,3a2+4},A∩B={-1},则a的值是( )A.-1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则下列结论正确的是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x-1},A={(x,y)| =3},则A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5- x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y2-1},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题满分10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a 的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx2-4x+m-1>0 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,-1}1或-1或016、x=-1 y=-117、解:A={0,-4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={-4}时,把x=-4代入得a=1或a=7.当a=1时,B={0,-4}≠{-4},∴a≠1.当a=7时,B={-4,-12}≠{-4},∴a≠7.(4)若B={0,-4},则a=1 ,当a=1时,B={0,-4},∴a=1 综上所述:a18、.解:由已知,得B={2,3},C={2,-4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2-ax+a2-19=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,-4 A,由3∈A,得32-3a+a2-19=0,解得a=5或a=-2?当a=5时,A={x|x2-5x+6=0}={2,3},与2 A矛盾;当a=-2时,A={x|x2+2x-15=0}={3,-5},符合题意.∴a=-2.19、解:A={x|x2-3x+2=0}={1,2},由x2-ax+3a-5=0,知Δ=a2-4(3a-5)=a2-12a+20=(a-2)(a-10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1-a+3a-5=0,得a=2,此时B={x|x2-2x+1=0}={1} A;若x=2,则4-2a+3a-5=0,得a=1,此时B={2,-1} A.综上所述,当2≤a3,即,方程的两根分别为x=-2和x=3,由一元二次方程由根与系数的关系,得一般说来,“教师”概念之形成经历了十分漫长的历史。
新教材人教A版高中数学必修第一册全册课时练习1.1.1集合的概念 (2)1.1.2集合的表示 (3)1.2集合间的基本关系 (5)1.3.1并集与交集 (7)1.3.2补集及集合运算的综合应用 (8)1.4.1充分条件与必要条件 (11)1.4.2充要条件 (12)1.5.1全称量词与存在量词 (13)1.5.2全称量词命题与存在量词命题的否定 (14)2.1等式性质与不等式性质 (16)2.2.1基本不等式 (17)2.2.2利用基本不等式求最值 (18)2.3.1二次函数与一元二次方程、不等式 (19)2.3.2一元二次不等式的应用 (20)3.1.1.1函数的概念 (21)3.1.1.2函数概念的应用 (22)3.1.2.1函数的表示法 (24)3.1.2.2分段函数 (25)3.2.1.1函数的单调性 (26)3.2.2.1函数奇偶性的概念 (30)3.2.2.2函数奇偶性的应用 (32)3.3幂函数 (36)3.4函数的应用(一) (37)4.1.1根式 (40)4.1.2指数幂及其运算 (41)4.2.1指数函数及其图象性质 (43)4.2.2指数函数的性质及其应用 (44)4.3.1对数的概念 (47)4.3.2 对数的运算 (48)4.4.1对数函数及其图象 (49)4.2.2对数函数的性质及其应用 (51)4.4.3不同函数增长的差异 (53)4.5.1函数的零点与方程的解 (54)4.5.2用二分法求方程的近似解 (57)4.5.3函数模型的应用 (58)5.1.1任意角 (60)5.1.2弧度制 (61)5.2.1三角函数的概念 (62)5.2.2同角三角函数的基本关系 (64)5.3.1诱导公式二、三、四 (66)5.3.2诱导公式五、六 (67)5.4.1正弦函数、余弦函数的图象 (69)5.4.2.1正弦函数、余弦函数的性质(一) ...................................................................... 71 5.4.2.2正弦函数、余弦函数的性质(二) ...................................................................... 73 5.4.3正切函数的性质与图象 ........................................................................................ 75 5.5.1.1两角差的余弦公式 ............................................................................................. 76 5.5.1.2两角和与差的正弦、余弦公式 ......................................................................... 78 5.5.1.3两角和与差的正切公式 ..................................................................................... 80 5.5.1.4二倍角的正弦、余弦、正切公式 ..................................................................... 81 5.5.2.1简单的三角恒等变换 ......................................................................................... 83 5.5.2.2三角恒等变换的应用 ......................................................................................... 84 5.6.1函数y =A sin(ωx +φ)的图象(一) .......................................................................... 86 5.6.2函数y =A sin(ωx +φ)的图象(二) .......................................................................... 88 5.7三角函数的应用 . (90)1.1.1集合的概念1.已知a ∈R ,且a ∉Q ,则a 可以为( ) A . 2 B .12 C .-2 D .-13[解析]2是无理数,所以2∉Q ,2∈R .[答案] A2.若由a 2,2019a 组成的集合M 中有两个元素,则a 的取值可以是( ) A .a =0 B .a =2019 C .a =1D .a =0或a =2019[解析] 若集合M 中有两个元素,则a 2≠2019a .即a ≠0,且a ≠2019.故选C . [答案] C3.下列各组对象能构成集合的有( )①接近于0的实数;②小于0的实数;③(2019,1)与(1,2019);④1,2,3,1. A .1组 B .2组 C .3组D .4组[解析] ①中“接近于0”不是一个明确的标准,不满足集合中元素的确定性,所以不能构成集合;②中“小于0”是一个明确的标准,能构成集合;③中(2019,1)与(1,2019)是两个不同的对象,是确定的,能构成集合,注意该集合有两个元素;④中的对象是确定的,可以构成集合,根据集合中元素的互异性,可知构成的集合为{1,2,3}.[答案] C4.若方程ax2+ax+1=0的解构成的集合中只有一个元素,则a为( )A.4 B.2C.0 D.0或4[解析] 当a=0时,方程变为1=0不成立,故a=0不成立;当a≠0时,Δ=a2-4a =0,a=4,故选A.[答案] A5.下列说法正确的是________.①及第书业的全体员工形成一个集合;②2019年高考试卷中的难题形成一个集合;③方程x2-1=0与方程x+1=0所有解组成的集合中共有3个元素;④x,3x3,x2,|x|形成的集合中最多有2个元素.[解析] ①及第书业的全体员工是一个确定的集体,能形成一个集合,正确;②难题没有明确的标准,不能形成集合,错误;③方程x2-1=0的解为x=±1,方程x+1=0的解为x=-1,由集合中元素的互异性知,两方程所有解组成的集合中共有2个元素1,-1,故错误;④x=3x3,x2=|x|,故正确.[答案] ①④1.1.2集合的表示1.用列举法表示集合{x|x2-2x+1=0}为( )A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}[解析] ∵x2-2x+1=0,即(x-1)2=0,∴x=1,选B.[答案] B2.已知集合A={x∈N*|-5≤x≤5},则必有( )A.-1∈A B.0∈AC.3∈A D.1∈A[解析] ∵x∈N*,-5≤x≤5,∴x=1,2,即A={1,2},∴1∈A,选D. [答案] D3.一次函数y =x -3与y =-2x 的图象的交点组成的集合是( ) A .{1,-2} B .{x =1,y =-2} C .{(-2,1)}D .{(1,-2)}[解析] 由⎩⎪⎨⎪⎧y =x -3,y =-2x 得⎩⎪⎨⎪⎧x =1,y =-2,∴交点为(1,-2),故选D.[答案] D4.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________. [解析] 当t =-2时,x =4; 当t =2时,x =4; 当t =3时,x =9; 当t =4时,x =16; ∴B ={4,9,16}. [答案] {4,9,16}5.选择适当的方法表示下列集合: (1)绝对值不大于2的整数组成的集合;(2)方程(3x -5)(x +2)=0的实数解组成的集合; (3)一次函数y =x +6图象上所有点组成的集合.[解] (1)绝对值不大于2的整数是-2,-1,0,1,2,共有5个元素,则用列举法表示为{-2,-1,0,1,2}.(2)方程(3x -5)(x +2)=0的实数解仅有两个,分别是53,-2,用列举法表示为⎩⎨⎧⎭⎬⎫53,-2. (3)一次函数y =x +6图象上有无数个点,用描述法表示为{(x ,y )|y =x +6}.课内拓展 课外探究 集合的表示方法1.有限集、无限集根据集合中元素的个数可以将集合分为有限集和无限集.当集合中元素的个数有限时,称之为有限集;而当集合中元素的个数无限时,则称之为无限集.当集合为有限集,且元素个数较少时宜采用列举法表示集合;对元素个数较多的集合和无限集,一般采用描述法表示集合.对于元素个数较多的集合或无限集,其元素呈现一定的规律,在不产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.【典例1】 用列举法表示下列集合: (1)正整数集;(2)被3整除的数组成的集合.[解] (1)此集合为无限集,且有一定规律,用列举法表示为{1,2,3,4,…}.(2)此集合为无限集,且有一定规律,用列举法表示为{…,-6,-3,0,3,6,…}.[点评] (1){1,2,3,4,…}一般不写成{2,1,4,3,…};(2)此题中的省略号不能漏掉.2.集合含义的正确识别集合的元素类型多是以数、点、图形等形式出现的.对于已知集合必须弄清集合元素的形式,特别是对于用描述法给定的集合要弄清它的代表元素是什么,代表元素有何属性(如表示数集、点集等).【典例2】已知下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.问:它们是否为同一个集合?它们各自的含义是什么?[解] ∵三个集合的代表元素互不相同,∴它们是互不相同的集合.集合①{x|y=x2+1}的代表元素是x,即满足条件y=x2+1中的所有x,∴{x|y=x2+1}=R.集合②{y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,∴{y|y =x2+1}={y|y≥1}.集合③{(x,y)|y=x2+1}的代表元素是(x,y),可认为是满足条件y=x2+1的实数对(x,y)的集合,也可认为是坐标平面内的点(x,y),且这些点的坐标满足y=x2+1.∴{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}.[点评] 使用特征性质描述来表示集合时,首先要明确集合中的元素是什么,如本题中元素的属性都与y=x2+1有关,但由于代表元素不同,因而表示的集合也不一样.1.2集合间的基本关系1.下列四个关系式:①{a,b}⊆{b,a};②∅={∅};③∅{0};④0∈{0}.其中正确的个数是( )A.4 B.3C.2 D.1[解析] 对于①,任何集合是其本身的子集,正确;对于②,相对于集合{∅}来说,∅∈{∅},也可以理解为∅⊆{∅},错误;对于③,空集是非空集合的真子集,故∅{0}正确;对于④,0是集合{0}的元素,故0∈{0}正确.