高中数学必修2第一章检测试卷
- 格式:doc
- 大小:131.00 KB
- 文档页数:3
1.利用斜二测画法,下列叙述正确的是( ) A .正三角形的直观图是正三角形 B .平行四边形的直观图是平行四边形 C .相等的线段在直观图中仍然相等 D .全等三角形的直观图一定全等解析:选B.斜二测画法主要保留了原图的三个性质:①保平行;②保共点;③保平行线段的长度比,所以平行四边形的直观图是平行四边形.2.下列说法正确的个数是( ) ①三角形的直观图是三角形; ②正方形的直观图是正方形; ③菱形的直观图是菱形.A .0B .1C .2D .3解析:选B.斜二测画法保持平行性和相交性不变,即平行直线的直观图还是平行直线,相交直线的直观图还是相交直线,故①正确;但是斜二测画法中平行于y 轴的线段在直观图中长度为原来的一半,故正方形的直观图不是正方形,菱形的直观图也不是菱形,所以②③错.3.如图所示,用斜二测画法画一个水平放置的平面图形的直观图为一个正方形,则原来图形的形状是图中的( )解析:选A.在斜二测画法所作出的图形中,O ′M ′=2,因此在平面直角坐标系中相应的OM =22,选项中只有A 满足题意,故选A.4.一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( )A.1+22B.2+22C .1+ 2D .2+ 2解析:选D.根据平面图形斜二测直观图的画法,所求平面图形为四边形,由“横不变”知,四边形为梯形,且上底边长为1,依据直观图可求得下底边长为1+2,由直观图的底角为45°知这个梯形为直角梯形,再由“竖取半”知,直腰长为2,∴S =1+1+22×2=2+ 2.5.如图所示的直观图是将正方体模型放置在你的水平视线的左下角而绘制的,其中正确的是( )解析:选A.由题意应看到正方体的上面、前面、和右面,由几何体直观图的画法及直观图中虚线的使用,可知A 正确.6.用斜二测画法画一个水平放置的正五边形的直观图,则得到的图形的各个角__________(填“相等”“不相等”“不全相等”).解析:通过斜二测画法后,图形的各个角有的变大有的变小,得到的各个角不再全相等. 答案:不全相等7.如图所示,△A ′B ′C ′是△ABC 的直观图,且A ′B ′=A ′C ′,那么△ABC 是________.解析:因为A ′B ′∥x 轴,A ′C ′∥y ′轴,所以AB ∥x 轴,AC ∥y 轴.所以在直角坐标系中,∠BAC =90°.又因为A ′B ′=A ′C ′,所以AC =2AB . 所以△ABC 为直角三角形. 答案:直角三角形8.如图,△ O ′A ′B ′是水平放置的△OAB 的直观图,则△OAB 的面积是________.解析:按斜二测画法,将直观图中△O ′A ′B ′还原成原图形,即△OAB (如图),则△OAB 的面积是S =12×6×4=12.答案:129.画出如图中四边形OABC 的直观图(图中数据已给出).解:以O 为原点,OB 所在直线为x 轴建立直角坐标系xOy ,如图所示:作∠C ′O ′B ′=45°,其中O ′B ′是水平的,O ′B ′=4,O ′D ′=3,O ′C ′=1,过D ′作∠B ′D ′A ′=135°,使A ′D ′=1,顺次连接O ′A ′,A ′B ′,B ′C ′,所得四边形即为四边形OABC 的直观图(如图所示):10.画出底面边长为1.2 cm 的正方形,侧棱均相等且高为1.5 cm 的四棱锥的直观图.解:画法如下:(1)画轴,画x 轴、y 轴、z 轴,∠xOy =45°(或135°),∠xOz =90°.(2)画底面,以O 为中心在xOy 平面内,画出正方形的直观图ABCD ,使AB =1.2 cm. (3)画顶点,在Oz 轴上截取OP ,使OP =1.5 cm.(4)成图,连结P A ,PB ,PC ,PD ,并擦去辅助线,将被遮住的部分改为虚线,即得四棱锥的直观图.1.(2013·焦作水平测试)如图所示是水平放置的三角形的直观图,D 是△ABC 中BC 边的中点,那么AB ,AD ,AC 三条线段在原图形中( )A .最长的是AB ,最短的是AC B .最长的是AC ,最短的是AB C .最长的是AB ,最短的是AD D .最长的是AD ,最短的是AC解析:选C.由直观图易知AD ∥y ′轴,根据斜二测画法规则,在原图中应有AD ⊥BC ,又因为AD 为BC 边上的中线,所以△ABC 为等腰三角形,AD 为BC 边上的高,则有AB ,AC 相等且最长,AD 最短,比较各选项可知C 正确.2.如图,四边形OABC 是上底为2,下底为6,底角为45°的等腰梯形,用斜二测画法,画出这个梯形的直观图O ′A ′B ′C ′,则在直观图中梯形的高为__________.解析:∵OA =6,CB =2, ∴OD =2.又∵∠COD =45°, ∴CD =2.梯形的直观图如图.则C ′D ′=1,∴梯形的高C ′E ′=22. 答案:223.画一个上、下底面边长分别为0.8 cm 、1.5 cm ,高为1.5 cm 的正三棱台的直观图. 解:(1)画轴.画x 轴、y 轴、z 轴三轴相交于O ,使∠xOy =45°,∠xOz =90°;(2)画下底面.以O 为中点,在x 轴上截取线段AB ,使AB =1.5 cm ,在y 轴上截取线段OC ,使OC =383cm ,连接BC ,CA ,则△ABC 为正三棱台的下底面;(3)画上底面.在z 轴上截取线段OO ′,使OO ′=1.5 cm.过O ′点作O ′x ′∥Ox ,O ′y ′∥Oy .建立坐标系x ′O ′y ′,在x ′O ′y ′中,重复(2)的步骤得上底面A ′B ′C ′(取A ′B ′=0.8 cm ,O ′C ′=35cm).(4)连线成图.连接AA ′,BB ′,CC ′,擦去辅助线,被遮线画为虚线,则三棱台ABC A ′B ′C ′为要求画的三棱台的直观图.4.已知如图,四边形ABCD 的面积为S ,用斜二测画法作出的直观图为四边形A ′B ′C ′D ′,面积为S ′.求S ∶S ′.解:过D ,C 分别作DE ⊥AB ,CF ⊥AB ,以E 为坐标原点,AB 为x 轴,ED 为y 轴建立坐标系,如图所示:相应的直观图如下图所示:在图1中,四边形ABCD 的面积S =S △AOD +S 梯形DOFC +S △BFC =12OA ·OD +12(OD +CF )·OF+12BF ·CF , 在图2中,过D ′,C ′分别作D ′M ⊥A ′B ′,C ′N ⊥A ′B ′,则:D ′M =O ′D ′·sin 45°=22·12OD =24OD ,C ′N =C ′F ′·sin 45°=22·12CF =24CF ,此时S △A ′O ′D ′=12A ′O ′·D ′M ′=12A ′O ′·24OD=28AO ·OD , S △C ′F ′B ′=12B ′F ′·C ′N =12BF ·24CF =28BF ·CF ,过F ′作F ′G ⊥O ′D ′于G ,则F ′G =O ′F ′·sin 45°=OF ·22=22OF ,因此:S 梯形D ′O ′F ′C ′=12(D ′O ′+C ′F ′)·F ′G =12⎝⎛⎭⎫12DO +12CF·22OF=28(DO+CF)·OF,∴四边形A′B′C′D′的面积S′=S△A′O′D′+S梯形D′O′F′C′+S△C′F′B′=28AO·OD+28(DO+CF)·OF+28BF·CF=24S,∴S∶S′=S24S=2 2.。
