高一数学经典练习题
- 格式:pdf
- 大小:37.97 KB
- 文档页数:2
高一数学练习题加答案### 高一数学练习题加答案#### 一、选择题1. 若函数\( f(x) = 2x^3 - 3x^2 + 5x - 7 \),求\( f(2) \)的值。
A. 3B. 9C. 15D. 212. 已知\( a \),\( b \)是方程\( x^2 - 5x + 6 = 0 \)的两个根,求\( a + b \)的值。
A. 3B. 4C. 5D. 63. 若\( \sin \theta = \frac{3}{5} \),且\( \theta \)在第一象限,求\( \cos \theta \)的值。
A. \( \frac{4}{5} \)B. \( \frac{3}{5} \)C. \( \frac{12}{13} \)D. \( \frac{-12}{13} \)#### 二、填空题4. 计算\( \frac{1}{2} + \frac{1}{3} \)的结果是________。
5. 已知\( \log_{2}8 = 3 \),求\( \log_{2}16 \)的值。
6. 一个圆的半径为7,求该圆的面积。
#### 三、解答题7. 证明:若\( a \),\( b \),\( c \)是三角形的三边长,且\( a^2 + b^2 = c^2 \),则该三角形是直角三角形。
8. 已知函数\( y = x^2 - 4x + 4 \),求其顶点坐标。
9. 求圆\( x^2 + y^2 = 25 \)与直线\( y = x \)的交点坐标。
#### 四、计算题10. 计算下列定积分的值:\[ \int_{0}^{1} (3x^2 - 2x + 1) \, dx \]11. 计算下列级数的和:\[ \sum_{n=1}^{5} \frac{1}{n(n+1)} \]#### 五、应用题12. 一个工厂计划生产一批产品,已知固定成本为10000元,每生产一件产品的成本为50元。
如果每件产品的售价为100元,求工厂需要生产多少件产品才能盈利?#### 答案1. C. 15(\( f(2) = 2*2^3 - 3*2^2 + 5*2 - 7 = 16 - 12 + 10 - 7 = 15 \))2. C. 5(根据韦达定理,\( a + b = -(-5) = 5 \))3. A. \( \frac{4}{5} \)(根据勾股定理,\( \cos \theta =\sqrt{1 - \sin^2 \theta} = \sqrt{1 -\left(\frac{3}{5}\right)^2} = \frac{4}{5} \))4. \( \frac{5}{6} \)5. 4(\( \log_{2}16 = \log_{2}2^4 = 4 \))6. \( 49\pi \)(圆的面积公式为\( \pi r^2 \))7. 证明:根据勾股定理的逆定理,若\( a^2 + b^2 = c^2 \),则三角形\( \triangle ABC \)是直角三角形。
高一数学练习题及答案高一数学集合练习题及答案(通用5篇)导读:数学是一个要求大家严谨对待的科目,有时一不小心一个小小的小数点都会影响最后的结果。
下文应届毕业生店铺就为大家送上了高一数学集合练习题及答案,希望大家认真对待。
高一数学练习题及答案篇1一、填空题.(每小题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满足{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,-1},B={2a-1,| a-2 |,3a2+4},A∩B={-1},则a的值是( )A.-1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则下列结论正确的是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x-1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5- x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y2-1},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题满分10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx2-4x+m-1>0 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,-1} 1或-1或016、x=-1 y=-117、解:A={0,-4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={-4}时,把x=-4代入得a=1或a=7.当a=1时,B={0,-4}≠{-4},∴a≠1.当a=7时,B={-4,-12}≠{-4},∴a≠7.(4)若B={0,-4},则a=1 ,当a=1时,B={0,-4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,-4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2-ax+a2-19=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,-4 A,由3∈A,得32-3a+a2-19=0,解得a=5或a=-2?当a=5时,A={x|x2-5x+6=0}={2,3},与2 A矛盾;当a=-2时,A={x|x2+2x-15=0}={3,-5},符合题意.∴a=-2.19、解:A={x|x2-3x+2=0}={1,2},由x2-ax+3a-5=0,知Δ=a2-4(3a-5)=a2-12a+20=(a-2)(a-10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1-a+3a-5=0,得a=2,此时B={x|x2-2x+1=0}={1} A;若x=2,则4-2a+3a-5=0,得a=1,此时B={2,-1} A.综上所述,当2≤a<10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设矛盾.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x-1)(x+2)≤0}={x|-2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。
高一数学必修1习题及答案5篇习题1:已知∠ABC=60°,AB=4,BC=6,求AC的长度。
解答:通过画图可知,△ABC为一个等边三角形,因此AC=AB=4。
习题2:已知一条直线l1:x-2y+3=0,求平行于l1且过点P(1,2)的直线l2的方程式。
解答:l1的斜率为2,因此l2的斜率也为2。
同时,由于l2过点P(1,2),因此可得l2的方程式为y-2=2(x-1),即y=2x。
习题3:已知函数f(x)=2x-1,求f(3)的值和f(-2)的值。
解答:将3代入f(x)=2x-1,可得f(3)=2(3)-1=5。
将-2代入f(x)=2x-1,可得f(-2)=2(-2)-1=-5。
习题4:已知弧AB所对的圆心角为60°,AB的弧长为π,求该圆的半径。
解答:圆心角60°所对的弧长为圆的1/6,即π/6。
因此可知该圆的周长为2π,因此半径为1。
习题5:已知平面直角坐标系中两点A(2,5)和B(-3,-4),求线段AB的长度。
解答:通过勾股定理可知,线段AB的长度为√(2-(-3))^2+(5-(-4))^2=√25+81=√106。
以上是数学必修1的5道典型习题及解答,这些题目涵盖了数学必修1的不同知识点,包括三角函数、直线方程、函数、圆和勾股定理等。