[答案] B2.集合A={x|-1≤x<2,x∈N}的真子集的个数为( )A .4B .7C .8D .16[解析] A ={-1,0,1},其真子集为∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},共有22-1=4(个).[答案] A3.已知集合A ={3,-1},集合B ={|x -1|,-1},且A =B ,则实数x 等于( ) A .4 B .-2 C .4或-2D .2[解析] ∵A =B ,∴|x -1|=3,解得x =4或x =-2. [答案] C4.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为________.[解析] 集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.[答案] 65.设集合A ={x |-1≤x ≤6},B ={x |m -1≤x ≤2m +1},已知B ⊆A . (1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.[解] (1)当m -1>2m +1,即m <-2时,B =∅,符合题意. 当m -1≤2m +1,即m ≥-2时,B ≠∅. 由B ⊆A ,借助数轴(如图),得⎩⎪⎨⎪⎧m -1≥-1,2m +1≤6,解得0≤m ≤52.综上所述,实数m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <-2或0≤m ≤52. (2)当x ∈N 时,A ={0,1,2,3,4,5,6}, ∴集合A 的子集的个数为27=128.1.3.1并集与交集1.设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B =( ) A .{2} B .{2,3} C .{-1,2,3}D .{1,2,3,4}[解析] 因为A ∩C ={1,2},所以(A ∩C )∪B ={1,2,3,4},选D. [答案] D2.集合P ={x ∈Z |0≤x <3},M ={x ∈R |x 2≤9},则P ∩M 等于( ) A .{1,2} B .{0,1,2} C .{x |0≤x ≤3}D .{x |0≤x <3}[解析] 由已知得P ={0,1,2},M ={x |-3≤x ≤3}, 故P ∩M ={0,1,2}. [答案] B3.已知集合A ={x |x >2或x <0},B ={x |-5<x <5},则( ) A .A ∩B =∅ B .A ∪B =R C .B ⊆AD .A ⊆B[解析] ∵A ={x |x >2或x <0},B ={x |-5<x <5},∴A ∩B ={x |-5<x <0或2<x <5},A ∪B =R .故选B.[答案] B4.设集合M ={x |-3≤x <7},N ={x |2x +k ≤0},若M ∩N ≠∅,则实数k 的取值范围为________.[解析] 因为N ={x |2x +k ≤0}=⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-k 2,且M ∩N ≠∅,所以-k2≥-3⇒k ≤6.[答案] k ≤65.已知集合M ={x |2x -4=0},集合N ={x |x 2-3x +m =0}, (1)当m =2时,求M ∩N ,M ∪N . (2)当M ∩N =M 时,求实数m 的值.[解] (1)由题意得M ={2}.当m =2时,N ={x |x 2-3x +2=0}={1,2}, 则M ∩N ={2},M ∪N ={1,2}.(2)∵M ∩N =M ,∴M ⊆N .∵M ={2},∴2∈N . ∴2是关于x 的方程x 2-3x +m =0的解,即4-6+m=0,解得m=2.由(1)知,M∩N={2}=M,适合题意,故m=2.1.3.2补集及集合运算的综合应用1.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}[解析] ∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1}.故选D.[答案] D2.已知三个集合U,A,B之间的关系如图所示,则(∁U B)∩A=( )A.{3} B.{0,1,2,4,7,8}C.{1,2} D.{1,2,3}[解析] 由Venn图可知U={0,1,2,3,4,5,6,7,8},A={1,2,3},B={3,5,6},所以(∁U B)∩A={1,2}.[答案] C3.设全集U={x∈N|x≤8},集合A={1,3,7},B={2,3,8},则(∁U A)∩(∁U B)=( )A.{1,2,7,8} B.{4,5,6}C.{0,4,5,6} D.{0,3,4,5,6}[解析] ∵U={x∈N|x≤8}={0,1,2,3,4,5,6,7,8},∴∁U A={0,2,4,5,6,8},∁U B={0,1,4,5,6,7},∴(∁U A)∩(∁U B)={0,4,5,6}.[答案] C4.全集U={x|0<x<10},A={x|0<x<5},则∁U A=________.[解析] ∁U A={x|5≤x<10},如图所示.[答案] {x|5≤x<10}5.设全集U={2,3,a2+2a-3},A={|2a-1|,2},且∁U A={5},求实数a的值.[解] ∵∁U A={5},∴5∈U,但5∉A,∴a2+2a-3=5,解得a=2或a=-4.当a=2时,|2a-1|=3,这时A={3,2},U={2,3,5}.∴∁U A={5},适合题意.∴a=2.当a=-4时,|2a-1|=9,这时A={9,2},U={2,3,5},A⃘U,∴∁U A无意义,故a =-4应舍去.综上所述,a=2.课内拓展课外探究空集对集合关系的影响空集是不含任何元素的集合,它既不是有限集,也不是无限集.空集就像一个无处不在的幽灵,解题时需处处设防,提高警惕.空集是任何集合的子集,其中“任何集合”当然也包括了∅,故将会出现∅⊆∅.而此时按子集理解不能成立,原因是前面空集中无元素,不符合定义,因此知道这一条是课本“规定”.空集是任何非空集合的真子集,即∅A(而A≠∅).既然A≠∅,即必存在a∈A而a∉∅,∴∅A.由于空集的存在,关于子集定义的下列说法有误,如“A⊆B,即A为B中的部分元素所组成的集合”.因为从“部分元素”的含义无法理解“空集是任何集合的子集”、“A是A 的子集”、“∅⊆∅”等结论.在解决诸如A⊆B或A B类问题时,必须优先考虑A=∅时是否满足题意.【典例1】已知集合A={x|x2-2x-8=0},B={x|x2+ax+a2-12=0},求满足B⊆A 的a的值组成的集合.[解] 由已知得A={-2,4},B是关于x的一元二次方程x2+ax+a2-12=0(*)的解集.方程(*)根的判别式Δ=a2-4(a2-12)=-3(a2-16).(1)若B=∅,则方程(*)没有实数根,即Δ<0,∴-3(a2-16)<0,解得a <-4或a >4.此时B ⊆A .(2)若B ≠∅,则B ={-2}或{4}或{-2,4}.①若B ={-2},则方程(*)有两个相等的实数根x =-2, ∴(-2)2+(-2)a +a 2-12=0,即a 2-2a -8=0. 解得a =4或a =-2.当a =4时,恰有Δ=0; 当a =-2时,Δ>0,舍去.∴当a =4时,B ⊆A . ②若B ={4},则方程(*)有两个相等的实数根x =4, ∴42+4a +a 2-12=0,解得a =-2,此时Δ>0,舍去.③若B ={-2,4},则方程(*)有两个不相等的实数根x =-2或x =4,由①②知a =-2,此时Δ>0,-2与4恰是方程的两根.∴当a =-2时,B ⊆A .综上所述,满足B ⊆A 的a 值组成的集合是{a |a <-4或a =-2或a ≥4}.[点评] ∅有两个独特的性质,即:(1)对于任意集合A ,皆有A ∩∅=∅;(2)对于任意集合A ,皆有A ∪∅=A .正因如此,如果A ∩B =∅,就要考虑集合A 或B 可能是∅;如果A ∪B =A ,就要考虑集合B 可能是∅.【典例2】 设全集U =R ,集合M ={x |3a -1<x <2a ,a ∈R },N ={x |-1<x <3},若N ⊆(∁UM ),求实数a 的取值集合.[解] 根据题意可知:N ≠∅,又∵N ⊆(∁U M ). ①当M =∅,即3a -1≥2a 时,a ≥1. 此时∁U M =R ,N ⊆(∁U M )显然成立. ②当M ≠∅,即3a -1<2a 时,a <1.由M ={x |3a -1<x <2a },知∁U M ={x |x ≤3a -1或x ≥2a }.又∵N ⊆(∁U M ),∴结合数轴分析可知⎩⎪⎨⎪⎧a <1,3≤3a -1,或⎩⎪⎨⎪⎧a <1,2a ≤-1,得a ≤-12.综上可知,a 的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥1或a ≤-12. [点评] 集合的包含关系是集合知识重要的一部分,在后续内容中应用特别广泛,涉及集合包含关系的开放性题目都以子集的有关性质为主,因此需要对相关的性质有深刻的理解.对于有限集,在处理包含关系时可列出所有的元素,然后依条件讨论各种情况,找到符合条件的结果.1.4.1充分条件与必要条件1.若a∈R,则“a=2”是“(a-1)(a-2)=0”的( )A.充分条件B.必要条件C.既不是充分条件,也不是必要条件D.无法判断[解析] 因为a=2⇒(a-1)(a-2)=0,而(a-1)(a-2)=0不能推出a=2,故a=2是(a-1)(a-2)=0的充分条件,应选A.[答案] A2.设x∈R,则x>2的一个必要条件是( )A.x>1 B.x<1C.x>3 D.x<3[解析] 因为x>2⇒x>1,所以选A.[答案] A3.下列命题中,是真命题的是( )A.“x2>0”是“x>0”的充分条件B.“xy=0”是“x=0”的必要条件C.“|a|=|b|”是“a=b”的充分条件D.“|x|>1”是“x2不小于1”的必要条件[解析] A中,x2>0⇒x>0或x<0,不能推出x>0,而x>0⇒x2>0,故x2>0是x>0的必要条件.B中,xy=0⇒x=0或y=0,不能推出x=0,而x=0⇒xy=0,故xy=0是x=0的必要条件.C中,|a|=|b|⇒a=b或a=-b,不能推出a=b,而a=b⇒|a|=|b|,故|a|=|b|是a=b的必要条件.D中,|x|>1⇒x2不小于1,而x2不小于1不能推出|x|>1,故|x|>1是x2不小于1的充分条件,故本题应选B.[答案] B4.若集合A={1,m2},B={2,4},则“m=2”是“A∩B={4}”的____________条件.[答案] 不必要(填必要、不必要)5.(1)若“x<m”是“x>2或x<1”的充分条件,求m的取值范围.(2)已知M={x|a-1<x<a+1},N={x|-3<x<8},若N是M的必要条件,求a的取值范围.[解] (1)记A={x|x>2或x<1},B={x|x<m}由题意可得B⊆A,即{x|x<m}⊆{x|x>2或x<1}.所以m ≤1.故m 的取值范围为{m |m ≤1}. (2)因为N 是M 的必要条件,所以M ⊆N .于是⎩⎪⎨⎪⎧a -1≥-3,a +1≤8,从而可得-2≤a ≤7.故a 的取值范围为{a |-2≤a ≤7}.1.4.2充要条件1.设x ∈R ,则“x <-1”是“|x |>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] 因为x <-1⇒|x |>1,而|x |>1⇒x <-1或x >1,故“x <-1”是“|x |>1”的充分不必要条件.[答案] A2.“x 2+(y -2)2=0”是“x (y -2)=0”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件[解析] x 2+(y -2)2=0,即x =0且y =2,∴x (y -2)=0.反之,x (y -2)=0,即x =0或y =2,x 2+(y -2)2=0不一定成立.[答案] B3.已知A ,B 是非空集合,命题p :A ∪B =B ,命题q :A B ,则p 是q 的( ) A .充要条件B .充分不必要条件C .既不充分也不必要条件D .必要不充分条件[解析] 由A ∪B =B ,得A B 或A =B ;反之,由A B ,得A ∪B =B ,所以p 是q 的必要不充分条件.[答案] D4.关于x 的不等式|x |>a 的解集为R 的充要条件是________. [解析] 由题意知|x |>a 恒成立,∵|x |≥0,∴a <0. [答案] a <05.已知x ,y 都是非零实数,且x >y ,求证:1x <1y的充要条件是xy >0.[证明] 证法一:①充分性:由xy >0及x >y ,得x xy >y xy ,即1x <1y.②必要性:由1x <1y ,得1x -1y <0,即y -xxy<0.因为x >y ,所以y -x <0,所以xy >0. 所以1x <1y的充要条件是xy >0.证法二:1x <1y ⇔1x -1y <0⇔y -xxy<0.由条件x >y ⇔y -x <0,故由y -xxy<0⇔xy >0. 所以1x <1y⇔xy >0,即1x <1y的充要条件是xy >0.1.5.1全称量词与存在量词1.下列命题中,不是全称量词命题的是( ) A .任何一个实数乘0都等于0 B .自然数都是正整数C .对于任意x ∈Z,2x +1是奇数D .一定存在没有最大值的二次函数 [解析] D 选项是存在量词命题. [答案] D2.