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .903.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //4.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .77D .7215.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<<6.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π7.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π8.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .679.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .412.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =m n αm ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.14.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;15.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.16.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -27,则此三棱锥的外接球的表面积为______18.已知ABC 是等腰直角三角形,斜边2AB =,P 是平面ABC 外的一点,且满足PA PB PC ==,120APB ∠=︒,则三棱锥P ABC -外接球的表面积为________.19.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值. 22.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心.(1)求证:1B O//平面11DA C ; (2)求点O 到平面11DA C 的距离.23.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.24.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.25.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===,1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则133xOE CE ==, 则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.4.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得11==A B AC 1A BC 为等腰三角形,所以1A BC ,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为1122=⨯=A BC S △122ABCS =⨯=111233⨯⨯=⨯⨯A BC ABC S h S △△,即7h == 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.5.A解析:A【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果.【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=,易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin PO PCβ=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>,因为sin PO PE γ=,sin PO PCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>. 故选:A【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.6.B解析:B【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可.【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ==故选:B【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.7.B解析:B【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=,所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7.所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.D解析:D【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解.【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形,所以,2FG AE ==,1AG =,2BG =,由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D.【点睛】 思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.11.A解析:A【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC-,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A.【点睛】 方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 12.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.二、填空题13.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 解析:6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径.【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH , 所以21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==a a a m n a因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R ,则2222(2)||||||6=+++=R m n m n 6.6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.14.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =, 30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =, 所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 15.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A --的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.16.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:823π【分析】取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形, 所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积224π4π20πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】在平面的投影为的外心即中点设球半径为则解得答案【详解】故在平面的投影为的外心即中点故球心在直线上设球半径为则解得故故答案为:【点睛】本题考查了三棱锥的外接球问题意在考查学生的计算能力和空间想 解析:163π【分析】P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,设球半径为R ,则()22211R CO R PO =+-,解得答案.