对于高一学生来说,这些内容都是必须掌握的基础知识。
在学习数学时,不仅要了解知识点本身的定义和公式,还要学会思考如何运用所学知识解决问题。
因此,在学习习题时,除了知晓解答方法和答案外,还需深入思考,理解其背后的思维过程和逻辑。
在解答习题时,需要注意的是细节问题。
比如在第三道题中,如果没有注意到f(x)的定义式中有-1这一项,就会出现计算错误。
因此,在解答问题时,不仅需要整体考虑,还需要对计算细节进行仔细检查。
在学习数学时,还需要注重实践操作和分类整理。
对于复杂的习题和知识点,可以多练习相关问题,通过不断反复联系和思考,形成自己的解题思路和方法。
高一数学习题集绝对经典第一篇:数列1.已知数列$\{a_n\}$的通项公式为$a_n=n^2-3n+2$,求$\sum_{i=1}^{100}(a_i-a_{i-1})$的值。
2.设$a_1=1$,$a_2=2$,$a_3=3$,$a_n-a_{n-1}=a_{n-2}+a_{n-3}$,求$a_{20}$的值。
3.已知数列$\{a_n\}$满足$a_1=1$,$a_2=2$,$a_{n+1}=2a_n-a_{n-1}+2$,求$a_{100}$的值。
4.已知数列$\{a_n\}$满足$a_1=1$,$a_{n+1}=\frac{1}{2}(a_n+\frac{9}{a_n})$,证明数列$\{a_n\}$是单调递减的,并求$\lim_{n\to\infty}a_n$的值。
5.设$f(n)$为正整数$n$的各位数字的和,$a_n=f(a_{n-1})$,$a_1=2019$,$a_2=f(a_1)$,求数列$\{a_n\}$的最小正周期长度。
第二篇:函数1.已知函数$f(x)=\frac{6x-5e^{2x}}{e^{2x}-1}$,求$f(0)$和$f^{-1}(0)$。
2.已知函数$f(x)$在区间$[1,+\infty)$上为减函数,$g(x)=f(x)+\frac{1}{x}$,求$f(x)$在区间$[1,+\infty)$上的单调性,并判断$g(x)$在区间$[1,+\infty)$上的单调性。
3.已知函数$f(x)=2\log_2{\sin{x}}-\log_2{\cos{x}}$,求$f(x)$的定义域、值域和单调性。
4.已知函数$f(x)=xe^{3-2x}$,$g(x)=f^{-1}(x)$,求$g'(2)$和$g'(e^3)$的值。
5.已知函数$f(x)$在区间$[0,+\infty)$上连续且单调递减,且$\int_0^{+\infty}f(x)dx$收敛,证明$\lim_{x\to\infty}xf(x)=0$。
数学题高一试题及答案一、选择题1. 若函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的前三项分别为a1 = 1,d = 2,求a3的值。
A. 5B. 6C. 7D. 8答案:A3. 函数y = x^3 - 3x^2 + 2x + 1的极值点个数是:A. 0B. 1C. 2D. 3答案:C二、填空题4. 计算复数(1 + 2i)(3 - 4i)的结果为______。
答案:11 - 10i5. 已知圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,求该圆的半径。
答案:5三、解答题6. 已知函数f(x) = x^3 - 3x^2 + 2,求证f(x)在x = 2处取得极小值。
证明:首先求导数f'(x) = 3x^2 - 6x。
令f'(x) = 0,解得x = 0 或x = 2。
验证f''(x) = 6x - 6,代入x = 2,得到f''(2) = 6 > 0,因此f(x)在x = 2处取得极小值。
7. 解不等式:x^2 - 4x + 4 > 0。
解:将不等式转化为(x - 2)^2 > 0,由于平方项总是非负的,所以不等式成立当x ≠ 2。
因此,解集为{x|x ≠ 2}。
四、计算题8. 计算定积分∫(0到1) (2x + 3) dx。
解:首先求被积函数(2x + 3)的原函数F(x) = x^2 + 3x。
计算定积分,得到F(1) - F(0) = (1^2 + 3*1) - (0^2 + 3*0) = 4。
答案:49. 已知函数f(x) = √x,求f(x)在区间[1, 4]上的平均变化率。
解:平均变化率定义为(f(b) - f(a)) / (b - a),代入f(x) = √x,得到平均变化率= (√4 - √1) / (4 - 1) = (2 - 1) / 3 = 1/3。
高一数学练习题加答案一、选择题(每题3分,共30分)1. 已知集合A={1,2,3},B={2,3,4},求A∪B的值。
A. {1,2,3,4}B. {1,2,3}C. {2,3,4}D. {1,2,3,4,5}2. 函数f(x)=2x^2-3x+1在x=1处的导数是:A. 1B. 2C. 3D. 43. 若a>0,b>0,且a+b=1,求ab的最大值。
A. 0B. 1/4C. 1/2D. 14. 已知等差数列的首项a1=3,公差d=2,求第5项a5的值。
A. 11B. 13C. 15D. 175. 圆的方程为(x-2)^2+(y-3)^2=9,求圆心坐标。
A. (2,3)C. (-2,3)D. (-3,2)6. 已知直线l的方程为y=2x+1,求直线l的斜率。
A. 1B. 2C. 3D. 47. 函数y=x^3-3x^2+2在x=1处的值是:A. -1B. 0C. 1D. 28. 已知三角形ABC,a=3,b=4,c=5,求角A的余弦值。
A. 1/4B. 1/3C. 1/2D. 3/49. 已知向量a=(2,3),b=(-1,2),求a·b的值。
A. -1B. 0C. 1D. 210. 已知二次函数f(x)=x^2-4x+3,求其顶点坐标。
A. (2,-1)B. (2,1)D. (-2,-1)二、填空题(每题2分,共20分)11. 已知集合M={x|x<5},N={x|x>3},则M∩N=______。
12. 函数f(x)=x^2+2x+1的最小值出现在x=______。
13. 若a=2,b=-1,则ab+2a+b的值为______。
14. 已知数列{an}的通项公式为an=2n-1,第10项a10的值为______。
15. 已知椭圆的长轴为2a,短轴为2b,求椭圆的面积公式为______。
16. 已知函数y=1/x的图像在第一象限的斜率是______。
17. 已知向量c=(1,0),d=(0,1),求向量c×d的值。
高一数学经典习题集(内附带三角函数公式)集合1.设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和__________2.集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则AB = .3.已知集合 =A {2,3,2a +4a +2}, B ={0,7, 2a +4a -2,2-a },且A B={3,7},求a 值______4.已知:A={1,2,3},B={1,2,3},那么可以作 个A 到B 上的映射,那么可以作 个A 到B 上的一一映射. 5.已知A ={x|121m x m +≤≤-},B ={x|25x -≤≤},若A ⊆B ,求实数m 的取值范围_______6.已知设数集3{|}4M x m x m =≤≤+,1{|}3N x n x n =-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做集合{}|x a x b ≤≤的“长度”,那么集合MN 的长度的最小值是______________.7.已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数为( )(A ) 1 (B )0 (C )1或0 (D ) 1或2 8.已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 ( )A.(0,2),(1,1)B.{(0,2),(1,1)}C. {1,2}D.{}2≤y y9.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为 ( ).A .9 B. 14 C.18 D.21 10.如图所示,,,是的三个子集,则阴影部分所表示的集合是 ( )A .B .C .D .11.定义集合A 与集合B 的“差集”为:}|{B x A x x B A ∉∈=-且,则 )(B A A --总等于( )(A )A ; (B )B ;(C )B A ⋂;(D )B A ⋃12.已知集合,,若,求实数的取值范围.函数1.、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;2..函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 3..已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