下列命题中,存在量词命题的个数是( )①有些自然数是偶数;②正方形是菱形;③能被6整除的数也能被3整除;④任意x ∈R ,y ∈R ,都有x 2+|y |>0.A .0B .1C .2D .3[解析] 命题①含有存在量词;命题②可以叙述为“所有的正方形都是菱形”,故为全称量词命题;命题③可以叙述为“一切能被6整除的数也能被3整除”,是全称量词命题;命题④是全称量词命题.故有1个存在量词命题.[答案] B3.下列命题是“∀x ∈R ,x 2>3”的另一种表述方法的是( ) A .有一个x ∈R ,使得x 2>3B .对有些x ∈R ,使得x 2>3 C .任选一个x ∈R ,使得x 2>3 D .至少有一个x ∈R ,使得x 2>3[解析] “∀x ∈R ,x 2>3”是全称量词命题,改写时应使用全称量词. [答案] C4.对任意x >8,x >a 恒成立,则实数a 的取值范围是________. [解析] ∵对于任意x >8,x >a 恒成立,∴大于8的数恒大于a ,∴a ≤8. [答案] a ≤85.判断下列命题是全称量词命题还是存在量词命题?并判断其真假. (1)∃x ∈R ,|x |+2≤0;(2)存在一个实数,使等式x 2+x +8=0成立;(3)在平面直角坐标系中,任意有序实数对(x ,y )都对应一点. [解] (1)存在量词命题.∵∀x ∈R ,|x |≥0,∴|x |+2≥2,不存在x ∈R , 使|x |+2≤0.故命题为假命题. (2)存在量词命题.∵x 2+x +8=⎝ ⎛⎭⎪⎫x +122+314>0,∴命题为假命题.(3)在平面直角坐标系中,任意有序实数对(x ,y )与平面直角坐标系中的点是一一对应的,所以该命题是真命题.1.5.2全称量词命题与存在量词命题的否定1.命题“∃x ∈R ,x 2-2x -3≤0”的否定是( ) A .∀x ∈R ,x 2-2x -3≤0 B .∃x ∈R ,x 2-2x -3≥0 C .∃x 0∈R ,x 2-2x -3>0 D .∀x ∈R ,x 2-2x -3>0[解析] 存在量词命题的否定是全称量词命题,一方面要改量词即“∃”改为“∀”;另一方面要否定结论,即“≤”改为“>”.故选D.[答案] D2.已知命题p :∀x >0,x 2≥2,则它的否定为( )A .∀x >0,x 2<2 B .∀x ≤0,x 2<2 C .∃x ≤0,x 2<2 D .∃x >0,x 2<2[答案] D3.全称量词命题“所有能被5整除的整数都是奇数”的否定是( ) A .所有能被5整除的整数都不是奇数 B .所有奇数都不能被5整除C .存在一个能被5整除的整数不是奇数D .存在一个奇数,不能被5整除[解析] 全称量词命题的否定是存在量词命题,而选项A ,B 是全称量词命题,所以选项A ,B 错误.因为“所有能被5整除的整数都是奇数”的否定是“存在一个能被5整除的整数不是奇数”,所以选项D 错误,选项C 正确,故选C.[答案] C4.对下列命题的否定,其中说法错误的是( )A .p :∀x ≥3,x 2-2x -3≥0;p 的否定:∃x ≥3,x 2-2x -3<0B .p :存在一个四边形的四个顶点不共圆;p 的否定:每一个四边形的四个顶点共圆C .p :有的三角形为正三角形;p 的否定:所有的三角形不都是正三角形D .p :∃x ∈R ,x 2+2x +2≤0;p 的否定:∀x ∈R ,x 2+2x +2>0[解析] 若p :有的三角形为正三角形,则p 的否定:所有的三角形都不是正三角形,故C 错误.[答案] C5.写出下列命题的否定,并判断其真假. (1)菱形是平行四边形;(2)与圆只有一个公共点的直线是圆的切线; (3)存在一个三角形,它的内角和大于180°; (4)∃x ∈R ,使得x 2+x +1≤0.[解] (1)题中命题的否定为“存在一个菱形不是平行四边形”,这个命题为假命题. (2)是全称量词命题,省略了全称量词“任意”,即“任意一条与圆只有一个公共点的直线是圆的切线”,否定为:存在一条与圆只有一个公共点的直线不是圆的切线;这个命题为假命题.(3)题中命题的否定为“所有三角形的内角和都小于或等于180°”,这个命题为真命题.(4)题中命题的否定为“∀x ∈R ,x 2+x +1>0”,这个命题为真命题.因为x 2+x +1=x 2+x +14+34=⎝⎛⎭⎪⎫x +122+34>0.2.1等式性质与不等式性质1.下列说法正确的为( ) A .若1x =1y,则x =yB .若x 2=1,则x =1 C .若x =y ,则x =yD .若x <y ,则x 2<y 2[解析] ∵1x =1y,且x ≠0,y ≠0,两边同乘以xy ,得x =y .[答案] A2.设a ,b 为非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2B .ab 2<a 2b C .1ab 2<1a 2bD .b a <a b[解析] 用a =-1,b =1,试之,易排除A ,D.再取a =1,b =2,易排除B. [答案] C3.下列命题中正确的个数是( ) ①若a >b ,b ≠0,则a b>1; ②若a >b ,且a +c >b +d ,则c >d ; ③若a >b ,且ac >bd ,则c >d . A .0 B .1 C .2 D .3[解析] ①若a =2,b =-1,则不符合;②取a =10,b =2,c =1,d =3,虽然满足a >b 且a +c >b +d ,但不满足c >d ,故错;③当a =-2,b =-3,取c =-1,d =2,则不成立.[答案] A4.若x ≠2或y ≠-1,M =x 2+y 2-4x +2y ,N =-5,则M 与N 的大小关系为________. [解析] ∵x ≠2或y ≠-1,∴M -N =x 2+y 2-4x +2y +5=(x -2)2+(y +1)2>0,∴M >N . [答案] M >N5.若-1≤a ≤3,1≤b ≤2,则a -b 的范围为________. [解析] ∵-1≤a ≤3,-2≤-b ≤-1, ∴-3≤a -b ≤2. [答案] -3≤a -b ≤22.2.1基本不等式1.若ab >0,则下列不等式不一定能成立的是( ) A .a 2+b 2≥2ab B .a 2+b 2≥-2ab C .a +b2≥abD .b a +a b≥2[解析] C 选项由条件可得到a 、b 同号,当a 、b 均为负号时,不成立. [答案] C 2.已知a >1,则a +12,a ,2aa +1三个数的大小顺序是( ) A.a +12<a <2a a +1 B.a <a +12<2aa +1C.2a a +1<a <a +12 D.a <2a a +1≤a +12 [解析] 当a ,b 是正数时,2ab a +b ≤ab ≤a +b2≤a 2+b 22(a ,b ∈R +),令b =1,得2aa +1≤a ≤a +12.又a >1,即a ≠b ,故上式不能取等号,选C.[答案] C3.b a +ab≥2成立的条件是________.[解析] 只要b a 与a b都为正,即a 、b 同号即可. [答案] a 与b 同号4.设a ,b ,c 都是正数,试证明不等式:b +c a +c +a b +a +bc≥6. [证明] 因为a >0,b >0,c >0, 所以b a +ab ≥2,c a +a c ≥2,b c +c b≥2,所以⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫b c +c b ≥6,当且仅当b a =a b ,c a =a c ,c b =bc, 即a =b =c 时,等号成立.所以b +c a +c +a b +a +bc≥6.2.2.2利用基本不等式求最值1.已知y =x +1x-2(x >0),则y 有( )A .最大值为0B .最小值为0C .最小值为-2D .最小值为2[答案] B2.已知0<x <1,则当x (1-x )取最大值时,x 的值为( ) A.13 B.12 C.14D.23[解析] ∵0<x <1,∴1-x >0.∴x (1-x )≤⎝ ⎛⎭⎪⎫x +1-x 22=14,当且仅当x =1-x ,即x =12时,等号成立.[答案] B3.已知p ,q ∈R ,pq =100,则p 2+q 2的最小值是________. [答案] 2004.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________. [解析] 由基本不等式,得4x +a x≥24x ·a x =4a ,当且仅当4x =a x,即x =a2时,等号成立,即a2=3,a =36.[答案] 365.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?[解] 由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x-200≥212x ·80000x-200=200, 当且仅当12x =80000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.2.3.1二次函数与一元二次方程、不等式1.不等式-x 2-5x +6≤0的解集为( ) A .{x |x ≥6或x ≤-1} B .{x |-1≤x ≤6} C .{x |-6≤x ≤1}D .{x |x ≤-6或x ≥1}[解析] 由-x 2-5x +6≤0得x 2+5x -6≥0, 即(x +6)(x -1)≥0, ∴x ≥1或x ≤-6. [答案] D2.一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2}[解析] 结合二次函数y =ax 2+bx +c (a <0)的图象可得{x |-1≤x ≤2},故选D. [答案] D3.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是( ) A .1 B .2 C .3 D .4[解析] 由题可知-7和-1为ax 2+8ax +21=0的两个根,∴-7×(-1)=21a,a =3.[答案] C4.不等式x 2-4x +5≥0的解集为________. [解析] ∵Δ=(-4)2-4×5=-4<0, ∴不等式x 2-4x +5≥0的解集为R . [答案] R5.当a >-1时,关于x 的不等式x 2+(a -1)x -a >0的解集是________. [解析] 原不等式可化为(x +a )(x -1)>0, 方程(x +a )(x -1)=0的两根为-a,1, ∵a >-1,∴-a <1,故不等式的解集为{x |x <-a 或x >1}. [答案] {x |x <-a 或x >1}2.3.2一元二次不等式的应用1.不等式x -2x +3>0的解集是( ) A .{x |-3<x <2} B .{x |x >2} C .{x |x <-3或x >2} D .{x |x <-2或x >3}[解析] 不等式x -2x +3>0⇔(x -2)(x +3)>0的解集是{x |x <-3或x >2},所以C 选项是正确的.[答案] C2.若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}[解析] ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2},∴A ∩B ={x |0<x ≤1}. [答案] B3.若不等式x 2+mx +m2>0的解集为R ,则实数m 的取值范围是( )A .m >2B .m <2C .m <0或m >2D .0<m <2[解析] 由题意得Δ=m 2-4×m2<0,即m 2-2m <0,解得0<m <2.[答案] D4.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4D .a <-4或a >4[解析] 依题意应有Δ=a 2-16≤0,解得-4≤a ≤4,故选A. [答案] A5.某产品的总成本y (万元)与产量x (台)之间的函数关系式为y =3000+20x -0.1x 2(0<x <240,x ∈R ),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时最低产量是( )A .100台B .120台C .150台D .180台 [解析] 3000+20x -0.1x 2≤25x ⇔x 2+50x -30000≥0,解得x ≤-200(舍去)或x ≥150. [答案] C3.1.1.1函数的概念1.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2)D .[1,+∞)[解析] 由题意可知,要使函数有意义,需满足{ x -1≥0,x -2≠0,即x ≥1且x ≠2.[答案] A2.函数y =1-x 2+x 的定义域为( ) A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤-1}D .{x |0≤x ≤1}[解析] 由题意可知⎩⎪⎨⎪⎧1-x 2≥0,x ≥0,解得0≤x ≤1.[答案] D 3.函数f (x )=(x +2)(1-x )x +2的定义域为( )A .{x |-2≤x ≤1}B .{x |-2<x <1}C .{x |-2<x ≤1}D .{x |x ≤1}[解析] 要使函数有意义,需⎩⎪⎨⎪⎧(x +2)(1-x )≥0,x +2≠0,解得-2≤x ≤1,且x ≠-2,所以函数的定义域是{x |-2<x ≤1}.[答案] C4.集合{x |-1≤x <0或1<x ≤2}用区间表示为________. [解析] 结合区间的定义知,用区间表示为[-1,0)∪(1,2]. [答案] [-1,0)∪(1,2]5.已知矩形的周长为1,它的面积S 是其一边长为x 的函数,则其定义域为________(结果用区间表示).[解析] 由实际意义知x >0,又矩形的周长为1,所以x <12,所以定义域为⎝ ⎛⎭⎪⎫0,12.