【详解】PA PB PC ==,故P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,故球心O 在直线1PO 上,1112CO AB ==,1133PO ==, 设球半径为R ,则()22211R CO R PO =+-,解得23R =21643S R ππ==. 故答案为:163π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.19.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=.故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =,2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案. 【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBAEAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =, 在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅, 所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为105.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算. 22.(1)证明见解析;(2)23. 【分析】(1)连接11B D ,设11111B D AC O ⋂=,连接1DO ,证明11B O DO 是平行四边形,再利用线面平行的判定定理即可证明.(2)由题意可得平面11DA C ⊥平面11B D DB ,过点O 作1OH DO ⊥于H ,在矩形11B D DB 中,连接1OO ,可得1O OD OHD ∽△△,由三角形相似,对应边成比例即可求解. 【详解】(1)证明:连接11B D ,设11111B D AC O ⋂=,连接1DO .11//O B DO 且11O B DO =, 11B O DO ∴是平行四边形.11//B O DO ∴.又1DO ⊂平面11DA C ,1B O ⊂/平面11DA C ,1//B O ∴平面11DA C .(2)1111A C B D ⊥,111AC BB ⊥,且1111BB B D B ⋂=,11A C ∴⊥平面11B D DB .∴平面11DA C ⊥平面11B D DB ,且交线为1DO .在平面11B D DB 内,过点O 作1OH DO ⊥于H ,则OH ⊥平面11DA C , 即OH 的长就是点O 到平面11DA C 的距离.在矩形11B D DB 中,连接1OO ,1O OD OHD ∽△△,则11O D ODO O OH=, 22236OH ⨯∴==即点O 到平面11DA C 的距离为233. 【点睛】关键点点睛:本题考查了线面平行的判定定理,点到面的距离,解题的关键是过点O 作1OH DO ⊥于H ,得出OH 的长就是点O 到平面11DA C 的距离,考查了计算能力.23.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==, 所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 24.(1)证明见解析;(2)22. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCD BC ∴⊥面PAB , 又PA ⊂面PAB PA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC ∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥ ∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD由1133BCEEPBC P BCE PBC BCE PBCSPOV V S h S PO h S--=⇒=⇒=,由已知可求得1PO =,1BCES=,2PBCS=,所以22h =. 所以点E 到平面PBC 的距离为22.【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解. 25.(1)证明见解析;(223【分析】(1)先由面面垂直的性质,得到CB ⊥平面ABE ,推出CB AE ⊥,根据题中条件,得到AE BE ⊥,利用线面垂直的判定定理,得到AE ⊥平面BCE ;得出AE BF ⊥,再次利用线面垂直的判定定理,即可证明结论成立;。
第一章检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是()A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形答案:A2.一长方体木料,沿图①所示平面EFGH截长方体,若AB⊥CD,那么图②所示的四个图形中是截面的是()图①图②解析:因为AB,MN两条交线所在平面(侧面)互相平行,故AB,MN无公共点,又AB,MN在平面EFGH内,故AB∥MN,同理易知AN∥BM.又AB⊥CD,∴截面必为矩形.答案:A3.如图所示,△O'A'B'是水平放置的△OAB的直观图,则△OAB的面积是()A.6B.3√2C.6√2D.12解析:△OAB是直角三角形,其两条直角边的长分别是4和6,则其面积是12.答案:D4.若球的表面积为16π,则用与球心距离为√3的平面截球所得的圆的面积为()A.4πB.√3πC.2πD.π解析:如图所示,由球的表面积为16π,可得球的半径R=2.设截面圆的半径为r,球心到截面的距离为h,则R2=h2+r2,∴r2=R2-h2=4-3=1.∴截面圆的面积为S=πr2=π.答案:D5.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90 cm2B.129 cm2C.132 cm2D.138 cm2解析:由题干中的三视图可得原几何体如图所示.故该几何体的表面积S=2×4×6+2×3×4+3×6+3×3+3×4+3×5+2×1×3×4=138(cm2).故选D.2答案:D6.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⫋α,n⫋β,则α∥βC.若m∥n,m∥α,则n∥αD.若m∥n,m⊥α,n⊥β,则α∥β解析:满足选项A,B条件的两个平面也可能相交;选项C中n也可能在平面α内;故选D.答案:D7.一个几何体按比例绘制的三视图如图所示(单位:m),则该几何体的体积为()A.73 m 3 B.92 m 3C.72 m 3D.94 m 3解析:由三视图可知,原几何体如图所示,故V=3×13+12×13=3+12=72(m 3).答案:C8.已知平面α⊥平面β,α∩β=l ,则下列命题中错误的是 ( )A.如果直线a ⫋α,那么直线a 必垂直于平面β内的无数条直线B.如果直线a ⫋α,那么直线a 不可能与平面β平行C.如果直线a ⫋α,a ⊥l ,那么直线a ⊥平面βD.平面α内一定存在无数条直线垂直于平面β内的所有直线解析:A 选项中直线a 必定与平面β内无数条平行直线垂直,故正确;B 选项中如果a ⫋α,a ∥l ,则a ∥β,故错误;由面面垂直的性质定理可知C 选项正确;在平面α内,垂直于交线l 的直线,都垂直于平面β,也就垂直于平面β内的所有直线,故D 选项正确. 