高一数学练习试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-6x+8,则f(1)的值为()A. 3B. 5C. -3D. -12. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B 为()A. {1, 2}B. {2, 3}C. {1, 3}D. {2}3. 若a,b,c是等差数列,且a+c=10,b=5,则a+b+c的值为()A. 15B. 20C. 25D. 304. 函数y=x^3-3x^2+2在x=1处的导数为()A. 0B. 1C. -1D. 25. 已知向量a=(3, -2),b=(1, 2),则向量a+b的坐标为()A. (4, 0)B. (2, 0)C. (1, 0)D. (0, 0)6. 已知函数f(x)=2sin(x)+√3cos(x),x∈[0, 2π],则f(x)的最大值为()A. 3B. 2C. 1D. 07. 已知双曲线x^2/a^2 - y^2/b^2 = 1的离心率为√5,且a=1,则b的值为()A. 2B. 3C. 4D. 58. 已知直线l:y=kx+b与圆x^2+y^2=1相切,则|b|的最小值为()A. 0B. 1C. √2D. 29. 已知等比数列{an}的前n项和为S_n,若a_1=1,q=2,则S_4的值为()A. 15B. 16C. 8D. 410. 已知函数f(x)=x^2-4x+m,若f(x)在[2, +∞)上单调递增,则实数m的取值范围为()A. m≥-4B. m>-4C. m<-4D. m≥0二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x+1,则f'(x)=_________。
12. 已知向量a=(2, 3),b=(-1, 2),则向量a·b=_________。
13. 已知等差数列{an}的公差d=3,a_1=2,则a_5=_________。
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
高一数学试题及答案第一部分:选择题1. 设函数f(x) = x^2 4x + 3,求f(2)的值。
A. 1B. 0C. 1D. 22. 已知等差数列{an}的公差为2,且a1 = 3,求a5的值。
A. 7B. 9C. 11D. 133. 设集合A = {x | x > 0},B = {x | x < 5},求A∩B的值。
A. {x | x > 0, x < 5}B. {x | x > 5}C. {x | x < 0}D. {x | x < 5, x > 0}4. 若直线y = kx + 2与圆x^2 + (y 1)^2 = 4相切,求k的值。
A. 1B. 1C. 2D. 25. 设函数g(x) = |x 1| + |x + 1|,求g(x)的最小值。
A. 0B. 1C. 2D. 36. 若等比数列{bn}的首项为2,公比为3,求bn的第5项。
A. 162B. 243C. 4D. 7297. 已知函数h(x) = x^3 3x^2 + 2x,求h(x)的导数。
A. 3x^2 6x + 2B. 3x^2 6x 2C. 3x^2 + 6x + 2D. 3x^2 + 6x 28. 若直线y = mx + 1与直线y = 2x + 4平行,求m的值。
A. 2B. 2C. 1D. 19. 设集合C = {x | x^2 5x + 6 = 0},求C的值。
A. {2, 3}B. {1, 4}C. {2, 4}D. {1, 3}10. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的顶点坐标为(2,3),求b的值。
A. 12B. 12C. 6D. 6答案:1. A2. C3. A4. B5. B6. D7. A8. D9. C10. B第一部分:选择题答案解析1. 解析:将x = 2代入f(x) = x^2 4x + 3中,得到f(2) =2^2 42 + 3 = 1。
高一数学练习题及答案高一数学练习题及答案数学是一门重要的学科,对于高中生来说,数学的学习尤为关键。
高一学年是数学知识的基础阶段,掌握好这个阶段的知识对于后续学习的顺利进行至关重要。
为了帮助同学们更好地复习和巩固高一数学知识,下面将给出一些高一数学练习题及答案。
一、函数与方程1. 已知函数 f(x) = 2x + 3,求 f(5) 的值。
答案:f(5) = 2(5) + 3 = 13。
2. 解方程 2x + 5 = 17。
答案:2x + 5 = 172x = 17 - 52x = 12x = 6。
二、平面几何1. 已知三角形 ABC,其中∠ABC = 90°,AB = 5 cm,BC = 12 cm,求 AC 的长度。
答案:根据勾股定理,AC² = AB² + BC²AC² = 5² + 12²AC² = 25 + 144AC² = 169AC = √169AC = 13 cm。
2. 已知正方形 ABCD,边长为 6 cm,求对角线 AC 的长度。
答案:对角线 AC 的长度等于正方形边长的平方根的两倍。
AC = 6√2 cm。
三、概率与统计1. 一枚硬币抛掷十次,求正面朝上的次数。
答案:由于硬币只有正反两面,所以正面朝上的次数只能是 0 到 10 之间的整数。
可以用组合数学的方法计算正面朝上的次数:正面朝上的次数 = C(10, 0) + C(10, 1) + C(10, 2) + C(10, 3) + C(10, 4) + C(10, 5) + C(10, 6) + C(10, 7) + C(10, 8) + C(10, 9) + C(10, 10)正面朝上的次数 = 1 + 10 + 45 + 120 + 210 + 252 + 210 + 120 + 45 + 10 + 1正面朝上的次数 = 1024。