[答案] ⎝ ⎛⎭⎪⎫0,123.1.1.2函数概念的应用1.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=(x )2x 和g (m )=m(m )2[解析] A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.[答案] D2.设f (x )=x 2-1x 2+1,则f (2)f ⎝ ⎛⎭⎪⎫12=( )A .1B .-1 C.35 D .-35[解析] f (2)f ⎝ ⎛⎭⎪⎫12=22-122+1⎝ ⎛⎭⎪⎫122-1⎝ ⎛⎭⎪⎫122+1=35-3454=35×⎝ ⎛⎭⎪⎫-53=-1.[答案] B3.下列函数中,值域为(0,+∞)的是( ) A .y =x B .y =1xC .y =1xD .y =x 2+1[解析] y =x 的值域为[0,+∞),y =1x的值域为(-∞,0)∪(0,+∞),y =x 2+1的值域为[1,+∞).[答案] B4.已知函数f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4]D .(0,1)[解析] 由f (x )的定义域是[0,2]知,{ 0≤2x ≤2,x -1≠0, 解得0≤x <1,所以g (x )=f (2x )x -1的定义域为[0,1). [答案] B5.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________. [解析] ∵x ∈{1,2,3,4,5} ∴f (x )=2x -3∈{-1,1,3,5,7}. ∴f (x )的值域为{-1,1,3,5,7}. [答案] {-1,1,3,5,7}3.1.2.1函数的表示法1.y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[解析] 设y =k x ,当x =2时,y =1,所以1=k 2,得k =2.故y =2x.[答案] C2.由下表给出函数y =f (x ),则f [f (1)]等于( )x 1 2 3 4 5 y45321A.1 B .2 C .4 D .[解析] 由题意得f (1)=4,所以f [f (1)]=f (4)=2. [答案] B3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )[解析] 距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.[答案] C4.若3f (x -1)+2f (1-x )=2x ,则f (x )的解析式为__________________. [解析] (换元法)令t =x -1,则x =t +1,t ∈R , 原式变为3f (t )+2f (-t )=2(t +1),①以-t 代替t ,①式变为3f (-t )+2f (t )=2(1-t ),②由①②消去f (-t )得f (t )=2t +25,∴f (x )=2x +25.[答案] f (x )=2x +255.已知f (x )=x +b ,f (ax +1)=3x +2,求a ,b 的值. [解] 由f (x )=x +b ,得f (ax +1)=ax +1+b . ∴ax +1+b =3x +2,∴a =3,b +1=2,即a =3,b =1.3.1.2.2分段函数1.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f [f (-7)]的值为( )A .100B .10C .-10D .-100[解析] ∵f (-7)=10,∴f [f (-7)]=f (10)=10×10=100. [答案] A2.下列图形是函数y =x |x |的图象的是( )[解析] ∵f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,分别画出y =x 2(取x ≥0部分)及y =-x 2(取x <0部分)即可.[答案] D3.函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3][解析] 当0≤x ≤1时,0≤f (x )≤2,当1<x <2时,f (x )=2,当x ≥2时,f (x )=3.故0≤f (x )≤2或f (x )=3,故选B.[答案] B4.下图中的图象所表示的函数的解析式为( )A .y =32|x -1|(0≤x ≤2)B .y =32-32|x -1|(0≤x ≤2)C .y =32-|x -1|(0≤x ≤2)D .y =1-|x -1|(0≤x ≤2)[解析] 可将原点代入,排除选项A ,C ;再将点⎝ ⎛⎭⎪⎫1,32代入,排除D 项. [答案] B5.设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f [f (a )]=2,则a =________.[解析] 当a ≤0时,f (a )=a 2+2a +2>0,f [f (a )]<0,显然不成立;当a >0时,f (a )=-a 2,f [f (a )]=a 4-2a 2+2=2,则a =±2或a =0,故a = 2.[答案] 23.2.1.1函数的单调性1.如图所示,函数y =f (x )在下列哪个区间上是增函数( )A .[-4,4]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4][解析] 观察题中图象知,函数在[-3,1]上是增函数. [答案] C2.下列函数中,在(-∞,0]内为增函数的是( ) A .y =x 2-2 B .y =3xC .y =1+2xD .y =-(x +2)2[解析] 选项A ,B 在(-∞,0)上为减函数,选项D 在(-2,0]上为减函数,只有选项C 满足在(-∞,0]内为增函数.故选C.[答案] C3.若函数f (x )=(2a -1)x +b 是R 上的减函数,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫12,+∞B.⎝ ⎛⎦⎥⎤-∞,12C.⎝ ⎛⎭⎪⎫-12,+∞ D.⎝⎛⎭⎪⎫-∞,12 [解析] 由一次函数的性质得2a -1<0,即a <12.故选D.[答案] D4.已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝ ⎛⎭⎪⎫12的实数x 的取值范围为________.[解析] 因为f (x )在区间[-1,1]上为增函数,且f (x )<f ⎝ ⎛⎭⎪⎫12,所以⎩⎪⎨⎪⎧-1≤x ≤1,x <12,解得-1≤x <12.[答案] ⎣⎢⎡⎭⎪⎫-1,125.已知函数f (x )=x -1x +1,判断f (x )在(0,+∞)上的单调性并用定义证明. [解] f (x )在(0,+∞)上单调递增. 证明如下:任取x 1>x 2>0,f (x 1)-f (x 2)=x 1-1x 1+1-x 2-1x 2+1=2(x 1-x 2)(x 1+1)(x 2+1),由x 1>x 2>0知x 1+1>0,x 2+1>0,x 1-x 2>0,故f (x 1)-f (x 2)>0,即f (x )在(0,+∞)上单调递增.3.2.1.2函数的最大(小)值1.函数f (x )在[-2,+∞)上的图象如图所示,则此函数的最大、最小值分别为( )A .3,0B .3,1C .3,无最小值D .3,-2[解析] 观察图象可以知道,图象的最高点坐标是(0,3),从而其最大值是3;另外从图象看,无最低点,即该函数不存在最小值.故选C.[答案] C2.已知函数f (x )=|x |,x ∈[-1,3],则f (x )的最大值为( ) A .0 B .1 C .2 D .3[解析] 作出函数f (x )=|x |,x ∈[-1,3]的图象,如图所示.根据函数图象可知,f (x )的最大值为3.[答案] D3.下列函数在[1,4]上最大值为3的是( ) A .y =1x+2B .y =3x -2C .y =x 2D .y =1-x[解析] B 、C 在[1,4]上均为增函数,A 、D 在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.[答案] A4.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________(m).[解析] 设矩形花园的宽为y m ,则x 40=40-y 40, 即y =40-x ,矩形花园的面积S =x (40-x )=-x 2+40x =-(x -20)2+400,当x =20时,面积最大.[答案] 205.已知二次函数y =x 2-4x +5,分别求下列条件下函数的最小值: (1)x ∈[-1,0];(2)x ∈[a ,a +1].[解] (1)∵二次函数y =x 2-4x +5的对称轴为x =2且开口向上, ∴二次函数在x ∈[-1,0]上是单调递减的. ∴y min =02-4×0+5=5.(2)当a ≥2时,函数在x ∈[a ,a +1]上是单调递增的,y min =a 2-4a +5;当a +1≤2即a ≤1时,函数在[a ,a +1]上是单调递减的,y min =(a +1)2-4(a +1)+5=a 2-2a +2;当a <2<a +1即1<a <2时,y min =22-4×2+5=1.故函数的最小值为⎩⎪⎨⎪⎧a 2-2a +2,a ≤1,1,1<a <2,a 2-4a +5,a ≥2.3.2.2.1函数奇偶性的概念1.函数y =f (x ),x ∈[-1,a ](a >-1)是奇函数,则a 等于( ) A .-1 B .0 C .1D .无法确定[解析] 由-1+a =0,得a =1.选C. [答案] C2.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3C .y =1xD .y =x 2,x ∈[0,1][解析] A 项中的函数为奇函数;C 、D 选项中的函数定义域不关于原点对称,既不是奇函数,也不是偶函数;B 项中的函数为偶函数.故选B.[答案] B3.函数f (x )=1x-x 的图象( )A .关于y 轴对称B .关于直线y =x 对称C .关于坐标原点对称D .关于直线y =-x 对称[解析] 函数f (x )=1x-x 的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f (-x )=-1x -(-x )=x -1x=-f (x ),所以f (x )是奇函数,图象关于原点对称.[答案] C4.若f (x )=(x +a )(x -4)为偶函数,则实数a =________.[解析] 由f (x )=(x +a )(x -4)得f (x )=x 2+(a -4)x -4a ,若f (x )为偶函数,则a -4=0,即a =4.[答案] 45.已知y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-3,3],且它们在[0,3]上的图象如图所示,求不等式f (x )g (x )<0的解集.[解] 由题知,y =f (x )是偶函数,y =g (x )是奇函数. 根据函数图象的对称性画出y =f (x ),y =g (x )在[-3,0]上的图象如图所示.由图可知f (x )>0⇔0<x <2或-2<x <0,g (x )>0⇔1<x <3或-1<x <0.f (x )g (x )<0⇔⎩⎪⎨⎪⎧f (x )>0,g (x )<0或⎩⎪⎨⎪⎧f (x )<0,g (x )>0,可求得其解集是{x |-2<x <-1或0<x <1或2<x <3}.3.2.2.2函数奇偶性的应用1.函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=-x +1,则当x <0时,f (x )的解析式为( )A .f (x )=-x +1B .f (x )=-x -1C .f (x )=x +1D .f (x )=x -1[解析] 设x <0,则-x >0.∴f (-x )=x +1,又函数f (x )是奇函数. ∴f (-x )=-f (x )=x +1, ∴f (x )=-x -1(x <0). [答案] B2.设f (x )是R 上的偶函数,且在[0,+∞)上单凋递增,则f (-2),f (-π),f (3)的大小顺序是( )A .f (-π)>f (3)>f (-2)B .f (-π)>f (-2)>f (3)C .f (3)>f (-2)>f (-π)D .f (3)>f (-π)>f (-2) [解析] ∵f (x )是R 上的偶函数, ∴f (-2)=f (2),f (-π)=f (π), 又f (x )在[0,+∞)上单调递增,且2<3<π, ∴f (π)>f (3)<f (2), 即f (-π)>f (3)>f (-2). [答案] A3.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23 [解析] 由于f (x )为偶函数,且在[0,+∞)上单调递增,则不等式f (2x -1)<f ⎝ ⎛⎭⎪⎫13,即-13<2x -1<13,解得13<x <23.。