答案:B 9.如图所示,在正方体ABCD-A1B1C1D1中,若E为A1C1上的一点,则直线CE一定垂直于() A.AC B.BDC.A1DD.A1D1解析:由BD⊥AC,BD⊥AA1易知BD⊥平面A1ACC1,而CE⫋平面A1ACC1,则BD⊥CE.故选B.答案:B10.如图所示是无盖正方体纸盒的展开图,则线段AB,CD在原正方体中的位置关系是()A.平行B.相交且垂直C.异面D.相交成60°角线段AB,CD在原正方体中的位置如图所示,△ABC为等边三角形,所以AB,CD在原正方体中相交成60°角.答案:D11.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,则截面把圆锥母线分为两段的比是() A.1∶3 B.1∶(√3-1)C.1∶9D.√3∶2解析:如图所示,由题意可知,☉O1与☉O2面积之比为1∶3,∴半径O1A1与O2A之比为1∶√3,∴PA1∶PA=1∶√3,∴PA1∶AA1=1∶(√3-1).答案:B12.,则下列结论中错如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=12误的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.△AEF的面积与△BEF的面积相等解析:由正方体ABCD-A 1B 1C 1D 1得B 1B ⊥平面AC ,∴AC ⊥B 1B ,又AC ⊥BD ,BD ∩B 1B=B , ∴AC ⊥平面BDD 1B 1,BE ⫋平面BDD 1B 1, ∴AC ⊥BE ,故A 正确.∵B 1D 1∥BD ,B 1D 1⊈平面ABCD ,BD ⫋平面ABCD , ∴B 1D 1∥平面ABCD ,∴EF ∥平面ABCD ,故B 正确.V A-BEF =13×12AC×12BB 1×EF=13×12×12×√22=√224.∴三棱锥A-BEF 的体积为定值,故C 正确.因线段B 1D 1上两个动点E ,F ,且EF=12,当E ,F 移动时,点A 到EF 的距离与点B 到EF 的距离不相等,∴△AEF 的面积与△BEF 的面积不相等,故D 不正确. 答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若正三棱柱的所有棱长均为a ,且其体积为16√3,则a= .解析:依题意,12×a×a×√32×a=16√3,解得a=4.答案:414.(2016四川高考)已知某三棱锥的三视图如图所示,则该三棱锥的体积是 .解析:由三视图可知该几何体是一个三棱锥,且底面积为S=12×2√3×1=√3,高为1,所以该几何体的体积为V=13Sh=13×√3×1=√33.答案:√3315.(2015江苏高考)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 . 解析:设新的底面半径为r ,根据题意得13×π×52×4+π×22×8=13πr 2×4+πr 2×8, 即28r 2=196,解得r=√7. 答案:√716.在空间四边形ABCD 中,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,对角线AC=BD=2,且AC ⊥BD ,则四边形EFGH 的面积为 .如图所示,由题意易判断EH FG 12BD ,所以EH=FG=1,同样有EF GH 12AC ,EF=GH=1,又BD ⊥AC ,所以EF ⊥EH ,所以四边形EFGH 是边长为1的正方形,其面积S=12=1. 答案:1三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(10分)圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392,母线与轴的夹角为45°,求这个圆台的高、母线长和底面半径.作出圆台的轴截面如图所示.设O'A'=r,因为一底面周长是另一底面周长的3倍,所以OA=3r,SA'=√2r,SA=3√2r,OO'=2r.由轴截面的面积为1(2r+6r)·2r=392,得r=7.故上底面半径为7,下底面半径为21,高为14,母线长为14√2.218.(12分)如图所示,A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A,B的任意一点,A1A=AB=2.(1)求证:BC⊥平面A1AC;(2)求三棱锥A1-ABC的体积的最大值.(1)证明∵C是底面圆周上异于A,B的任意一点,且AB是圆柱底面圆的直径,∴BC⊥AC.由题意知,AA1⊥平面ABC,BC⫋平面ABC,∴AA1⊥BC.∵AA1∩AC=A,AA1⫋平面A1AC,AC⫋平面A1AC,∴BC⊥平面A1AC.(2)解设AC=x (0<x<2),在Rt △ABC 中,BC=√AB 2-AC 2=√4-x 2(0<x<2),故V A 1-ABC =13S △ABC ·AA 1=13·12·AC ·BC ·AA 1=13x √4-x 2=13√x 2(4-x 2)=13√-(x 2-2)2+4.∵0<x<2,∴0<x 2<4,∴当x 2=2,即x=√2时,三棱锥A 1-ABC 的体积取得最大值23.19.(12分)(2016全国丙高考)如图,在四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点. (1)求证:MN ∥平面PAB ; (2)求四面体NBCM 的体积.(1)证明 由已知得AM=23AD=2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN=12BC=2.又AD ∥BC ,故TN AM ,四边形AMNT 为平行四边形, 于是MN ∥AT.因为AT ⫋平面PAB ,MN ⊈平面PAB ,所以MN ∥平面PAB.(2)解 因为PA ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12PA.取BC 的中点E ,连接AE.由AB=AC=3得AE ⊥BC ,AE=√AB 2-BE 2=√5.由AM ∥BC 得M 到BC 的距离为√5,故S △BCM =12×4×√5=2√5. 所以四面体N-BCM 的体积V N-BCM =13×S △BCM ×PA 2=4√53.20.(12分)四面体ABCD 及其三视图如图所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.分析在第(1)问中,由三视图可知,四面体ABCD 中棱DA ,DB ,DC 的位置关系以及这三条棱的长度,然后套用锥体体积公式可求得该四面体的体积;在第(2)问中,应先证四边形EFGH 为平行四边形,这可由线面平行的性质定理证得,然后再证两相邻边垂直,这可由线面垂直的性质证得.(1)解由该四面体的三视图可知,四面体ABCD 如图所示,且BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD=DC=2,AD=1,∴AD⊥平面BDC.∴四面体的体积V=13×12×2×2×1=23.(2)证明∵BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,∴BC∥FG,BC∥EH.∴FG∥EH.同理EF∥AD,HG∥AD,∴EF∥HG.∴四边形EFGH是平行四边形.又AD⊥平面BDC,∴AD⊥BC.∴EF⊥FG.∴四边形EFGH是矩形.21.(12分)(2016全国乙高考)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6.顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(1)求证:G是AB的中点;(2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.(1)证明因为P在平面ABC内的正投影为D,所以AB⊥PD.