高一数学试题精选及答案一、选择题(每题4分,共40分)1. 下列函数中,为增函数的是:A. y = -x^2B. y = 2x - 1C. y = 1/xD. y = x^32. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B:A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {1, 4}3. 若a,b,c为实数,且a^2 + b^2 = c^2,下列哪个选项是正确的:A. a = b = cB. a + b = cC. a * b = cD. a = b 或 b = c4. 函数f(x) = |x - 2|的零点是:A. x = 0B. x = 2C. x = 1D. x = 35. 已知等差数列的首项a1=3,公差d=2,求第10项a10:A. 23B. 25C. 27D. 296. 根据题目所给的几何图形,求其面积:A. 12B. 20C. 24D. 287. 若sinθ = 1/3,且θ在第一象限,求cosθ的值:A. 2√2/3B. √3/3C. √6/3D. 2√6/38. 根据题目所给的统计数据,求平均数:A. 20B. 25C. 30D. 359. 已知方程x^2 - 5x + 6 = 0,求x的值:A. x = 2, 3B. x = 1, 6C. x = 3, 4D. x = 4, 510. 下列哪个是二项式定理的展开式:A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3D. (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3二、填空题(每题3分,共15分)11. 若函数f(x) = x^2 + 2x - 3在区间[-4, 1]上是减函数,则f(-4) = ______。
高一数学练习题及答案高一数学练习题及答案一、选择题(每题4分,共40分)1、下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数2、集合{a,b,c}的真子集共有个()A7B8C9D103、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是()A.6B.7C.8D.94、若U={1,2,3,4},M={1,2},N={2,3},则CU(M∪N)=()A.{1,2,3}B.{2}C.{1,3,4}D.{4}xy15、方程组xy1的解集是()A.{x=0,y=1}B.{0,1}C.{(0,1)}D.{(x,y)|x=0或y=1}6、以下六个关系式:00,0,0.3Q,0N,a,bb,a,x|x220,xZ是空集中,错误的个数是()A4B3C2D17、点的`集合M={(x,y)|xy≥0}是指()A.第一象限内的点集B.第三象限内的点集C.第一、第三象限内的点集D.不在第二、第四象限内的点集8、设集合A=xx2,B=xxa,若AB,则a的取值范围是()Aaa2Baa1Caa1Daa29、满足条件M1=1,2,3的集合M的个数是()A1B2C3D410、集合Px|x2k,kZ,Qx|x2k1,kZ,Rx|x4k1,kZ,且aP,bQ,则有()AabPBabQCabRDab不属于P、Q、R中的任意一个二、填空题(每题3分,共18分)11、若A{2,2,3,4},B{x|xt2,tA},用列举法表示12、集合A={x|x+x-6=0},B={x|ax+1=0},若BA,则a=__________213、设全集U=2,3,a2a3,A=2,b,CUA=5,则a=,b=。
214、集合Ax|x3或x3,Bx|x1或x4,AB____________.15、已知集合A={x|xxm0},若A∩R=,则实数m的取值范围是16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人.三、解答题(每题10分,共40分)17、已知集合A={x|x+2x-8=0},B={x|x-5x+6=0},C={x|x-mx+m-19=0},若B∩C≠Φ,A∩C=Φ,求m的值2222218、已知二次函数f(x)=xaxb,A=xf(x)2x22,试求f(x)的解析式2219、已知集合A1,1,B=xx2axb0,若B,且ABA求实数a,b的值。
高一数学习题集1. 符合{}a ≠⊂{,,}P a b c ⊆的集合P 的个数是2. 设{1,2,3,4,5,6,7,8}U =,{3,4,5},{4,7,8}.A B ==则 ()()U U A B =I ðð , U ()()U A B =U ðð3. “a >5且b <6”的否定形式为__________4. 已知条件:{15}x x x x α∈<−>或,:{4}x x a x a β∈≤<+,且β是α的充分不必要条件,则实数a 的取值范围5. 经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车的家庭有20家,则电话和农用三轮车至少有一种的家庭数为6. 已知集合22{31},{31}P x x m m T x x n n ==++==−+,有下列判断: ①5{}4P T y y =≥−I ②5{}4P T y y =≥−U ③P T =∅I ④P T = 其中正确的是 .7. 设全集{(,),},I x y x y R =∈集合3{(,)1},{(,)1}2y M x y N x y y x x −===≠+−,那么 I I ()()M N I ðð等于8. 已知集合2{10},A x x =++=若A R =∅I ,则实数m 的取值范围是 .9. 若a 、b ∈R ,则b a −=a +b 的充分必要条件是( )(A )ab <0 (B )ab ≤0 (C )ab >0 (D )ab =0 10. 设U 为全集,集合A 、B 、C 满足A B A C =U U ,则下列各式中一定成立的是( )A.A B A C =I IB.B C =C. ()()U U A B A C =I I ððD. ()()U U A B A C =I I ðð 11. 已知全集U ,集合P 、Q ,下列命题: ,,(),U P Q P P Q Q P Q ===∅I U I ð (),U P Q U =U ð其中与命题P Q ⊆等价的有 ( )A.1 个B. 2个C. 3 个D.4个12. 已知{|3,},{|31,},{|31,}M x x n n Z N x x n n Z P x x n n Z ==∈==+∈==−∈,且a M ∈,b N ∈c P ∈,设c b ad +−=,则∈d ( )(A )M (B )N (C )P (D )P M U13. 设集合2{1,2,},{1,}A a B a a ==−,若A B ⊇求实数a 的值.14. 已知命题:若a 、b 是整数,则方程x 2+ax +b =0有两整数根,写出此命题的逆命题、否命题,逆否命题,并判断它们的真假.15. 已知由实数组成的集合A 满足:若x A ∈,则11A x∈−. (1) 设A 中含有3个元素,且2,A ∈求A;(2) A 能否是仅含一个元素的单元素集,试说明理由.16. 已知集合A ={x |x 2+px +q =0},B ={x |qx 2+px +1=0}同时满足:(1)A ∩B ≠∅;(2)A ∩ R B ð={-2},其中p ,q 均为不等于零的实数,求p 、q 的值.《集合部分》 17. 已知集合8|6A x N x =∈ −,用列举法表示集合A= 18. 设{}2|320A x x x =−+=,{}|20B x ax =−=,且满足B A ⊆,则实数a 组成的集合是19. 已知{}|32,A x x k k Z ==−∈,{}|31,B y y l l Z ==+∈,{}|61,C z z m m Z ==+∈,则集合A 、B 、C 之间的关系是20. 若{}2(,)|,A x y y x x R ==∈,{}2(,)|223,B x y y x x x R ==+−∈,则A B I =21. 设集合{}|110,A x x x N =≤≤∈,{}2|1236,B y y x x x A ==−+∈,则A B I =22. 设{}22,4,1U a a =−+,{}2,1A a =+,{} 7U A =ð,则a=23. 已知集合{}2|20M x x mx =−+=,则满足{}1,2M M =I 的集合M 的个数为24. 满足条件{}1,2,3,4A B =U ,且A B =∅I 的集合A 、B 有 组25. “x M ∈或x P ∈”是“()x M P ∈I ”的 条件26. 方程2210mx x ++=至少有一个负根的充要条件是27. 设P 、S 、T 是三个非空集合,已知“x P ∈”是“x S ∈或x T ∈”成立的充要条件,则“x S ∈”是“x P ∈”成立的 条件28. 