【高一】高一数学上册第二章课堂练习题(含答案)本试卷分第Ⅰ卷()和第Ⅱ卷(非)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.函数y=log12(x-1)的定义域是( )A.[2,+∞)B.(1,2]C.(-∞,2]D.32,+∞[答案] B[解析] log12(x-1)≥0,∴02.(2021?浙江文,2)已知函数f(x)=log2(x+1),若f(α)=1,则α=( )A.0 B.1 C.1 D.3[答案] B[解析] 由题意知,f(α)=log2(α+1)=1,∴α+1=2,∴α=1.3.已知集合A={yy=log2x,x>1},B={yy=(12)x,x>1},则A∩B=( )A.{y0C.{y12[答案] A[解析] A={yy>0},B={y0∴A∩B={y04.(2021?重庆理,5)函数f(x)=4x+12x的图象( )A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称[答案] D[解析] ∵f(-x)=2-x+12-x=2x+12x=f(x)∴f(x)是偶函数,其图象关于y轴对称.5.(2021?辽宁文,10)设2a=5b=m,且1a+1b=2,则m=( )A.10B.10C.20D.100[答案] A[解析] ∵2a=5b=m∴a=log2m b=log5m∴1a+1b=1log2m+1log5m=logm2+logm5=logm10=2∴m=10选A.6.已知f(x)=f(x+2) x≤0log12x x>0,则f(-8)等于( )A.-1B.0C.1D.2[答案] A[解析] f(-8)=f(-6)=f(-4)=f(-2)=f(0)=f(2)=log122=-1,选A.7.若定义域为区间(-2,-1)的函数f(x)=log(2a-3)(x+2),满足f(x)<0,则实数a的取值范围是( )A.32,2B.(2,+∞)C.32,+∞D.1,32[答案] B[解析] ∵-2又f(x)=log(2a-3)(x+2)<0,∴2a-3>1,∴a>2.8.已知f(x)是偶函数,它在[0,+∞)上是减函数.若f(lgx)>f(1),则x的取值范围是( )A.(110,1)B.(0,110)∪(1,+∞)C.(110,10)D.(0,1)∪(10,+∞)[答案] C[解析] ∵f(x)为偶函数,∴f(lgx)>f(1)化为f(lgx)>f(1),又f(x)在[0,+∞)上为减函数,∴lgx<1,∴-19.幂函数y=xm2-3m-4(m∈Z)的图象如下图所示,则m的值为( )A.-1C.1或3D.0,1,2或3[答案] D[解析] ∵y=xm2-3m-4在第一象限为减函数∴m2-3m-4<0即-1又m∈Z∴m的可能值为0,1,2,3.代入函数解析式知都满足,∴选D.10.(09?北京理)为了得到函数y=lgx+310的图像,只需把函数y=lgx的图像上所有的点( )A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度[答案] C[解析] y=lgx+310=lg(x+3)-1需将y=lgx图像先向左平移3个单位得y=lg(x+13)的图象,再向下平移1个单位得y=lg(x+3)-1的图象,故选C.11.已知log12bA.2b>2a>2cB.2a>2b>2cC.2c>2b>2aD.2c>2a>2b[答案] A[解析] ∵由log12ba>c,又y=2x为增函数,∴2b>2a>2c.故选A.12.若0A.loga(1-a)>0B.a1-a>1C.loga(1-a)<0D.(1-a)2>a2[答案] A[解析] 当0∵0<1-a<1,∴loga(1-a)>loga1=0.故选A.[点评] ①y=ax单调减,0<1-a<1,∴a1-ay=x2在(0,1)上为增函数.当1-a>a,即a<12时,(1-a)2>a2;当1-a=a,即a=12时,(1-a)2=a2;当1-a②由于所给不等式在a∈(0,1)上成立,故取a=12时有loga(1-a)=log1212=1>0,a1-a=1212=22<1,(1-a)2-a2=122-122=0,∴(1-a)2=a2,排除B、C、D,故选A.第Ⅱ卷(非选择题共90分)二、题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.函数y=ax(a>0,且a≠1)在[1,3]上的最大值比最小值大a2,则a的值是________.[答案] 22或62.[解析] 当a>1时,y=ax在[1,3]上递增,故a3-a=a2,∴a=62;当0故a-a3=a2,∴a=22,∴a=22或62.[点评] 指数函数的最值问题一般都是用单调性解决.14.若函数f(2x)的定义域是[-1,1],则f(log2x)的定义域是________.[答案] [2,4][解析] ∵y=f(2x)的定义域是[-1,1],∴12≤2x≤2,∴y=f(x)的定义域是12,2,由12≤log2x≤2得,2≤x≤4.15.函数y=lg(4+3x-x2)的单调增区间为________.[答案] (-1,32][解析] 函数y=lg(4+3x-x2)的增区间即为函数y=4+3x-x2的增区间且4+3x -x2>0,因此所求区间为(-1,32].16.已知:a=xm,b=xm2,c=x1m,0[答案] c,a,b[解析] 将a=xm,b=xm2,c=x1m看作指数函数y=xP(0在P1=m,P2=m2,P3=1m时的三个值,∵0∴y=xP关于变量P是减函数,∵0∴xm2>xm>x1m;∴c三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)在同一坐标系中,画出函数f(x)=log2(-x)和g(x)=x+1的图象.当f(x)[解析] f(x)与g(x)的图象如图所示;显然当x=-1时,f(x)=g(x),由图可见,使f(x)18.(本题满分12分)把下列各数按从小到大顺序排列起来.340,2334,-323,32-45,-433,log2332,log143,log34,log35,log142.[分析] 先区分正负,正的找出大于1的,小于1的,再比较.[解析] 首先340=1;2334、32-45∈(0,1);log35、log34都大于1;log2332=-1;-323,-433都小于-1,log142=-12,-1(1)32-45=2345,∵y=23x为减函数,34<45,∴2334>2345=32-45;(2)∵y=x3为增函数,-32∴-323(3)y=log14x为减函数,∴-12=log142>log143>log144=-1;(4)y=log3x为增函数,∴log35>log34>log33=1.综上可知,-32319.(本题满分12分)已知f(x)是偶函数,当x≥0时,f(x)=ax(a>1),若不等式f(x)≤4的解集为[-2,2],求a的值.[解析] 当x<0时,-x>0,f(-x)=a-x,∵f(x)为偶函数,∴f(x)=a-x,∴f(x)=ax x≥01ax x<0,∴a>1,∴f(x)≤4化为x≥0,ax≤4,或x<01ax≤4,∴0≤x≤loga4或-loga4≤x<0,由条件知loga4=2,∴a=2.20.(本题满分12分)在已给出的坐标系中,绘出同时符合下列条件的一个函数f(x)的图象.(1)f(x)的定义域为[-2,2];(2)f(x)是奇函数;(3)f(x)在(0,2]上递减;(4)f(x)是既有最大值,也有最小值;(5)f(1)=0.[解析] ∵f(x)是奇函数,∴f(x)的图象关于原点对称,∵f(x)的定义域为[-2,2],∴f(0)=0,由f(x)在(0,2]上递减知f(x)在[-2,0)上递减,由f(1)=0知f(-1)=-f(1)=0,符合一个条件的一个函数的图象如图.[点评] 符合上述条件的函数不只一个,只要画出符合条件的一个即可,再结合学过的一次、二次、幂、指、对函数可知,最简单的为一次函数.下图都是符合要求的.21.(本题满分12分)设a>0,f(x)=exa+aex是R上的偶函数.(1)求a的值;(2)证明f(x)在(0,+∞)上是增函数.[解析] (1)依题意,对一切x∈R有f(-x)=f(x)成立,即exa+aex=1aex+aex,∴a-1aex-1ex=0,对一切x∈R成立,由此得到a-1a=0,∴a2=1,又a>0,∴a=1.(2)设0∴f(x1)22.(本题满分14分)某民营企业生产A、B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位:万元)(1)分别将A、B两种产品的利润表示为投资的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元?(精确到1万元)[解析] (1)设各投资x万元时,A产品利润为f(x)万元,B产品利润为g(x)万元,由题设f(x)=k1x,g(x)=k2x,由图知f(1)=14,∴k1=14,又g(4)=52,∴k2=54,从而:f(x)=14x(x≥0),g(x)=54x(x≥0).(2)设A产品投入x万元,则B产品投入10-x万元;设企业利润为y万元.y=f(x)+g(10-x)=x4+5410-x (0≤x≤10),令10-x=t,则0≤t≤10,∴y=10-t24+54t=-14(t-52)2+6516(0≤t≤10),当t=52时,ymax=6516≈4,此时x=10-254=3.75.感谢您的阅读,祝您生活愉快。
三一文库()/高一〔高一数学上册课堂练习题(含答案)[1]〕一、选择题1.某商店某种商品(以下提到的商品均指该商品)进货价为每件40元,当售价为50元时,一个月能卖出500件.通过市场调查发现,若每件商品的单价每提高1元,则商品一个月的销售量会减少10件.商店为使销售该商品的月利润最高,应将每件商品定价为( )A.45元 B.55元C.65元 D.70元[答案] D[解析] 设每件商品定价为x元,则一个月的销量为500-(x-50)×10=1000-10x件,故月利润为y=(x-40)#(1000-10x)=-10(x-40)(x-100),∵x>401000-10x>0,∴40bC.a2+bt+c(a≠0),其中温度的单位是°C,时间的单位是小时,t=0表示12∶00,t取正值表示12∶00以后,若测得该物体在8∶00的温度为8°C,12∶00的温度为60°C,13∶00的温度为58°C,则T(t)=________.[答案] -3t2+t+60[解析] 将t=-4,T=8;t=0,T=60;t=1,T=58分别代入函数表达式中即可解出a=-3,b=1,c=60.三、解答题9.某物品的价格从1964年的100元增加到2004年的500元,假设该物品的价格年增长率是平均的,那么2010年该物品的价格是多少?(精确到元)[解析] 从1964年开始,设经过x年后物价为y,物价增长率为a%,则y=100(1+a%)x,将x=40,y=500代入得500=100(1+a%)40,解得a=4.1,故物价增长模型为y=100(1+4.1%)x.到2010年,x=46,代入上式得y=100(1+4.1%)46≈635(元).10.有甲、乙两个水桶,开始时水桶甲中有a升水,水通过水桶甲的底部小孔流入水桶乙中,t分钟后剩余的水符合指数衰减曲线y=ae-nt,假设过5分钟时水桶甲和水桶乙的水相等,求再过多长时间水桶甲的水只有a8.[解析] 由题意得ae-5n=a-ae-5n,即e-5n=12,设再过t分钟桶甲中的水只有a8,得ae-n(t+5)=a8,所以(12)t+55=(e-5n)t+55=e-n(t+5)=18=(12)3,∴t +55=3,∴t=10.∴再过10分钟桶甲的水只有a8. 11.某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售.请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给消费者的实惠大.面对问题我们并不能一目了然.于是我们首先作了一个随机调查.把全组的16名学员作为调查对象,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以.调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?请给予说明.[解析] 在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制.所以这个问题应该有几种情形:(1)若甲商厦确定每组设奖.当参加人数较少时,少于1+2+10+200=213人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客.(2)若甲商厦的每组营业额较多时,他给顾客的优惠幅度就相应的小.因为甲商厦提供的优惠金额是固定的,共10000+2000+1000+1000=14000元.假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为14000÷5%=280000. 所以由此可得:。
【高一】高一数学上册课堂练习题(附答案)2.2.2.1我1.三个数60.7,0.76,log0.76的大小顺序是( )a、 0.76c.log0.76<60.7<0.76d.log0.76<0.76<60.7[答:]d[解析] 60.7>1>0.76>0>log0.76,故选d.2.设置日志(A-1)(2x-1)>日志(A-1)(x-1),然后()a.x>1,a>2b.x>1,a>1c、 x>0,a>2d.x<0,1[答案] a【分析】为了使不等式有意义,我们应该让x>1,并否定C和D当x>1时,2x-1>x-1,因此a-1>1,∴a>2,故选a.3.如果区间(0,1)中y=log(A2-1)x的函数值始终为正,则a的值范围为() a.a>1b.a>2c、 a<2d.1[答案] d[解析]∵ 00,∴0∴1.4.函数y=log2x+的定义域是( )a、(0,+∞)b、(1,+∞)c.(0,1)d.{1}[答:]d[解析] ∴x≥10‡x=1‡定义字段为{1}5.给出函数f(x)=(12)x (当x≥4时)f(x+1)(当x<4时),则f(log23)=( ) a、-238b。