因为D在平面PAB内的正投影为E,所以AB⊥DE.因为PD∩DE=D,所以AB⊥平面PED,故AB⊥PG.又由已知可得,PA=PB,从而G是AB的中点.(2)解在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.理由如下:由已知可得PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC.因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD=23CG.由题设可得PC ⊥平面PAB ,DE ⊥平面PAB ,所以DE ∥PC ,因此PE=23PG ,DE=13PC. 由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PE=2√2.在等腰直角三角形EFP 中,可得EF=PF=2.所以四面体PDEF 的体积V=13×12×2×2×2=43.22.(12分)如图所示,在直三棱柱ABC-A 1B 1C 1中,已知AC=BC=AA 1=a ,∠ACB=90°,D 是A 1B 1的中点.(1)求证:C 1D ⊥平面A 1B 1BA.(2)当点F 在BB 1上什么位置时,会使得AB 1⊥平面C 1DF ?并证明你的结论.(1)证明∵AC=BC ,∴△ABC 和△A 1B 1C 1均为等腰三角形,∵A 1D=DB 1,∴C 1D ⊥A 1B 1.∵AA 1⊥底面A 1B 1C 1,∴AA 1⊥C 1D ,又AA 1∩A 1B 1=A 1,∴C 1D ⊥平面A 1B 1BA.(2)解当点F 与点B 重合时,AB 1⊥平面C 1DF.证明如下:由(1)可得C 1D ⊥AB 1,若要使AB 1⊥平面C 1DF ,只要DF ⊥AB 1即可.∵∠ACB=∠A 1C 1B 1=90°,且AA 1=AC=BC=a ,∴A 1B 1=√2a.∵△DEB 1∽△AA 1B 1∽△DB 1F ,∴DB 1AA 1=B 1FA 1B 1, ∴B 1F=a ,即当点F与点B重合时,AB1⊥平面C1DF.。
章末质量检测(一) 空间几何体一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线( )A.20条 B.15条C.12条 D.10条解析:由题意五棱柱对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,五棱柱共有对角线2×5=10条.答案:D3.关于直观图画法的说法中,不正确的是( )A.原图形中平行于x轴的线段,其对应线段仍平行于x′轴,其长度不变B.原图形中平行于y轴的线段,其对应线段仍平行于y′轴,其长度不变C.画与坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′可画成135°D.作直观图时,由于选轴不同,所画直观图可能不同解析:根据斜二测画法的规则可知B不正确.答案:B4.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是( ) A.4S B.4πSC.πS D.2πS解析:由题意知圆柱的母线长为底面圆的直径2R,则2R·2R=4S,得R2=S.所以底面面积为πR2=πS.答案:C5.如果一个正四面体(各个面都是正三角形)的体积为9 cm3,则其表面积为( ) A.18 3 cm2 B.18 cm2C.12 3 cm2 D.12 cm2解析:设正四面体的棱长为a cm,则底面积为34a2 cm2,易求得高为63a cm,则体积为13×34a2×63a=212a3=9,解得a=32,所以其表面积为4×34a2=183(cm2).答案:A6.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为( )A.16πB.32π C.36πD.64π解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+62+32=4,即球的半径为2,故这个球的表面积为4πr2=16π.答案:A7.用斜二测画法得到的一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:直观图中的多边形为正方形,对角线的长为2,所以原图形为平行四边形,位于y轴上的对角线的长为2 2.答案:A8.球O 的截面把垂直于截面的直径分成1:3两部分,若截面圆半径为3,则球O 的体积为( )A .16π B.16π3C.32π3D .43π 解析:设直径被分成的两部分分别为r 、3r ,易知(3)2=r ·3r ,得r =1,则球O 的半径R =2,故V =43π·R 3=323π.答案:C9.[2019·湖北省黄冈中学检测]已知某几何体的直观图如图所示,则该几何体的体积是( )A.233+π B.233+2π C .23+π D.23+2π解析:由直观图可知该几何体由一个半圆柱和一个三棱柱组成,故其体积V =12π×12×2+12×2×3×2=π+2 3. 答案:C 10.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4 D .5解析:V多面体P-BCC1B1=13S正方形BCC1B1·PB1=13×42×1=163.答案:B11.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥的侧面分成的三部分的面积之比为( )A.1:2:3 B.1:3:5C.1:2:4 D.1:3:9解析:如图,由题意知O1A1O2A2OA=1:2:3,以O1A1,O2A2,OA为半径的圆锥的侧面积之比为1:4:9.故圆锥被截面分成的三部分侧面的面积之比为1:(4-1):(9-4)=1:3:5.答案:B12.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.122π B.12πC.82π D.10π解析:过直线O1O2的截面为圆柱的轴截面,设底面半径为r,母线长为l,因为轴截面是面积为8的正方形,所以2r=l=22,所以r=2,所以圆柱的表面积为2πrl+2πr2=8π+4π=12π.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是________.解析:由圆锥的定义知是两个同底的圆锥形成的组合体.答案:两个同底的圆锥组合体14.[2019·甘肃省兰州市校级检测]若某空间几何体的直观图如图所示,则该几何体的表面积是________.解析:根据直观图可知该几何体是横着放的直三棱柱,所以S 侧=(1+2+3)×2=2+2+6, S 底=12×1×2=22, 故S 表=2+2+6+2×22=2+22+ 6. 答案:2+22+ 6 15.如图所示,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,高为5,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线的长为________.解析:如图所示,将三棱柱沿AA 1剪开,可得一矩形,其长为6,宽为5,其最短路线为两相等线段之和,其长度等于2⎝ ⎛⎭⎪⎫522+62=13.答案:1316.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为________.解析:过圆锥的旋转轴作轴截面,得△ABC 及其内切圆⊙O 1和外切圆⊙O 2,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意知⊙O 1的半径为r =1,△ABC 的边长为23,于是知圆锥的底面半径为3,高为3.故所求体积为V =13×π×3×3=3π.答案:3π三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图所示是一个长方体截去一个角得到的几何体的直观图(单位:cm).