设P 、S 、T 是三个非空集合,已知“x P ∈”是“x S ∈且x T ∈”成立的充要条件,则“x S ∈”是“x P ∈”成立的 条件29. 已知集合{}2|120P x x mx =++=,{}2|50Q x x x n =−+=,且满足{} 2R P Q =I ð,则mn =30. 已知集合{},M a b =,则满足{},,M T a b c ⊆U 的集合T 的个数为31. 若{}2|20A x x x a =++=≠∅,a R ∈,则A 中所有元素之和为32. 已知A B =∅I ,{}|M T T A =⊆,{}|P S S B =⊆,则M P =I33. 已知集合{}2|150A x x ax =−+=,{}2|50B x x x c =−+=,且{}2,3,5A B =U ,则A B =I34. 设{}2|0A x x a =−<,{}|2B x x =<,若A B A =I ,则实数a 的取值范围是35. 已知全集{}1,2,3,4,5,6,7,8U =,集合A 、B 满足{} 1,5U A B =I ð,{} 3,7U A B =I ð,{} ()4,8U A B =U ð,则集合A=36. 写出命题“若a A ∈,则b A ∉”的等假命题37. 已知全集为U ,集合A 、B 为其子集,并定义集合运算:{}|,X Y x x X x Y −=∈∉,则()()X Y Y X −−=U38. 写出一个a b >与11a b>能同时成立的充要条件 39. 已知11a b −<<<,则a b −的取值范围是40. 已知1a <,集合{}|210A x x =+≥,{}|1B x a x =<<,若A B B =I ,则实数a 的取值范围是41. 方程组6xy x y k = +=有实数解,则k 的取值范围是 42. 设全集为R ,集合{}2|60A x x x =−−<,{}2|280B x x x =+−≥,则A B =I , R R A B =I ðð43. 给定函数2()f x x ax b =++,若对任意,x y R ∈,均有()()()pf x qf x f px qy +≥+,其中1p q +=,则p ∈44. 关于x 的方程2210kx x −−=在(0,1)x ∈内恰有一解,则k 的取值范围是45. 若关于x 的方程22210x mx m −+−=的两根介于2−与4之间,则实数m 的取值范围是46. 解不等式:21(10x a x a−++≥ 47. 不等式211x x x >+−的解集是 48. 若关于x 的不等式21x x a ++−<的解集为∅,则实数a 的解集为49. 解不等式:(1)12a x x −>− 50. 关于x 的不等式2043x a x x +>++的解是(3,1)(2,)−−+∞U ,则a = 51. 若关于x 的不等式25x x a −−+<的解集为R ,则a 的取值范围是52. 已知集合{}2|320A x ax x =−+=至多有一个元素,则a 的取值范围是 53. 已知全集{}(,)|,U x y x R y R =∈∈,集合4(,)|2,,1y A x y x R y R x − ==∈∈ +,集合{}(,)|26,,B x y y x x R y R =≠+∈∈,则 U U A B =I ðð54. 已知集合{}|A x y x Z ==∈,{}|21,B y y x x A ==−∈,则A B =I55. 某班有36名同学参加了数学、物理和化学竞赛小组,每名同学至多参加两个小组,已知参加数学、物理、化学竞赛小组的人数分别为26、15、13人,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有 人56. 设M 、P 是两个非空集合,定义集合M 和P 的运算:{}|,M P x x M x P −=∈∉,则()M M P −−=57. 已知非空集合{}1,2,3,4,5,6S ⊆,满足:若a S ∈,则必有7a S −∈,则这样的集合S 有 个58. 已知集合A 、B ,若A 不是B 的子集,则说明59. 若1|,6M x x m m Z ==+∈ ,1|,23n N x x n Z ==−∈ ,1|,26p P x x p Z ==+∈,则M 、N 、P 的关系是60. 已知集合{}|24A x x =−≤≤,{}|1B x x a =−<<,若A B I 中有且只有一个整数,则实数a 的取值范围是61. 已知{}22|,31,,A x x m m n m Z n Z ==−=∈∈(1) 若a A ∈,求证:1A a∈A ;(2) 若b A ∈,12b <≤+,求b 的值;(3) 若c A ∈,27c <≤+,求c 的值。
高一精选数学习题带答案作为高中阶段学习的重要科目之一,数学不仅仅是一门知识,更是一种思考方式和解决问题的能力。
因此,做好数学学习和练习十分重要。
以下是一些高一精选数学习题,希望能帮助大家更好地掌握和应用数学知识。
一、函数与方程1.设y=a|x-2|+b,当x=1时,y=3,当x=5时,y=-1,求a和b的值。
解:将x=1和x=5代入方程中,得到两个方程:a|1-2|+b=3,a|5-2|+b=-1。
化简可得:a+b=5,3a+b=-1。
解出a=-2,b=7。
2. 已知函数f(x)=x^3+px^2+qx+r,当x=1时,f(x)=1;当x=2时,f(x)=-3,当x=3时,f(x)=4。
求函数f(x)的表达式。
解:将x=1,2,3代入方程中得到三个方程,解得p=-6,q=11,r=-3。
因此,函数f(x)=x^3-6x^2+11x-3。
二、三角函数1. 已知正弦函数f(x)=2sin(x+π/6),求f(x)图像的对称中心、对称轴和极值点。
解:f(x)的对称中心为x=-π/6,对称轴为x=-π/6,极大值为f(-π/3)=2,极小值为f(5π/6)=-2。
2. 已知余切函数f(x)=(1+tanx)/(1-tanx),求f(x)的最大值和最小值。
解:将f(x)化简为f(x)=1+cotx,因为cotx的定义域为(0,π),因此f(x)的最大值为f(0)=1,最小值为f(π/2)=0。
三、解析几何1. 已知平面上三角形三个顶点的坐标分别为A(2,1),B(-1,3),C(4,5),求三角形ABC的周长和面积。
解:使用勾股定理可以求出AB、AC和BC的长度,即AB=√10,AC=√26,BC=√13。
因此,三角形ABC的周长为√10+√26+√13,使用海伦公式可以求出三角形ABC的面积,即S=√14。
2. 求过直线y=2x+1且与两坐标轴的交点分别为A和B的直线方程。
解:直线过点A(-1/2,0)和B(0,1),因此可列出两个方程进行求解,即y=2x+1和y=(1-x)/2。
高一数学练习题加答案在高一数学的学习中,练习题是帮助学生巩固知识点和提高解题能力的重要工具。
以下是一些高一数学的练习题,以及相应的答案,供学生参考和练习。
练习题一:集合的概念与运算1. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。
2. 若集合C = {x | x > 5},D = {x | x < 10},求C∩D。
3. 集合E = {x | x^2 - 4x + 3 = 0},求E的元素。
答案一:1. A∪B = {1, 2, 3, 4}。
2. C∩D = {x | 5 < x < 10}。
3. E = {1, 3}。
练习题二:函数的基本概念1. 判断函数f(x) = x^2 - 4x + 3的单调性。
2. 求函数g(x) = 3x + 2的反函数。
3. 已知f(x) = 2x + 1,求f(-1)。
答案二:1. 函数f(x) = x^2 - 4x + 3在(-∞, 2]上单调递减,在[2, +∞)上单调递增。
2. 函数g(x) = 3x + 2的反函数为g^(-1)(x) = (x - 2) / 3。