一百一十一c.119d.124[答:]d[解析] ∵3×22<24<3×23,∴2+log23<4<3+log23f(log23)=f(log23+1)=f(log26)=f(log26+1)=f(log212)=f(log212+1)=f(log224)==124,故选d.6.如果集合a={YY=log2x,x>1},B={YY=(12)x,x>1},那么a∪ B=()a.{y00}c.?d.r[答:]B[解析] a={yy=log2x,x>1}={yy>0}b=yy=(12)x,x>1=y0a∪b={yy>0},故选b.7.(2022?湖北,5)函数y=1log0 5(4x-3)的定义字段为()a.34,1b.34,+∞c、(1,+∞)d、34,1∪(1,+∞)[答案] a[parse]log0 5(4x-3)>0=log0。
厦门大学附属科技中学高一数学解答题练习答案(21-24)21.设函数()f x a b =⋅,其中向量(2cos ,1),(cos 2),a x b x x x R==∈ (1)若函数()1,,;33f x x x ππ⎡⎤=∈-⎢⎣⎦且求(2)若函数2sin 2y x =的图象按向量(,)(3c m n m π=< 平移后得到函数()y f x =的图象,求实数m 及n 的值。
解:(1))62sin(212sin 32cos 12sin 3cos 22π++=++=+=⋅x x x x x 4362]65,3[62]3,3[3)62sin(31)62sin(21ππππππππππ-=-=+∴-∈+∴-∈-=+-=++∴x x x x x x 得即 (2)2sin 2y x =的图象按向量),(n m =平移后得到n m x y +-=)22sin(2的图象112=-=∴n m π22、已知函数2()2cos cos 1()f x x x x x R =+-∈(1)求函数()f x 的周期、对称轴方程;(2)求函数()f x 单调增区间。
解:2()2cos cos 12cos 22sin(2)6f x x x x x x x π=+-=+=+(1)()f x 的周期T π=,函数()f x 对称轴方程为()26k x k Z ππ=+∈;(2)由222)262k x k k Z πππππ-≤+≤+∈得()36k x k k Z ππππ-≤≤+∈∴求函数()f x 单调增区间为[,]()36k k k Z ππππ-+∈。
23、已知向量a →=(cosx,sinx),b →=(2,2),若a →·b →=85,且π4<x <π2x x x tan 1)tan 1(2sin -+求的值.解:54)4cos(,58sin 2cos 2,58b a =-=+∴=⋅→→πx x x 即 ∵43)4tan(,53)4sin(,440,24=-=-<-<∴<<ππππππx x x x 344cot(4tan(-=--=+ππx x 2571)4(cos 2)22cos(2sin 2=--=-=ππx x x ∴.7528)34(257)4tan(2sin tan 1)tan 1(2sin -=-⨯=+⋅=-+πx x x x x24、已知A 、B 、C 的坐标分别为A (4,0),B (0,4),C (ααsin 3,cos 3).(Ⅰ)若)0,(πα-∈=,求角α的大小;(Ⅱ)若⊥,求αααtan 12sin sin 22++的值。
人教A 版高一数学必修第一册第四章《指数函数与对数函数》单元练习题卷(共22题)一、选择题(共10题)1. 设 f (x ) 是定义在 R 上的周期函数,周期 T =4,对于任意 x ∈R 都有 f (−x )=f (x ),且当 x ∈[−2,0] 时,f (x )=(12)x−1,若在区间 (−2,6] 内关于 x 的方程 f (x )−log a (x +2)=0(a >1) 恰有 3 个不同的实根,则 a 的取值范围是 ( ) A . (1,2)B . (2,+∞)C . (1,√43)D . (√43,2)2. 已知 log x 3=3,log y 7=6,z =717,则实数 x ,y ,z 的大小关系是 ( ) A . x <z <y B . z <x <y C . x <y <z D . z <y <x3. 已知定义在 R 上的函数 f (x ) 满足:①f (x )+f (2−x )=0;②f (x −2)=f (−x );③ 当 x ∈[−1,1] 时,f (x )={√1−x 2,x ∈[−1,0]cos (π2x),x ∈(0,1];则函数 y =f (x )−(12)∣x∣在区间 [−3,3] 上的零点个数为 ( ) A . 5B . 6C . 7D . 84. 在同一坐标系中函数 y =2−x 与 y =log 2x 的图象是 ( )A .B .C .D .5. 设 a 是函数 f (x )=2x −log 12x 的零点,若 x 0>a ,则 f (x 0) 满足 ( )A . f (x 0)=0B . f (x 0)>0C . f (x 0)<0D .以上都有可能6. 在股票买卖过程中,经常用两种曲线来描述价格变化情况:一种是即时价格曲线 y =f (x ),另一种是平均价格曲线 y =g (x ),如 f (2)=3 表示股票开始买卖后 2 小时的即时价格为 3 元;g (2)=3 表示 2 小时内的平均价格为 3 元,下面给出了四个图象,实线表示 y =f (x ),虚线表示 y =g (x ),其中可能正确的是 ( )A .B .C .D .7. 已知偶函数 f (x ) 的定义域为 R ,对 ∀x ∈R ,f (x +2)=f (x )+f (1),且当 x ∈[2,3] 时,f (x )=−2(x −3)2,若函数 F (x )=log a (∣x∣+1)−f (x )(a >0,a ≠1) 在 R 上恰有 6 个零点,则实数 a 的取值范围是 ( ) A . (0,√55)B . (√55,√33)C . (√55,1)D . (√33,1)8. 方程 x 3−2x 2+3x −6=0 在区间 [−2,4] 上的根必定在 ( ) A . [−2,1] 内 B . [52,4] 内C . [1,74] 内D . [74,52] 内9. log 212 的值为 ( ) A . √2B . −√2C . 1D . −110. 若 log a b +3log b a =132,则用 a 表示 b 的式子为 ( )A . b =a 6B . b =√aC . b =a 6 或 b =√aD . b =a 6 且 b =√a二、填空题(共6题)11. 已知函数 f (x )={log 2x,x >04x ,x ≤0,若函数 g (x )=f (x )−k 存在两个零点,则实数 k 的取值范围是 .12. 函数 f (x )=log a (x −2)+1(a >0,a ≠1) 的图象恒过定点 P ,则点 P 的坐标是 .13. 若正数 a ,b 满足 log 2a =log 5b =lg (a +b ),则 1a +1b 的值为 .14. 对于实数 a 和 b ,定义运算“∗”:a ∗b ={a (a −b )3,a ≤bb (b −a )3,a >b,设 f (x )=(2x–1)∗(x–1),若函数 g (x )=f (x )−mx 2(m ∈R ) 恰有三个零点 x 1,x 2,x 3,则 m 的取值范围是 ;x 1x 2x 3 的取值范围是 .15. 函数 f (x )=log a (x +2)+3(a >0,且 a ≠1)的图象恒过定点 .16. 如果函数 y =lg (x 2−ax +1) 的值域为 R ,那么实数 a 的取值范围是 .三、解答题(共6题)17. 某地区今年 1 月,2 月,3 月患某种传染病的人数分别为 52,54,58,为了预测以后各月的患病人数,甲选择了模型 f (x )=ax 2+bx +c ,乙选择了模型 y =p ⋅q x +r ,其中 y 为患病人数,x 为月份数,a ,b ,c ,p ,q ,r 都是常数,结果 4 月,5 月,6 月份的患病人数分别为 66,82,115.(1) 你认为谁选择的模型较好?(需说明理由)(2) 至少要经过多少个月患该传染病的人数将会超过 2000 人?试用你认为比较好的模型解决上述问题.18. 若存在常数 k (k >0),使得对定义域 D 内的任意 x 1,x 2(x 1≠x 2),都有 ∣f (x 1)−f (x 2)∣≤k∣∣x 1−x 2∣ 成立,则称函数 f (x ) 在其定义域 D 上是“k − 利普希兹条件函数”. (1) 若函数 f (x )=√x (1≤x ≤4) 是“k − 利普希兹条件函数”,求常数 k 的取值范围; (2) 判断函数 f (x )=log 2x 是否是“2− 利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3) 若 y =f (x )(x ∈R ) 是周期为 2 的“1− 利普希兹条件函数”,证明:对任意的实数 x 1,x 2,都有 ∣f (x 1)−f (x 2)∣≤1.19. 求下列函数的零点:(1) f (x )=−x 2−4x −4 (2) f (x )=(x−1)(x 2−4x+3)x−3(3) f (x )=2x +x −1 (4) f (x )=log 3(x +1)20. 零点存在定理一般地,如果函数 y =f (x ) 在区间 [a,b ] 上的图象是一条连续不断的曲线,且有 f (a )⋅f (b )<0,那么在区间 (a,b ) 内至少存在一个实数 c ,使得 f (c )=0,即 y =f (x ) 在 (a,b ) 上至少有一个零点.如何理解零点存在性?21. 计算:(1) (−78)0+813+(√32)2×(214)−12−(0.25)0.5.(2) lg25+lg2×lg50+(lg2)2.22. 已知 f (x )=log a (a x −1)(a >0 且 a ≠1).(1) 求证:函数 y =f (x ) 的图象在 y 轴的一侧; (2) 求证:函数 y =f (x ) 在定义域上是增函数.答案一、选择题(共10题) 1. 【答案】D【解析】因为对于任意 x ∈R 都有 f (−x )=f (x ),所以函数 f (x ) 是定义在 R 上的偶函数,因为在区间 (−2,6] 内关于 x 的方程 f (x )−log a (x +2)=0(a >1) 恰有 3 个不同的实数解, 所以函数 y =f (x ) 与 y =log a (x +2) 在区间 (−2,6] 上有三个不同的交点, 因为当 x ∈[−2,0] 时,f (x )=(12)x−1, 故函数图象如图所示, 又 f (−2)=f (2)=f (6)=3, 则有 log a 4<3,且 log a 8>3,解得 √43<a <2.故 a 的取值范围是 (√43,2).【知识点】函数的奇偶性、函数的周期性、函数的零点分布2. 【答案】D【解析】因为 log x 3=3,所以 x =313,同理可得:y =716=(√7)13, 因为函数 y =7x为单调增函数,且 16>17,故 716>717,即 z >y ,因为函数 y =x 13为单调增函数,且 3>√7, 所以 313>(√7)13,即 x >y , 所以综上,x >y >z .【知识点】对数函数及其性质、指数函数及其性质3. 【答案】A【解析】由 ①f (x )+f (2−x )=0, 可得 f (x ) 的图象关于点 (1,0) 对称,由 ②f (x −2)=f (−x ),可得 f (x ) 的图象关于直线 x =−1 对称, 作出 f (x ) 在 [−1,1] 的图象,再由对称性,作出 f (x ) 在 [−3,3] 的图象, 作出函数 y =(12)∣x∣在 [−3,3] 的图象,由图象观察可得它们故有 5 个交点,即有函数 y =f (x )−(12)∣x∣在区间 [−3,3] 上的零点个数为 5.【知识点】函数的零点分布4. 【答案】A【解析】因为 y =2−x 为减函数,y =log 2x 在 (0,+∞) 上为增函数. 【知识点】对数函数及其性质、指数函数及其性质5. 【答案】B【解析】画出 y =2x 与 y =log 12x 的图象(图略),可知当 x 0>a 时,2x 0>log 12x 0,故f (x 0)>0.【知识点】零点的存在性定理6. 【答案】C【知识点】函数模型的综合应用7. 【答案】B【解析】令 x =−1,则 f (1)=f (−1)+f (1)=2f (1),所以 f (1)=0, 所以 f (x +2)=f (x ),即函数的周期为 2.若 F (x )=f (x )−log a (∣x∣+1) 恰有 6 个零点,则 0<a <1, 则 y =f (x ) 的图象与 y =log a (∣x∣+1) 有 6 个不同的交点,因为 y =f (x ) 和 y =log a (∣x∣+1) 均为偶函数且 f (0)=f (2)=−2≠0=log a (∣x∣+1), 故 y =f (x ) 的图象与 y =log a (∣x∣+1) 在 (0,+∞) 上有三个不同的交点. 画出函数 y =f (x ) 和 y =log a (∣x∣+1) 的图象如下图所示,由图可知: f (2)=−2=log a 3,得 a =√33,f (4)=−2=log a 5,得 a =√55, a ∈(√55,√33).(或 {f (2)<log a 3,f (4)>log a 5即 {−2<log a 3,−2>log a 5, 故 a ∈(√55,√33))【知识点】函数的零点分布8. 【答案】D【解析】令 f (x )=x 3−2x 2+3x −6, 因为 f (−2)=−28<0,f (4)=38>0,且 f (−2+42)=f (1)=−4<0,所以 f (x ) 的零点在区间 [1,4] 内. 又 f (1+42)=f (52)=378>0,所以 f (x ) 的零点在区间 [1,52] 内. 