按照给出的数据,求该几何体的体积.解:该几何体的体积V =V 长方体-V 三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843(cm 3).18.(12分)如图是由正方形ABCE 和正三角形CDE 所组成的平面图形,试画出其水平放置的直观图.解:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴建立直角坐标系,如图(1),再建立坐标系x ′O ′y ′,使两轴的夹角为45°,如图(2).(2)以O ′为中点,在x ′轴上截取A ′B ′=AB ,分别过A ′,B ′作y ′轴的平行线,截取A ′E ′=12AE ,B ′C ′=12BC .在y ′轴上截取O ′D ′=12OD .(3)连接E ′D ′,E ′C ′,C ′D ′,并擦去作为辅助线的坐标轴,就得到所求的直观图,如图(3).19.(12分)如图所示,在多面体FE ABCD 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,求该多面体的体积V .解析:如图所示,分别过A ,B 作EF 的垂线AG ,BH ,垂足分别为G ,H .连接DG ,CH ,容易求得EG =HF =12.所以AG =GD =BH =HC =32, S △AGD =S △BHC =12×22×1=24, V =V E ADG +V F BHC +V AGD BHC=⎝ ⎛⎭⎪⎫13×12×24×2+24×1=23. 20.(12分)用一张相邻边长分别为4 cm,8 cm 的矩形硬纸片卷成圆柱的侧面(接缝处忽略不计),求该圆柱的表面积.解析:有两种不同的卷法,分别如下:(1)如图①所示,以矩形8 cm 长的边为母线,把矩形硬纸片卷成圆柱侧面,此时底面圆的周长为2π·OA =4,则OA =r 1=2π cm ,∴两底面面积之和为8π cm 2,∴S 表=⎝ ⎛⎭⎪⎫32+8π cm 2,即该圆柱的表面积为⎝⎛⎭⎪⎫32+8πcm 2.(2)如图②所示,以矩形4 cm 长的边为母线,把矩形硬纸片卷成圆柱侧面,此时底面圆的周长为2π·OB =8,则OB =r 2=4π cm ,∴两底面面积之和为32π cm 2,∴S 表=⎝ ⎛⎭⎪⎫32+32πcm 2,即该圆柱的表面积为⎝⎛⎭⎪⎫32+32πcm 2.21.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解析:(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a26a2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a33.22.(12分)若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,求圆锥侧面积与球的表面积之比.解析:设圆锥的底面半径为r ,高为h ,母线长为l ,球的半径为R , 则由题意得⎩⎪⎨⎪⎧13πr 2·h =43πR 3r =2R∴13π(2R )2·h =43πR 3,∴R =h ,r =2h , ∴l =r 2+h 2=5h ,∴S 圆锥侧=πrl =π×2h ×5h =25πh 2,S 球=4πR 2=4πh 2,∴S 圆锥侧S 球=25πh 24πh 2=52.。
第一章立体几何初步1.1空间几何体1.1.7柱、锥、台和球的体积课时跟踪检测[A组基础过关]1.某三棱锥的三视图如图所示,该三棱锥的体积为()A.2 B.3C.4 D.6解析:由三视图可知三棱锥的直观图如图所示.其中AB为高,底面是直角三角形,V=13AB×12BD×CD=13×2×12×3×2=2,故选A.答案:A2.某几何体的三视图如图所示,则该几何体的体积为()A.13+π B.23+πC.13+2π D.23+2π解析:由该几何体的三视图可知该几何体是由一个三棱锥和半个圆柱组合而成,由此可知该几何体的体积为13×12×2×1×1+12π×12×2=13+π,故选A.答案:A3.某几何体的三视图如图所示,其中俯视图是等腰三角形,那么该几何体的体积是()A.96 B.128C.140 D.152解析:由三视图可知,该几何体是一个三棱柱,V=S·h=12×6×4×8=96.答案:A4.正三棱柱的侧面展开图是边长为2和4的矩形,则该正三棱柱的体积是()A.839B.439C.239D.439或839解析:当2为正三棱柱的底面周长时,正三棱柱底面三角形的边长a=2 3,底面面积S=34a2=39,正三棱柱的高h=4,所以正三棱柱的体积V=Sh=439;同理,当4为正三棱柱的底面周长时,正三棱柱底面三角形的边长a′=43,底面面积S′=34a′2=439,正三棱柱的高h′=2,所以正三棱柱的体积V′=S′h′=839.所以正三棱柱的体积为439或839.答案:D5.若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为()A.26B.23C.33D.23解析:以正方体各个面的中心为顶点的凸多面体是由两个全等的正四棱锥构成,正四棱锥的底面边长为1,高为22,∴V=2×13×1×1×22=23.故选B.答案:B6.已知圆锥的母线长为5,侧面积为20π,则此圆锥的体积为________.解析:由S侧=πrl=20π,l=5得r=4,∴圆锥的高h=l2-r2=3.∴圆锥的体积为V=13πr2·h=16π.答案:16π7.(2018·江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.解析:由图可知,该多面体为两个全等正四棱锥的组合体,且正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为2×13×1×(2)2=43.答案:438.已知某几何体的俯视图是边长分别为8和6的矩形,主视图是一个底边长为8,高为4的等腰三角形,左视图是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积; (2)求该几何体的侧面积.解:由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V -ABCD .如图所示,(1)V =13×(8×6)×4=64.(2)该四棱锥有两个侧面VAD ,VBC 是全等的等腰三角形,且BC 边上的高为h 1=42+⎝ ⎛⎭⎪⎫822=42,另两个侧面VAB ,VCD 也是全等的等腰三角形,AB边上的高为h 2=42+⎝ ⎛⎭⎪⎫622=5,因此S 侧=2×⎝ ⎛⎭⎪⎫12×6×42+12×8×5=40+24 2.[B 组 技能提升]1.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:由三视图可知,正方体被平面截去三棱锥A1-AB1D1,设正方体的边长为a,V正=a3,VA1-AB1D1=13×12a2·a=16a3,∴V A1-AB1D1V剩=16a3a3-16a3=15,故选D.答案:D2.一个正方体的顶点都在球面上,它的棱长为3,则这个球的体积为() A.9π B.932πC.27π D.2732π解析:∵棱长为3的正方体的体对角线长为33,∴球半径为332,∴V=43π⎝⎛⎭⎪⎫3233=2732π.故选D.答案:D3.一个底面半径为R的圆柱形水桶中装有适量的水,若放入一个半径为r的实心铁球(水面漫过球),水面高度恰好升高r,则Rr=________.解析:由题知43πr3=πR2·r,∴R r=233.答案:23 34.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的主视图如图所示,则该三棱锥的体积是________.解析:由主视图知,三棱锥的高为1,底面是腰长为2,底边为23的等腰三角形,∴V=13×12×23×1×1=33.答案:3 35.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的主视图和左视图在下面画出(单位:cm).(1)在主视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积.解:(1)如图.(2)所求多面体的体积V=V长方体-V正三棱锥=4×4×6-13×⎝⎛⎭⎪⎫12×2×2×2=2843.6.圆台的母线长为6 cm,它的轴截面等腰梯形的一条对角线与一腰垂直且与下底所成的角为30°,求该圆台的体积.解:如图,等腰梯形AA1B1B为圆台的轴截面,AA1=6 cm,∠AA1B=90°,∠ABA1=30°,于是AB=2AA1=12 cm,由A1B1∥AB,得∠B1A1B=∠A1BA=30°,又∠A=90°-30°=60°,得∠A1BB1=60°-30°=30°,故△A1B1B为等腰三角形,∴A1B1=B1B=6 cm.又OO1·AB=AA1·A1B得,OO1=AA1·A1BAB=6×6312=33(cm),由圆台的体积公式:V圆台=13π·OO1·(A1O21+A1O1·AO+AO2)=13·π·33·(32+3×6+62)=633π(cm3).。