3. f(-1) = 2*(-1) + 1 = -1。
练习题三:不等式的解法1. 解不等式:2x + 5 > 3x - 2。
2. 已知不等式组:\[ \begin{cases} x + y \geq 3 \\ 2x - y \leq 4 \end{cases} \],求其解集。
3. 解绝对值不等式:|x - 2| < 4。
答案三:1. 解得:x < 7。
2. 解集为:1 ≤ x ≤ 5,y ≥ -2。
3. 解得:-2 < x < 6。
练习题四:三角函数的基本性质1. 已知sinθ = 3/5,求cosθ(假设θ为锐角)。
2. 求值:\[ \sin(\frac{\pi}{6}) + \cos(\frac{\pi}{6}) \]。
高一数学练习题带答案高一数学是高中数学学习的重要基础阶段,涵盖了代数、几何、函数等多个领域。
以下是一些高一数学练习题及答案,供同学们练习和参考。
练习题一:代数基础1. 解不等式:\( 2x - 5 < 3x + 1 \)2. 化简表达式:\( \frac{3x^2 - 7x + 2}{x - 1} \)3. 求多项式\( 4x^3 - 3x^2 + 2x - 1 \)的因式分解。
答案一:1. 解不等式:首先将不等式两边的\( x \)项合并,得到\( -x < 6 \),然后两边同时除以-1,注意不等号方向要改变,得到\( x > -6 \)。
2. 化简表达式:通过长除法或多项式除法,可以得到\( 3x - 5 \)。
3. 因式分解:首先提取公因式\( x - 1 \),得到\( x - 1 (4x^2 - 4x + 2) \),然后对余下的二次多项式继续分解,得到\( x - 1 (2x - 1)(2x - 2) \)。
练习题二:几何问题1. 在直角三角形ABC中,角C为直角,已知AB=5,AC=3,求BC的长度。
2. 已知圆的半径为7,求圆的面积。
3. 已知点P(1,2),求点P到直线\( x - 2y + 3 = 0 \)的距离。
答案二:1. 根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和,即\( BC^2 = AB^2 - AC^2 = 5^2 - 3^2 = 25 - 9 = 16 \),所以BC=4。
2. 圆的面积公式为\( A = \pi r^2 \),代入半径r=7,得到\( A =49\pi \)。
3. 点到直线的距离公式为\( d = \frac{|Ax + By + C|}{\sqrt{A^2+ B^2}} \),代入点P(1,2)和直线方程\( x - 2y + 3 = 0 \),得到\( d = \frac{|1 - 4 + 3|}{\sqrt{1^2 + (-2)^2}} =\frac{0}{\sqrt{5}} = 0 \)。
高一数学练习及答案一、单选题1.已知全集U ={1,2,3,4,5,6,7} ,集合A ={1,3,5,6} ,则∁U A = ( ) A .{1,3,5,6} B .{2,3,7} C .{2,4,7} D .{2,5,7} 【答案】C【解析】直接利用补集的定义求解即可. 【详解】全集U ={1,2,3,4,5,6,7} ,集合A ={1,3,5,6} , 所以∁U A ={2,4,7}. 【点睛】本题主要考查了集合的补集运算,属于基础题. 2.函数f (x )=√2x+1x的定义域为( )A .(−12,+∞) B .[−12,+∞) C .(−12,0)∪(0,+∞) D .[−12,0)∪(0,+∞) 【答案】D【解析】直接由根式内部的代数式大于等于0,分式的分母不等于0,联立不等式组求解即可. 【详解】解:由{2x +1⩾0x ≠0,解得x ⩾−12且x ≠0.∴函数f(x)=√2x+1x 的定义域为[−12,0)∪(0,+∞).故选:D . 【点睛】本题考查函数的定义域及其求法,考查不等式的解法,是基础题.3.已知函数f (x )={3−x,x >0x 2+4x+3,x≤0则f (f (5))=( ) A .0 B .−2 C .−1 D .1 【答案】C【解析】分段函数求函数值时,看清楚自变量所处阶段,分别代入不同的解析式求值即可得结果. 【详解】解:因为5>0,代入函数解析式f(x)={x 2+4x +3,x ⩽ 03−x,x >0得f (5)=3−5=−2,所以f(f (5))=f(−2),因为−2<0,代入函数解析式f(x)={x 2+4x +3,x ⩽ 03−x,x >0 得f(−2)=(−2)2+4×(−2)+3=−1.故选:C . 【点睛】本题考查了分段函数的定义,求分段函数函数值的方法,属于基础题. 4.若角α的顶点在坐标原点,始边在x 轴的非负半轴上,终边经过点(1,-2),则tanα的值为( ) A .√55 B .−2 C .−2√55 D .−12【答案】B【解析】根据任意角的三角函数的定义即可求出. 【详解】解:由题意可得x =1,y =−2,tanα=yx =−2, 故选:B . 【点睛】本题主要考查任意角的三角函数的定义,属于基础题.5.下列函数中,在其定义域内既是奇函数又是增函数的是( ) A .y =log 3x B .y =1x C .y =x 3D .y =x 12【答案】C【解析】对选项一一判断函数的奇偶性和单调性,即可得到结论.【详解】解:A,y=log3x(x>0)在x>0递增,不具奇偶性,不满足条件;B,函数y=1x是奇函数,在(−∞,0),(0,+∞)上是减函数,在定义域内不具备单调性,不满足条件;C,y=x3,y′=3x2⩾0,函数为增函数;(−x)3=−x3,函数是奇函数,满足条件;D,y=x 12=√x,其定义域为[0,+∞),不是奇函数,不符合题意.故选:C.【点睛】本题考查函数的奇偶性和单调性的判断,掌握常见函数的单调性和奇偶性是解题的关键,属于基础题.6.函数f(x)=lnx+3x-4的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(2,4)【答案】B【解析】根据函数零点的判定定理可得函数f(x)的零点所在的区间.【详解】解:∵函数f(x)=lnx+3x−4在其定义域上单调递增,∴f(2)=ln2+2×3−4=ln2+2>0,f(1)=3−4=−1<0,∴f(2)f(1)<0.根据函数零点的判定定理可得函数f(x)的零点所在的区间是(1,2),故选:B.【点睛】本题考查求函数的值及函数零点的判定定理,属于基础题.7.若a=50.3,b=0.35,c=log0.35,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b【答案】A【解析】利用指数函数、对数函数的单调性直接求解.【详解】解:∵a=50.3>50=1,0<b=0.35<0.30=1,c=log0.35<log0.31=0,∴a,b,c的大小关系为a>b>c.故选:A.【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,是基础题.8.已知函数y=x2+2(a-1)+2在(-∞,4)上是减函数,则实数a的取值范围是()A.[3,+∞)B.(−∞.−3]C.[−3,+∞)D.(−∞,3]【答案】B【解析】求出函数y=x2+2(a−1)+2的对称轴,结合二次函数的性质可得1−a⩾4,可得a的取值范围.【详解】解:根据题意,函数y=x2+2(a−1)+2开口向上,且其对称轴为x=1−a,若该函数在(−∞,4)上是减函数,必有1−a⩾4,解可得:a⩽−3,即a的取值范围为(−∞,−3];故选:B.【点睛】本题考查二次函数的性质,分析该二次函数的对称轴与区间端点是解题关键,属于基础题.9.为了得到函数y=sin(2x+π3)的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B.向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D.