又 f (1+522)=f (74)=−9764<0,所以 f (x ) 的零点在区间 [74,52] 内,即方程 x 3−2x 2+3x −6=0 在 [−2,4] 上的根在 [74,52] 内. 【知识点】零点的存在性定理9. 【答案】D【解析】 log 212=log 22−1=−1.【知识点】对数的概念与运算10. 【答案】C【解析】由 log a b +3log b a =132 得 log a b +3logab=132,即 2(log a b )2−13log a b +6=0,解得 log a b =6 或 log a b =12,所以 b =a 6 或 b =√a . 【知识点】对数的概念与运算二、填空题(共6题)11. 【答案】0<k≤1【解析】由g(x)=f(x)−k=0,得f(x)=k,令y=k与y=f(x),作出函数y=k与y=f(x)图象如图:当x≤0时,0<f(x)≤1;当x>0时,f(x)∈R.所以要使函数g(x)=f(x)−k存在两个零点,则k∈(0,1].【知识点】函数的零点分布12. 【答案】(3,1)【知识点】对数函数及其性质13. 【答案】1【解析】设log2a=log5b=lg(a+b)=k,所以a=2k,b=5k,a+b=10k,所以ab=10k,所以a+b=ab,则1a +1b=1.【知识点】对数函数及其性质14. 【答案】{14};{0}【知识点】二次函数的性质与图像、函数的零点分布、分段函数15. 【答案】(−1,3)【解析】本题考查对数函数的图象.当x+2=1时,x=−1,f(−1)=log a(−1+2)+3=3,所以函数f(x)=log a(x+2)+3的图象恒过定点(−1,3).【知识点】对数函数及其性质16. 【答案】(−∞,−2]∪[2,+∞)【解析】由题意知x2−ax+1应能取到大于0的一切实数,因此g(x)=x2−ax+1应与x轴有交点,所以Δ=a2−4≥0.【知识点】对数函数及其性质三、解答题(共6题)17. 【答案】(1) 由题意,把 x =1,2,3 代入 f (x ) 得:{a +b +c =52,4a +2b +c =54,9a +3b +c =58,解得 a =1,b =−1,c =52,所以 f (x )=x 2−x +52,所以 f (4)=42−4+52=64,f (5)=52−5+52=72,f (6)=62−6+52=82, 则 ∣f (4)−66∣=2,∣f (5)−82∣=10,∣f (6)−115∣=33; 把 x =1,2,3 代入 y =g (x )=p ⋅q x +r ,得:{pq +r =52,pq 2+r =54,pq 3+r =58,解得 p =1,q =2,r =50,所以 g (x )=2x +50,所以 g (4)=24+50=66,g (5)=25+50=82,g (6)=26+50=114, 则 ∣g (4)−66∣=0,∣g (5)−82∣=0,∣g (6)−115∣=1.因为 g (4),g (5),g (6) 更接近真实值,所以应将 y =2x +50 作为模拟函数.(2) 令 2x +50>2000,解得 x >log 21950≈10.9, 所以至少经过 11 个月患该传染病的人数将会超过 2000 人.【知识点】函数模型的综合应用18. 【答案】(1) 由题意得:对任意 x 1,x 2∈[1,4],x 1≠x 2,都有 ∣∣√x 1−√x 2∣≤k∣∣x 1−x 2∣ 成立, 所以 k ≥√x +√x .因为 x 1,x 2∈[1,4],x 1≠x 2, 所以√x +√x <12,所以常数 k 的取值范围是 [12,+∞).(2) 取 x 1=18,x 2=1,则 ∣f (x 1)−f (x 2)∣=3,而 2∣∣x 1−x 2∣=74, 所以 x 1=18,x 2=1 不满足 ∣f (x 1)−f (x 2)∣≤2∣∣x 1−x 2∣, 所以函数 f (x )=log 2x 不是“2− 利普希兹条件函数”.(3) 若 x 1,x 2∈[0,2],①当 ∣x 1−x 2∣≤1 时,∣f (x 1)−f (x 2)∣≤∣x 1−x 2∣≤1, ②当 ∣x 1−x 2∣>1 时,设 0≤x 1<1<x 2≤2,则 ∣f (x 1)−f (x 2)∣=∣f (x 1)−f (0)+f (2)−f (x 2)∣≤∣f (x 1)−f (0)∣+∣f (2)−f (x 2)∣≤∣x 1∣+∣2−x 2∣=x 1+2−x 2<1.因此对任意x1,x2∈[0,2],都有∣f(x1)−f(x2)∣≤1,因为y=f(x)(x∈R)周期为2,所以对任意x1,x2∈R,都存在p1,p2∈[0,2],使f(x1)=f(p1),f(x2)=f(p2),所以∣f(x1)−f(x2)∣=∣f(p1)−f(p2)∣≤1.【知识点】对数函数及其性质、函数的周期性、幂函数及其性质19. 【答案】(1) 令−x2−4x−4=0,解得x=−2,所以函数f(x)的零点为−2.(2) 令(x−1)(x2−4x+3)x−3=0,解得x=1,所以函数f(x)的零点为1.(3) 在同一平面直角坐标系中作出函数y=2x,y=−x+1的图象,由图可知函数f(x)的零点为0.(4) 令log3(x+1)=0,解得x=0,所以函数f(x)的零点为0.【知识点】函数零点的概念与意义20. 【答案】(1)当函数y=f(x)同时满足:①函数的图象在[a,b]上是连续曲线;② f(a)⋅f(b)<0.则可判定函数y=f(x)在区间(a,b)内至少有一个零点,但是不能明确肯定有几个零点,也不是说可能有1个、2个、3个、4个、⋯⋯零点.(2)不满足零点存在性定理并不能说明不存在零点,即当函数y=f(x)的图象在[a,b]上是连续的曲线,但是不满足f(a)⋅f(b)<0时,函数y=f(x)在区间(a,b)内可能存在零点,也可能不存在零点.【知识点】零点的存在性定理21. 【答案】(1)(−78)+813+(√32)2×(214)−12−(0.25)0.5=1+2+34×√49−(14)12=1+2+34×23−12=1+2+12−12.(2)lg25+lg2×lg50+(lg2)2 =2lg5+lg2×(lg50+lg2) =2lg5+lg2×lg(2×50) =2lg5+lg2×lg100=2lg5+2lg2=2×(lg5+lg2)= 2.【知识点】对数的概念与运算、幂的概念与运算22. 【答案】(1) 当0<a<1时,定义域为(−∞,0),当a>1时,定义域为(0,+∞),所以y=f(x)的图象总在y轴的一侧.(2) 当0<a<1时,y=a x−1在区间(−∞,0)上是严格减函数,又0<a<1,y=f(x)在区间(−∞,0)上是严格增函数.当a>1时,y=a x−1在区间(0,+∞)上是严格增函数,又a>1,y=f(x)在区间(0,+∞)上是严格增函数.【知识点】对数函数及其性质、函数的单调性11。
卜人入州八九几市潮王学校HY 二零二零—二零二壹高一数学上学期第二次月考试题〔考试时间是是:120分钟总分:150分〕 本套试卷分第І卷〔选择题〕和第ІІ卷〔非选择题〕两局部第І卷〔选择题,一共60分〕一、选择题。
〔本大题一一共12小题,每一小题5分,一共60分。
在第小题列出的四个选项里面,只有一项为哪一项哪一项符合题目要求的。
〕 1.集合{}1,3,A m =,{}1,B m =,假设B B A = ,那么m =A .0或者3B .0或者3C .1或者3D .1或者32.扇形的半径为2,面积为4,那么这个扇形圆心角的弧度数为A.2B.4C.6D.83.角的终边经过点2 ,1,那么ααcos sin -的值是A.3B.1C.55 D.3554.以下角的终边与53o角的终边在同一直线上的是A.53o B.127o C.127o D.307o5.31sin -=α,那么αααsin cos tan 3的值是A.19B.89C.29D.896.3.046.342.32log log log )31(,3,3===c b a,那么A .b a c >>B .a c b >>C .c a b >>D .a b c >>7.函数2,0,0)(sin()(πϕωϕω<>>+=A x A x f 的局部图象如下列图,那么函数)(x f 的单调减区间是A.)](1252,122[Z k k k ∈+-ππππB.)](125,12[Z k k k ∈+-ππππC.)](1211,125[Z k k k ∈++ππππD.)](12112,1252[Z k k k ∈++ππππ8.函数1ππ()sin()cos()363f x x x 的最小值为 A.43B.23C.1D.239.要得到函数2sin yx 的图象,只需将函数)42sin(2π-=x y 的图象上所有的点A.横坐标伸长到原来的2倍纵坐标不变,再向左平行挪动8π个单位长度B.横坐标伸长到原来的2倍纵坐标不变,再向右平行挪动4π个单位长度C.横坐标缩短到原来的12纵坐标不变,再向右平行挪动4π个单位长度D.横坐标缩短到原来的12纵坐标不变,再向左平行挪动8π个单位长度,x y 满足11ln0x y--=,那么y 关于x 的函数的图象大致是 A .B . C . D .11.函数)(x f 是定义域为R的偶函数,且当≥x 时,13log )()1(3-+=+x x x f ,那么满足09-)(log )1(2<-x f 的实数x 的取值范围是A.)45(,-∞B.)545(, C.)51(, D.)2,1([)[)⎪⎩⎪⎨⎧∈∈+=-2,121,021)(1x x x x f x ,假设存在1x ,2x ,当1202x x ≤<<时,12()()f x f x =,那么122()()x f x f x -的取值范围为A .]0,169(-B .)21,169[-- C .)0,21[-D .[)2,1第ІІ卷〔一共90分〕二、填空题〔此题一共有4小题,每一小题5分〕13.假设43tan =α,那么=-+ααααsin 4cos cos sin 2. 2()y f x x x =++是奇函数,且1)2(=f ,=-)2(f _____.15.函数⎩⎨⎧>-≤+-=2log 24)(22x a x x x x f x有两个不同的零点,那么实数a 的取值范围是 ()sin(ωφ) (0,ω0)f x A x A ,假设()f x 在区间]2,6[ππ上具有单调性,且π2ππ()()()236f f f ,那么()f x 的最小正周期为. 三、解答题〔此题一共6小题,一共70分,要求写出必要的文字说明和解题过程〕 17. 〔本小题总分值是10分〕函数3log )()7(2--=-x x f x 的定义域为集合A ,集合{}102|<<∈=x Z x B ,集合{}1|+><∈=a x a x R x C 或.〔1〕求B A C R )(; 〔2〕假设R C A = ,务实数a 的取值范围.18. 〔本小题总分值是12分〕)tan()2cos()tan()2cos()3sin()(απαπααπαπα++---=f ;〔1〕化简)(αf ;〔2〕假设α是第二象限角,且34tan -=α,求)(αf 的值. 19.〔本小题总分值是12分〕 某企业消费A ,B 两种产品,根据场调查与预测,A ,B 两种商品所得利润分别是)(),(x g x f 万元,它们与投入资金x 万元的关系分别为x b x g ax x f ==)(,)(〔其中b a ,都为常数〕,函数)(),(x g x f 对应的曲线如图1,图2所示.图〔1〕图〔2〕〔1〕分别求A ,B 两种产品的利润y 关于HY x 的函数解析式.〔2〕该企业已筹集到20万元资金,并将全部投入A ,B 两种产品的消费.假设你是厂长,怎样分配这20万元HY ,才能使该企业获得最大利润?其最大利润为多少万元? 20.〔本小题总分值是12分〕 函数)62sin()(π+=x x f .〔Ⅰ〕请用“五点法〞画出函数()f x 在一个周期上的图象;〔Ⅱ〕假设]127,12[ππ∈x 求)(x f 的值域. 21.〔本小题总分值是12分〕函数xx x f +-=+22log )1(.(1)求函数()f x 的解析式;〔2〕假设关于x 的方程(2)x f m =有解,务实数m 的取值范围.22.〔本小题总分值是12分〕设函数)10()1()(2≠>--=a a at a x f xx 且是定义域为R 的奇函数. (1)求t 的值; (2)假设0)1(>f ,求使不等式0)1()(2<-+-x f x kx f 对一切R x ∈恒成立的实数k 的取值范围;(3)假设函数)(x f 的图象过点)23,1(,是否存在正数)1(≠m m ,使函数)]([log )(22x mf a a x g x x m -+=-在]log ,1[32上的最大值为0,假设存在,求出m 的值;假设不存在,请说明理由.参考答案一.选择题〔一共12小题,每一小题5分,一共60分〕二.填空题〔一共4小题,每一小题5分,一共20分〕1544.-91),(∞+1 6.π三.解答题〔一共6大题,一共70分〕17.解:〔1〕由题意⎩⎨⎧>-≥-0703x x ,解得37≥>x ,故{}73|<≤∈=x R x A 2分 {}{}9,8,7,6,5,4,3|102|Z x x Z x B ∈=<<∈=∴{}9,8,7)(=B A C R5分 (2)∵R C A = ,{}1|+><∈=a x a x R x C 或∴⎩⎨⎧<+≥713a a 解得63<≤a ∴实数a 的取值范围是63<≤a10分 18.解:〔1〕αααααααπαπααπαπαcos tan )sin ()tan (cos sin )tan()2cos()tan()2cos()3sin()(=--=++---=f 6分(2〕假设是第二象限角,且4tan3,那么由⎪⎩⎪⎨⎧-===+34cos sin tan 1cos sin 22ααααα, 可得⎪⎩⎪⎨⎧-==53cos 54sin αα,53-)(=αf 12分 19.