描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。
【成才之路】2015-2016学年高中数学第一章立体几何初步综合测试B 新人教B版必修2时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2015·山东莱州市高一期末测试)在四棱台ABCD-A1B1C1D1中,DD1与BB1所在直线是( )A.相交B.平行C.不垂直的异面直线D.垂直的异面直线[答案] A[解析]根据棱台的定义可知,DD1与BB1延长后一定交于一点,故选A.2.不在同一直线上的五个点,最多能确定平面的个数是( )A.8 B.9C.10 D.12[答案] C[解析]要确定平面个数最多,须任意四点不共面,从A、B、C、D、E五个点中任取三个点确定一个平面,即ABC、ABD、ABE、ACD、ACE、ADE、BCD、BCE、BDE、CDE共10种情况,选C.3.给出四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是( )A.0 B.1C.2 D.3[答案] A[解析]反例:①直平行六面体底面是菱形,满足条件但不是正方体;②底面是等腰梯形的直棱柱,满足条件但不是长方体;③④显然错误,故选A.4.下列几何体各自的三视图中,只有两个视图相同的是( )A .①③B .②③C .②④D .③④[答案] C[解析] 正方体和球体的三个视图都相同,故选C .5.(2015·广东东莞市高一期末测试)若球的半径扩大到原来的2倍,那么其体积扩大到原来的( )倍A .64B .16C .8D .4 [答案] C[解析] 设球的半径为R ,其体积V =43πR 3,当球半径扩大到原来的2倍时,其体积V ′=43π(2R )3=8V . 6.若一个几何体的三视图如图所示,则此几何体的体积为( )A .112B .5C .92D .4[答案] D[解析] 本题考查三视图,棱柱体积公式.由三视图知该几何体为直六棱柱.其底面积为S =2×[12(1+3)×1]=4,高为1.所以体积V =4,由“长对正、宽相等、高平齐”确定几何体的形状及尺寸、角度等.7.(2015·安徽安庆市高一教学质量调研监测)已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β,能推出m ∥β的是( )A .①④B .①⑤C .②⑤D .③⑤[答案] D [解析]⎭⎪⎬⎪⎫m ⊂αα∥β⇒m ∥β,故选D. 8.如图所示,在正方体ABCD -A 1B 1C 1D 1中,若点E 为A 1C 1上的一点,则直线CE 一定垂直于( )A .ACB .BDC .A 1D D .A 1D 1[答案] B[解析] 由BD ⊥AC ,BD ⊥AA 1易知BD ⊥平面A 1ACC 1,而CE ⊂平面A 1ACC 1,故BD ⊥CE . 9.已知圆柱的侧面展开图矩形面积为S ,底面周长为C ,它的体积是( ) A .C 34πSB .4πSC3C .CS2π D .SC4π[答案] D[解析] 设圆柱底面半径为r ,高为h ,,则⎩⎪⎨⎪⎧Ch =S C =2πr,∴r =C 2π,h =SC,∴V =πr 2·h =π⎝⎛⎭⎪⎫C 2π2·S C =SC 4π.10.(2015·辽宁沈阳二中高一期末测试)三棱锥P -ABC 三条侧棱两两垂直,三个侧面面积分别为22、32、62,则该三棱锥的外接球的表面积为( ) A .4π B .6π C .8π D .10π[答案] B[解析] 设PA =a ,PB =b ,PC =c ,则⎩⎨⎧ab =2ac =3bc =6,解得⎩⎪⎨⎪⎧a 2=1b 2=2c 2=3.∴外接球的半径R =a 2+b 2+c 22=62. ∴外接球的表面积S =4πR 2=6π.11.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF =12,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A -BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等 [答案] D[解析] 由正方体ABCD -A 1B 1C 1D 1得B 1B ⊥面AC , ∴AC ⊥B 1B ,又∵AC ⊥BD ,BD ∩B 1B =B , ∴AC ⊥面BDD 1B 1,BE ⊂面BDD 1B 1, ∴AC ⊥BE ,故A 正确.由正方体ABCD -A 1B 1C 1D 1得B 1D 1∥BD ,B 1D 1⊄面ABCD ,BD ⊂面ABCD ,∴B 1D 1∥面ABCD ,∴EF ∥面ABCD ,故B 正确.V A -BEF =12AC ×12BB 1×EF =13×12×12×22=224. ∴三棱锥A -BEF 的体积为定值,故C 正确. 因线段B 1D 1上两个动点E 、F ,且EF =12,当E 、F 移动时,A 到EF 的距离与B 到EF 的距离不相等, ∴△AEF 的面积与△BEF 的面积不相等,故D 不正确.12.已知圆锥的母线长为5 cm ,圆锥的侧面展开图如图所示,且∠AOA 1=120°,一只蚂蚁欲从圆锥底面上的点A 出发,沿圆锥侧面爬行一周回到点A .则蚂蚁爬行的最短路程为( )A .8 cmB .5 3 cmC .10 cmD .5π cm[答案] B[解析] 连接AA 1,作OC ⊥AA 1于C ,因为圆锥的母线长为5 cm ,∠AOA 1=120°,所以AA 1=2AC =5 3 cm.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2015·宁夏银川一中高一期末测试)一个水平放置的平面图形的斜二测直观图是直角梯形ABCD ,如图所示,∠ABC =45°,AB =AD =1,DC ⊥BC ,这个平面图形的面积为________.[答案] 2+22[解析] S 直观图=[1+1+22]×222=2+2224=22+14.又S直观图S平面图=24,∴S平面图=22+1424=2+22.14.(2015·湖南益阳市高一期末测试)已知两个球的表面积之比为19,则这两个球的半径之比为__________.[答案]1 3[解析]设两球的半径分别为R1、R2,由题意得4πR214πR22=19,∴R1R2=1 3.15.已知平面α、β和直线m,给出以下条件:①m∥α,②m⊥α;③m⊂α;④α∥β.要使m⊥β,则所满足的条件是________.[答案]②④[解析]⎭⎪⎬⎪⎫m⊥αα∥β⇒m⊥β.16.已知点P、A、B、C、D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为23的正方形,若PA=26,则△OAB的面积为________.[答案]3 3[解析]本题考查了与球有关的几何问题.如图,连接AC.