向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】利用左加右减的原则,直接推出平移后的函数解析式即可.【详解】解:将函数y=sinx的图象向左平移π3个单位后所得到的函数图象对应的解析式为:y=sin(x+π3),再把所得各点的横坐标缩短到原来的12倍,所得到的函数图象对应的解析式为y=sin(2x+π3).故选:A.【点睛】本题考查三角函数的图象变换,平移变换中x的系数为1是解题关键,属于基础题.10.已知sinα,cosα是方程3x2-2x+a=0的两根,则实数a的值为()A.65B.−56C.43D.−34【答案】B【解析】根据韦达定理表示出sinα+cosα及sinαcosα,利用同角三角函数间的基本关系得出关系式,把表示出的sinα+cosα及sinαcosα代入得到关于a 的方程,求出方程的解可得a 的值. 【详解】解:由题意,根据韦达定理得:sinα+cosα=23,sinαcosα=a3,∵sin 2α+cos 2α=1 ∴sin 2α+cos 2α=(sinα+cosα)2−2sinαcosα=49−2a 3=1,解得:a =−56,把a =−56,代入原方程得:3x 2−2x −56=0,∵△>0, ∴a =−56符合题意. 故选:B . 【点睛】本题考查三角函数的化简求值,同角三角函数基本关系及韦达定理的应用,属于基础题.11.已知函数f (x )={log a x,x ≥1(3a−1)x+4a,x<1的值域为R ,则实数a 的取值范围为()A .(0,1)B .[17,1) C .(0,17]∪(1,+∞) D .[17,13)∪(1,+∞) 【答案】C【解析】运用一次函数和对数函数的单调性可解决此问题. 【详解】 解:根据题意得,(1)若f(x)两段在各自区间上单调递减,则: {3a −1<00<a <1(3a −1)·1+4a ≤log a 1 ; 解得0<a ≤17;(2)若f(x)两段在各自区间上单调递增,则: {3a −1>0a >1(3a −1)·1+4a ≥log a 1 ;解得a >1;∴综上得,a 的取值范围是(0,17]∪(1,+∞) 故选:C . 【点睛】本题考查一次函数、对数函数以及分段函数单调性的判断,值域的求法,属于基础题.12.设函数f (x )={3x +4,x <0x 2−2x+2,x≥0,若互不相等的实数x1,x2,x3满足f (x1)=f (x2)=f (x3),则x1+x2+x3的取值范围是( ) A .[43,+∞) B .[1,43) C .(1,43] D .(1,+∞) 【答案】C【解析】作出函数f(x)的图象,根据对称求得x 1+x 2+x 3的取值范围即可. 【详解】解:函数f(x)={x 2−2x +2,x ⩾03x +4,x <0,函数的图象如下图所示:不妨设x 1<x 2<x 3,则x 2,x 3关于直线x =1对称,故x 2+x 3=2,∵1<3x +4≤2,∴ −1<x 1⩽−23,则x 1+x 2+x 3的取值范围是:1<x 1+x 2+x 3⩽43; 即x 1+x 2+x 3∈(1,43] 故选:C .【点睛】本题考查分段函数图象的作法、函数的值域的应用、函数与方程的综合运用等基础知识,考查运算求解能力与数形结合思想,化归与转化思想,属于基础题.二、填空题13.在半径为10的圆中,30°的圆心角所对的弧长为______. 【答案】5π3【解析】根据弧长公式l =nπr 180进行计算即可.【详解】解:在半径为10的圆中,30°的圆心角所对的弧长是:30×π×10180=5π3.故答案为:5π3. 【点睛】此题主要考查了弧长公式的应用,熟记弧长公式是解题关键,属于基础题. 14.若cosα=−35,且α∈(π,3π2),则tanα= ;【答案】 【解析】略15.已知函数f (x )=ax3+bx+2,且f (π)=1,则f (-π)=______. 【答案】3【解析】根据题意,设g(x)=f(x)−2=ax 3+bx ,分析可得g(x)为奇函数,进而可得g(π)+g(−π)=[f(π)−2]+[f(−π)−2]=0,计算可得f(π)的值,即可得答案. 【详解】解:根据题意,设g(x)=f(x)−2=ax 3+bx ,则g(−x)=a(−x)3+b(−x)=−(ax 3+bx)=−g(x),则g(x)为奇函数,则g(π)+g(−π)=[f(π)−2]+[f(−π)−2]=0,因为f (π)=1,则有f(−π)=3; 故答案为:3 【点睛】本题考查函数的奇偶性的性质,注意构造g(x)=f(x)−2,分析g(x)的奇偶性是解题关键,属于基础题.16.如果定义在R 上的函数f (x )满足对任意x1≠x2都有x1f (x1)+x2f (x2)>x1f (x2)+x2f (x1),则称函数f (x )为“H 函数”,给出下列函数:①f (x )=2x-5;②f (x )=x2;③f (x )={x +2,x ≥−1−1x ,x,−1 ;④f (x )=(12)x .其中是“H 函数”的有______.(填序号) 【答案】①③【解析】根据题意,将x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1),变形可得:[f(x 1)−f(x 2)](x 1−x 2)>0,分析可得函数f(x)为增函数;依次分析4个函数在R 上的单调性,综合即可得答案. 【详解】解:根据题意,若x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1), 变形可得:[f(x 1)−f(x 2)](x 1−x 2)>0, 则函数f(x)为增函数;对于①,f(x)=2x −5,在R 上是增函数,是“H 函数”,对于②,f(x)=x 2,是二次函数,在R 上不是增函数,不是“H 函数”, 对于③,f(x)={x +2,x ⩾−1−1x,x <−1;是分段函数,在R 上是增函数,是“H 函数”, 对于④,f(x)=(12)x ,是指数函数,在R 上是减函数,不是“H 函数”, 故其中为“H 函数”的有①③; 故答案为:①③. 【点睛】本题考查函数的单调性的性质以及判定,关键是对x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1)的变形分析,属于基础题.三、解答题17.已知全集为R ,集合A={x|2≤x <4},B={x|2x-7≥8-3x},C={x|x <a}. (1)求A∩B ,A ∪(∁RB ); (2)若A∩C=A ,求a 的取值范围.【答案】(1)A ∩B ={x|4>x ≥3},A ∪(C R B )={x|x <4};(2)[4,+∞). 【解析】(1)根据集合的基本运算即可求A ∩B ,(∁R B)∪A ;(2)根据A ∩C =A ,可得A ⊆C ,建立条件关系即可求实数a 的取值范围. 【详解】解:(1)集合A ={x |2≤x <4},B ={x |2x -7≥8-3x }={x |x ≥3}, ∴A ∩B ={x |2≤x <4}∩{x |x ≥3}={x |4>x ≥3}; ∵∁R B ={x |x <3}, ∴A ∪(∁R B )={x |x <4};(2)集合A ={x |2≤x <4},C ={x |x <a }. ∵A ∩C =A ,可得A ⊆C , ∴a ≥4.故a 的取值范围是[4,+∞). 【点睛】本题主要考查集合的基本运算,属于基础题. 18.已知f (α)=sin(π−α)cos(π2+α)cos(π+α)sin(3π2−α)cos(3π2+α)sin(π2−α).(1)化简f (α);(2)若f (α)=12,求sinα−3cosαsinα+cosα的值. 【答案】(1)−tanα;(2)−7.【解析】(1)利用诱导公式化简即可得到结果; (2)由(1)知tanα值,再弦化切,即可得出结论.