解:〔1〕设HY 为x 万元〔0x ≥〕,A 、B 两种产品所获利润分别为()f x ,()g x 万元,由题意xb x g ax x f ==)(,)(,所以根据图象可得41)1(==a f ,2,25.0,42)4(==∴==b a b g ,所以)0(41)(≥=x x x f ,()()20g x x x =≥.6分 〔2〕设B 产品投入m 万元,A 产品投入)20(m -万元,该企业可获总利润为P 万元,那么200,2)20(41≤≤+-=m m m p .令m t =,那么2m t =,且)52,0[∈t ,那么]36)4([412)20(4122+--=+-=t t t P,)52,0[∈t . ∴当4t =时,9max =P ,此时,420,16=-=m m .∴当A ,B 两种产品分别投入16万元,4万元时,可使该企业获得最大利润,最大利润为9万元12分20.解:〔Ⅰ〕列表x12π-6π125π 32π 1211π62π+x2π π23π π2y1-12分描点画图,如图:说明:其它周期上的图象同等给分;个别关键点错误酌情给分. 6分 〔Ⅱ〕法一:由]127,12[ππ∈x 得343ππ≤≤x ,当ππ262x,即π6x 时,max π()()16f x f ,即()f x 的最大值等于1;当3462ππ=+x ,即127π=x 时,23)127()(min -==πf x f ,即()f x 的最小值等于23-; 所以()f x 的值域为⎥⎦⎤⎢⎣⎡-1,23; 12分法二:由]127,12[ππ∈x 得343ππ≤≤x ,结合图像可知]6,12[ππ∈x 时函数)(x f 为单调递增函数, ]127,6[ππ∈x 时函数)(x f 为单调递减函数,所以当π6x时,max π()()16f x f ,即()f x 的最大值等于1; 当127π=x 时,23)127()(min -==πf x f ,即()f x 的最小值等于23-; 所以()f x 的值域为⎥⎦⎤⎢⎣⎡-1,23. 12分 21.解:〔1〕令1,1-=+=t x x t则∴)1,1(,log )(112-∈=+-x x f x x4分〔2〕因为()21log 1x f x x -=+,所以()2122log 12x xxf -=+,设1212xxt -=+,那么12211212x x xt -==-+++,因为()f x 的定义域为()1,1-,所以()2xf 的定义域为(),0-∞,即021x<<,所以01t <<,那么2log 0t <,因为关于x 的方程()2x f m =有解,那么0m <,故m 的取值范围为(),0-∞ 12分22.解:〔Ⅰ〕)(x f 是定义域为R 的奇函数∴0)0(=f ,∴2=t ; 2分〔Ⅱ〕由〔Ⅰ〕得x x a a x f --=)(,且0)1(>f ,得01>-aa , 又1,0>∴>a a ,由,0)1()(2<-+-x f x kx f 得0)1()(2<-+-x f x kx f , 因为)(x f 为奇函数)1()(2x f x kx f -<-∴1>a ,x x a a x f --=∴)(为上的增函数,x x kx -<-∴12对一切R x ∈恒成立,即01)1(2>++-x k x 对一切R x ∈恒成立,故04)1(2<-+=∆k 解得13<<-k ; 6分〔Ⅲ〕假设存在正数符合题意,由得=,设,那么,,记,函数在上的最大值为,〔ⅰ〕假设,那么函数在有最小值为1,对称轴,,不合题意;〔ⅱ〕假设,那么函数在上恒成立,且最大值为1,最小值大于0,①,又此时,,故无意义所以;②无解,综上所述:故不存在正数,使函数在上的最大值为. 12分.。
三一文库()/高一〔高一数学上册课堂练习题(带答案)[1]〕为大家整理的高一数学上册课堂练习题(带答案)文章,供大家学习参考!更多最新信息请点击本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
) 1.(09#宁夏海南理)已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩#NB=( )A.{1,5,7} B.{3,5,7}C.{1,3,9} D.{1,2,3}[答案] A[解析] A∩#NB={1,3,5,7,9}∩{1,2,4,5,7,8,10,11,13,14,…}={1,5,7}.2.方程log3x+x=3的解所在区间是( )A.(0,1) B.(1,2)C.(2,3) D.(3,+∞)[答案] C[解析] 令f(x)=log3x+x-3,∵f(2)#f(3)logy3,∴B错.③由y=log4u为增函数知log4x14y,排除D.6.已知方程x-ax-1=0仅有一个负根,则a的取值范围是( )A.a1 D.a≥1[答案] D[解析] 数形结合判断.7.已知a>0且a≠1,则两函数f(x)=ax和g(x)=loga-1x的图象只可能是( )[答案] C[解析] g(x)=loga-1x=-loga(-x),其图象只能在y轴左侧,排除A、B;由C、D知,g(x)为增函数,∴a>1,∴y=ax为增函数,排除D.∴选C.8.下列各函数中,哪一个与y=x为同一函数( )A.y=x2x B.y=(x)2C.y=log33x D.y=2log2x[答案] C[解析] A∶y=x(x≠0),定义域不同;B∶y=x(x≥0),定义域不同;D∶y=x(x>0)定义域不同,故选C.9.(上海大学附中2009~2010高一期末)下图为两幂函数y =xα和y=xβ的图像,其中α,β∈{-12,12,2,3},则不可能的是( )[答案] B[解析] 图A是y=x2与y=x12;图C是y=x3与y=x-12;图D是y=x2与y=x-12,故选B.10.(2010#天津理,8)设函数f(x)=log2x,x>0,log12(-x),xf(-a),则实数a的取值范围是( )A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞) D.(--∞,-1)∪(0,1)[答案] C[解析] 解法1:由图象变换知函数f(x)图象如图,且f(-x)=-f(x),即f(x)为奇函数,∴f(a)>f(-a)化为f(a)>0,∴当x∈(-1,0)∪(1,+∞),f(a)>f(-a),故选C.解法2:当a>0时,由f(a)>f(-a)得,log2a>log12a,∴a>1;当af(-a)得,log12(-a)>log2(-a),∴-111.某市2008年新建住房100万平方米,其中有25万平方米经济适用房,有关部门计划以后每年新建住房面积比上一年增加5%,其中经济适用房每年增加10万平方米.按照此计划,当年建造的经济适用房面积首次超过该年新建住房面积一半的年份是(参考数据:1.052=1,1.053=1.16,1.054=1.22,1.055=1.28)( )A.2010年 B.2011年C.2012年 D.2013年[答案] C[解析] 设第x年新建住房面积为f(x)=100(1+5%)x,经济适用房面积为g(x)=25+10x,由2g(x)>f(x)得:2(25+10x)>100(1+5%)x,将已知条件代入验证知x=4,所以在2012年时满足题意.12.(2010#山东理,4)设f(x)为定义在R上的奇函数,当x。
知识改变命运
2.2.1.3
一、选择题
1.下列各式中不正确的是(
)
[答案] D
[解析] 根据对数的运算性质可知:
2.log 23·log 34·log 45·log 56·log 67·log 78=( ) A .1
B .2
C .3
D .4
[答案] C
[解析] log 23·log 34·log 45·log 56·log 67·log 78=lg3lg2×lg4lg3×lg5lg4×lg6lg5×lg7lg6×lg8lg7=lg8
lg2=3,故选C.
3.设lg2=a ,lg3=b ,则log 512等于( ) A.2a +b 1+a
B.a +2b 1+a
知识改变命运
C.2a +b 1-a
D.a +2b 1-a
[答案] C
[解析] log 512=lg12lg5=2lg2+lg31-lg2=2a +b
1-a ,故选C.
4.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为( ) A .pq
B.q
p +q C.p p +q
D.pq 1+pq
[答案] B
[解析] 由已知得:log 72log 7
5=p q ,∴log 52=p
q
变形为:lg2lg5=lg21-lg2=p q ,∴lg2=p
p +q
,故选B.
5.设x =,则x ∈( ) A .(-2,-1) B .(1,2) C .(-3,-2)
D .(2,3)
[答案] D
[解析] x =
=log 310∈(2,3),故选D.
6.设a 、b 、c ∈R +,且3a =4b =6c ,则以下四个式子中恒成立的是( )
知识改变命运
A.1c =1a +1b
B.2c =2a +1b
C.1c =2a +2b
D.2c =1a +2b
[答案] B
[解析] 设3a =4b =6c =m , ∴a =log m 3,b =log m 4,c =log m 6, ∴1a =log m 3,1b =log m 4,1
c =log m 6, 又∵log m 6=log m 3+log m 2,1c =1a +1
2b ,即 2c =2a +1
b ,故选B.
7.设方程(lg x )2-lg x 2-3=0的两实根是a 和b ,则log a b +log b a 等于( )
A .1
B .-2
C .-103
D .-4
[答案] C
[解析] 由已知得:lg a +lg b =2,lg a lg b =-3
那么log a b +log b a =lg b lg a +lg a lg b =lg 2b +lg 2
a
lg a lg b
=(lg a +lg b )2-2lg a lg b lg a lg b =4+6-3
=-103,故选C. 8.已知函数f (x )=2
x 2+lg(x +x 2+1),且f (-1)≈1.62,则
知识改变命运
f (1)≈( )
A .2.62
B .2.38
C .1.62
D .0.38
[答案] B
[解析] f (-1)=2+lg(2-1),f (1)=2+lg(2+1) 因此f (-1)+f (1)=4+lg[(2-1)(2+1)]=4, ∴f (1)=4-f (-1)≈2.38,故选B. 二、填空题
9.设log 89=a ,log 35=b ,则lg2=________. [答案] 2
2+3ab
[解析] 由log 89=a 得log 23=32a ,∴lg3lg2=3a
2, 又∵log 35=lg5
lg3=b , ∴lg3lg2×lg5lg3=3
2ab , ∴1-lg2lg2=3
2ab , ∴lg2=2
2+3ab
.
10.已知log a x =2,log b x =3,log c x =6,那么式子log abc x =________.
[答案] 1
[解析] log x (abc )=log x a +log x b +log x c =12+13+1
6=1,
知识改变命运
∴log abc x =1.
11.若log a c +log b c =0(c ≠1),则ab +c -abc =______. [答案] 1
[解析] 由log a c +log b c =0得:
lg(ab )
lg a lg b ·
lg c =0,∵c ≠1,∴lg c ≠0∴ab =1, ∴ab +c -abc =1+c -c =1.
12.光线每透过一块玻璃板,其强度要减弱1
10,要使光线减弱到原来的1
3以下,至少要这样的玻璃板______块(lg3=0.4771).
[答案] 11
[解析] 设光线原来的强度为1,透过第n 块玻璃板后的强度为(1-110)n .由题意(1-110)n <13,两边同时取对数得n lg(1-110)<lg 1
3,所以n >-lg3
2lg3-1
=0.4771
0.0458≈10.42 故至少需要11块玻璃板. 三、解答题
13.已知log 34·log 48·log 8m =log 416,求m 的值. [解析] log 416=2,log 34·log 48·log 8m =log 3m =2, ∴m =9.
14.计算(lg 1
2+lg1+lg2+lg4+lg8+……+lg1024)·log 210.
知识改变命运
[解析] (lg 1
2+lg1+lg2+lg4+…+lg1024)·log 210=(-1+0+1+2+…+10)lg2·log 210
=-1+10
2×12=54.
15.若25a =53b =102c ,试求a 、b 、c 之间的关系. [解析] 设25a =53b =102c =k , 则a =15log 2k ,b =13log 5k ,c =12lg k . ∴log k 2=15a ,log k 5=13b ,log k 10=1
2c , 又log k 2+log k 5=log k 10,∴15a +13b =1
2c . 16.设4a
=5b
=m ,且1a +2
b =1,求m 的值.
[解析] a =log 4m ,b =log 5m .
∴1a +2
b =log m 4+2log m 5=log m 100=1,∴m =100.
17.已知二次函数f (x )=(lg a )x 2+2x +4lg a 的最大值是3,求a 的值.
[解析] ∵f (x )的最大值等于3
∴⎩⎪⎨⎪⎧
lg a <016lg 2
a -44lg a =3,∴(4lg a +1)(lg a -1)=0
∵lg a <0,∴lg a =-14
,∴a =10-
1
4.
薄雾浓云愁永昼,瑞脑消金兽。
佳节又重阳,玉枕纱厨,半夜凉初透。
东篱把酒黄昏后,有暗香盈袖。
莫道不消魂,帘卷西风,人比黄花瘦。
知识改变命运。