∵PA⊥平面ABCD,∴PA⊥AC,故PC为球的直径,取CP中点O,取AC中点O′,则OO′=12PA= 6.又AC=26,PA=2 6.PC=4 3.∴半径R = OC =OA =OB =AB =23,∴S △OAB =3 3.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)一个棱锥的底面是边长为a 的正三角形,它的一个侧面也是正三角形,且这个侧面与底面垂直,求这个棱锥的体积和全面积.[解析] 如图所示,平面ABC ⊥平面BCD ,△ABC 与△BCD 均为边长为a 的正三角形,取BC 中点E ,连接AE ,则AE ⊥平面BCD ,故棱锥A -BCD 的高为AE ,△BCD 的面积为34a 2, AE =32a , ∴V A -BCD =13·34a 2·32a =18a 3.连接DE ,∵AE ⊥平面BCD ,DE ⊂平面BCD ,∴AE ⊥DE , 在Rt △AED 中,AE =ED =32a , ∴AD =2·32a =62a . 取AD 中点F ,连接CF ,则CF ⊥AD . 在Rt △CDF 中,DF =12·62a =64a ,∴CF =CD 2-DF 2=a 2-⎝⎛⎭⎪⎫64a 2=104a . ∴S △ACD =12AD ·CF =12×62a ×104a =158a 2.∵△ABD ≌△ACD ,S △ABD =158a 2. 故S 全面积=34a 2+34a 2+2×158a 2=23+154a 2. ∴棱锥的体积为 18a 3,全面积为23+154a 2.18.(本题满分12分)(2015·辽宁沈阳二中高一月考)如图,矩形AMND 所在平面与直角梯形MBCN 所在的平面垂直,MB ∥NC ,MN ⊥MB .(1)求证:平面AMB ∥平面DNC ; (2)若MC ⊥CB ,求证:BC ⊥AC .[解析](1)∵四边形AMND是矩形,∴AM∥DN,又∵MB∥NC,AM∩MB=M,DN∩NC=N,∴平面AMB∥平面DNC.(2)∵平面AMND⊥平面MBCN,平面AMND∩平面MBCN=MN,AM⊥MN,∴AM⊥平面MBCN,∴AM⊥BC.∵BC⊥MC,AM∩MC=M,∴BC⊥平面AMC,∴BC⊥AC.19.(本题满分12分)(2015·广东清远市高一期末测试)如图,已知直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.[解析](1)∵AC=3,BC=4,AB=5,∴AC2+BC2=AB2,∴AC⊥BC.又∵直三棱柱ABC-A1B1C1中,AC⊥CC1,CC1∩BC=C,∴AC⊥平面BB1C1C,∴AC⊥BC1.(2)如图,设BC1交B1C于点E,连接DE.∵D 为AB 的中点,E 为BC 1的中点,∴DE ∥AC 1. 又∵AC 1⊄平面CDB 1,DE ⊂平面CDB 1, ∴AC 1∥平面CDB 1.20.(本题满分12分)(2014·福建文,19)如图,三棱锥A -BCD 中,AB ⊥平面BCD ,CD ⊥BD .(1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A -MBC 的体积. [解析] (1)∵AB ⊥平面BCD ,CD ⊂平面BCD , ∴AB ⊥CD .又∵CD ⊥BD ,AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD ,∴CD ⊥平面ABD .(2)由AB ⊥平面BCD ,得AB ⊥BD , ∵AB =BD =1,∴S △ABD =12.∵M 是AD 的中点,∴S △ABM =12S △ABD =14.由(1)知,CD ⊥平面ABD , ∴三棱锥C -ABM 的高h =CD =1, 因此三棱锥A -MBC 的体积V A -MBC =V C -ABM =13S △ABM ·h =112.21.(本题满分12分)如下三个图中,左面的是一个长方体截去一个角所得多面体的直观图,右面是它的主视图和左视图(单位: cm).(1)画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连接BC ′,证明:BC ′∥平面EFG .[解析] (1)如图.(2)所求多面体的体积V =V 长方体-V 正三棱锥=4×4×6-13×(12×2×2)×2=2843(cm 3).(3)证明:如图,在长方体ABCD -A ′B ′C ′D ′中,连接AD ′,则AD ′∥BC ′,因为E 、G 分别为AA ′、A ′D ′中点, 所以AD ′∥EG , 从而EG ∥BC ′, 又BC ′⊄平面EFG , 所以BC ′∥平面EFG .22.(本题满分14分)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,AB =AE ,FA =FE ,∠AEF =45°.文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。
高中数学必修2第一章检测试卷
一、选择题(每小题6分,共36分) 1.下列命题中正确的是 ( )
A 有两个面平行,其余各面都是平行四边行的多面体叫做棱柱
B 用一个面去截棱锥,底面与截面之间的部分叫棱台
C 有一个面是多边形,其余各面都是三角形的多面体叫棱锥
D 以圆的直径为轴,将圆面旋转180度形成的旋转体叫球
2.下列几何体各自的三视图中,有且仅有两个视图相同的是( )
①正方体 ②圆锥 ③三棱台 ④正四棱锥
A .①②
B .①③
C .○2③
D .②④ 3.对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )
A .2倍
B .
4倍 C .2
倍 D .12倍
4.已知棱台的体积是376cm ,高是6cm ,一个底面面积是218cm ,则这个棱台的另一个底面面积为( ) A .28cm B .26cm
C .27cm
D .25cm
5.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面
上,则这个球的表面积是( )
A .25π
B .50π
C .125π
D .以上都不对 6.已知正方体、球、底面直径与母线相等的圆柱,它们的表面积相等,则它们的体积的大小关系是( ) A .V 正方体=V 圆柱=V 球
B .V 正方体<V 圆柱<V 球
C .V 正方体>V 圆柱>V 球
D .V 圆柱>V 正方体>V 球
二、填空题(每小题6分,共24分)
7.半径为R 的半圆卷成一个圆锥,则它的体积为________. 8.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是________. 9. 一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面
升高9厘米,则此球的半径为_________厘米. 10. 如图,在三棱柱中,若E 、F 分别是 AB 、AC 的中点,平面EB 1C 1F 将三棱柱
分成体积为V 1、V 2的两部
分,那么V 1 :V 2为______ .
三、解答题(每小题15分,共30分)
1.已知一个几何体的三视图如下,大至画出它的直观图,并求出它的表面积和体
积。
1
1 1 1
正视图 左视图
俯视图
2.已知圆锥的母线长为10cm ,底面半径为5cm , (1)求它的高;
(2)若该圆锥内有一球,球与圆锥的底面及圆锥的所有母线都相切,求球的体积.
B 1 A 1
C 1 B
F A V 2 V 1 C E
《必修2》第一章检测试卷参考答案
一、D D B A B B
3R 2:1
12 7 :5 三、
1.底为2,高为1,所以体积313
(12)11()22
V S h cm ==+⨯⨯=梯形
2S S =+侧面表面底表面积S
2.解:(1)
)=
(2)其轴截面如图△SCE 与△SBD 相似
510r
=3
r ∴=
33344(()33327
V r cm ππ===球
21
(12)12(11217)2
cm =
+⨯⨯++++⨯=
+ B
D。