【详解】解:(1)f (α)=sin(π−α)cos(π2+α)cos(π+α)sin(3π2−α)cos(3π2+α)sin(π2−α)=sinα⋅(−sinα)⋅(−cosα)−cosα⋅sinα⋅cosα=-tanα;(2)由f (α)=12,得tan α=−12, ∴sinα−3cosαsinα+cosα=tanα−3tanα+1=−12−3−12+1=−7.【点睛】此题考查了诱导公式的化简求值,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键,属于基础题.19.已知函数f (x )=Asin (ωx+φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上的一个最低点为M (2π3,−2 ). (1)求f (x )的解析式及单调递增区间; (2)当x ∈[0,π3]时,求f (x )的值域.【答案】(1)[kπ−π3,kπ+π6],k∈Z;; (2)[1,2].【解析】(1)由f(x)的图象与性质求出T、ω和A、φ的值,写出f(x)的解析式,再求f(x)的单调增区间;(2)求出0≤x≤π3时f(x)的最大、最小值,即可得出函数的值域. 【详解】(1)由f(x)=Asin(ωx+φ),且T=2πω=π,可得ω=2; 又f(x)的最低点为M(2π3,−2 )∴A=2,且sin(4π3+φ)=-1; ∵0<φ<π2,∴4π3<4π3+φ<11π6∴4π3+φ=3π2∴φ=π6∴f (x )=2sin (2x+π6); 令2kπ-π2≤2x+π6≤2kπ+π2,k ∈Z , 解得kπ-π3≤x≤kπ+π6,k ∈Z ,∴f(x)的单调增区间为[kπ-π3,kπ+π6],k ∈Z ; (2)0≤x≤π3,π6≤2x+π6≤5π6 ∴当2x+π6=π6或5π6,即x=0或π3时,f min (x )=2×12=1,当2x+π6=π2,即x=π6时,f max (x )=2×1=2; ∴函数f(x)在x∈[0,π3]上的值域是[1,2]. 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题. 20.已知f (x )=mx+n x 2+1是定义在[-1,1]上的奇函数,且f (-14)=817. (1)求f (x )的解析式;(2)用单调性的定义证明:f (x )在[-1,1]上是减函数. 【答案】(1)f (x )=−2xx 2+1;(2)详见解析.【解析】(1)由奇函数的性质f(0)=0,即得n 值,又由f(−14),解可得m 的值,将m 、n 的值代入f(x)的解析式,计算可得答案; (2)根据题意,由作差法证明即可得结论. 【详解】解:(1)根据题意,f (x )=mx+n x 2+1是定义在[-1,1]上的奇函数,且f (-14)=817,则f (0)=n 1=0,即n =0,则f (x )=mxx 2+1, 又由f (-14)=817,则f (-14)=−m 4116+1=817,解可得m =-2,则f (x )=−2xx 2+1;(2)函数f (x )在[-1,1]上为减函数, 证明:设-1≤x 1<x 2≤1,f (x 1)-f (x 2)=−2x 1x 12+1-−2x 2x 22+1=2x 2x 22+1-2x1x 12+1=2×(x 1−x 2)(x 1x 2−1)(x 12+1)(x 22+1),又由-1≤x 1<x 2≤1,则(x 1-x 2)<0,x 1-x 2-1<0,(x 12+1)>0,(x 22+1)>0, 则f (x 1)-f (x 2)>0,则函数f (x )在[-1,1]上是减函数. 【点睛】本题考查函数的奇偶性单调性的性质以及应用,关键是求出函数的解析式,属于基础题.21.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100x v x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=,1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ?(2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位? (3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【答案】(1)1.70/min km ;(2)466;(3)9【解析】试题分析:(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出1x 、2x ,只要求出它们的比值即可,所以由对数的运算性质,让两式相减,就可求得129x x =.试题解析:(1)将02x =,8100x =代入函数式可得:31log 81lg 22lg 220.30 1.702v =-=-=-=故此时候鸟飞行速度为1.70/min km . (2)将05x =,0v =代入函数式可得:310log lg52100x =-即3log 2lg52(1lg 2)20.70 1.40100x ==⋅-=⨯= 1.43 4.66100x∴==于是466x =.故候鸟停下休息时,它每分钟的耗氧量为466个单位. (3)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟的耗氧量为2x ,依题意可得:13023012.5log lg 210011.5log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩两式相减可得:13211log 2x x =,于是129x x =.故此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的9倍. 【考点】1.函数代入求值;2.解方程;3.对数运算. 22.已知函数f (x )=-sin2x+mcosx-1,x ∈[−π3,2π3].(1)若f (x )的最小值为-4,求m 的值; (2)当m=2时,若对任意x1,x2∈[-π3,2π3]都有|f (x1)-f (x2)|≤2a −1恒成立,求实数a 的取值范围.【答案】(1)m =4.5或m =−3;(2)[2,+∞).【解析】(1)利用函数的公式化简后换元,转化为二次函数问题求解最小值,可得m 的值;(2)根据|f(x 1)−f(x 2)|⩽2a −14恒成立,转化为函数f(x)=|f(x 1)−f(x 2)|的最值问题求解; 【详解】解:(1)函数f (x )=-sin 2x +m cos x -1=cos 2x +m cos x -2=(cos x +m2)2-2-m 24.当cos x =−m2时,则2+m 24=4,解得:m =±2√2那么cos x =±√2显然不成立. x ∈[−π3,2π3].∴−12≤cos x ≤1. 令cos x =t . ∴−12≤t ≤1.①当−12>−m 2时,即m >1,f (x )转化为g (t )min =(−12+m2)2-2-m 24=-4解得:m =4.5,满足题意;②当1<−m2时,即m <-2,f (x )转化为g (t )min =(1+m2)2-2-m 24=-4解得:m =-3,满足题意;故得f (x )的最小值为-4,m 的值4.5或-3; (2)当m =2时,f (x )=(cos x +1)2-3, 令cos x =t . ∴−12≤t ≤1.∴f (x )转化为h (t )=(t +1)2-3,其对称轴t =-1,∴t ∈[−12,1]上是递增函数. h (t )∈[−114,1]. 对任意x 1,x 2∈[-π3,2π3]都有|f (x 1)-f (x 2)|≤2a −14恒成立, |f (x 1)-f (x 2)|max =1−(−114)≤2a −14 可得:a ≥2.故得实数a 的取值范围是[2,+∞). 【点睛】本题考查三角函数的有界性,二次函数的最值,考查转化思想以及计算能力,属于中档题.。