铝及铝合金的焊接方法
- 格式:pdf
- 大小:198.39 KB
- 文档页数:3
铝焊接1、铝的焊接特点(1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。
阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。
铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。
焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。
在焊接过程加强保护,防止其氧化。
钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。
气焊时,采用去除氧化膜的焊剂。
在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。
(2)铝的热导率和比热容均约为碳素钢和低合金钢的两倍多。
铝的热导率则是奥氏体不锈钢的十几倍。
在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显著,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。
(3)铝的线膨胀系数约为碳素钢和低合金钢的两倍。
铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。
铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。
生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。
在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。
在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显著提高,收缩率下降,热裂倾向也相应减小。
根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi条(硅含量4.5%~6%)焊丝会有更好的抗裂性。
(4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。
高温铝强度很低,支撑熔池困难,容易焊穿。
(5)铝在液态能溶解大量的氢,固态几乎不溶解氢。
铝合金的焊接方法铝合金是一种常见的金属材料,具有轻质、强度高、导热性好等特点,在工业和日常生活中广泛应用。
而焊接是铝合金加工中常用的连接方法之一。
以下将详细介绍铝合金的焊接方法。
铝合金的焊接方法主要有氩弧焊、点焊、激光焊、摩擦焊和爆炸焊等。
其中,氩弧焊是最常用的方法。
1. 氩弧焊:氩弧焊是铝合金焊接中最常用的方法,它利用惰性气体(如氩气)保护电弧和熔融池,防止气氛中的氧气和水分污染焊接区域,并控制熔融金属的冷却速度。
在氩气的保护下,焊接过程中没有明火和烟雾产生,焊缝质量较高。
2. 点焊:点焊是利用电阻产生的热量将铝合金件连接在一起。
该方法适用于连接较薄的铝合金板材,如汽车制造中的焊接。
3. 激光焊:激光焊是使用高能量激光束将铝合金熔化,从而实现焊接。
激光焊具有焊接速度快、热影响区小和焊缝质量高等优点,适用于各种铝合金焊接。
4. 摩擦焊:摩擦焊是通过在接触面上施加压力和产生热量,将铝合金摩擦热熔融并加以压实。
该方法适用于焊接铝合金和其他金属之间的连接。
5. 爆炸焊:爆炸焊是利用爆炸产生的高温和高压将两个铝合金件连接在一起。
该方法适用于焊接较大尺寸的铝合金构件。
除了上述常见的焊接方法外,还有一些特殊的焊接方法,如熔覆焊、滚焊和冷焊等。
在进行铝合金焊接时,需要注意以下几点:1. 选择合适的焊接材料和焊接工艺,根据焊接材料的种类、厚度和焊接强度要求等因素确定焊接方法。
2. 预处理焊缝,包括去除焊接区域的氧化皮、油污和杂质,以保证焊接质量。
3. 选择合适的焊接电流和焊接速度,以避免产生焊接缺陷,如焊接裂纹和气孔等。
4. 控制焊接区域的温度,避免过热和过冷引起的焊接缺陷。
5. 使用适当的焊接保护措施,如惰性气体保护和冷却液冷却,以确保焊接质量。
总结起来,铝合金的焊接方法有多种,每种方法都适用于不同的焊接需求。
在选择和使用焊接方法时,需要考虑材料的性质、焊接强度要求和工艺条件等因素。
正确选择和使用焊接方法,可以保证焊接质量,提高铝合金制品的性能和使用寿命。
铝及其合金的焊接第一节铝及其合金的类型和特性一、铝及其合金的类型根据铝合金的化学成分和制造工艺可分为变形铝合金和铸造铝合金两大类。
在变形铝合金中又可分为非热处理强化铝合金和可热处理强化铝合金。
非热处理强化铝台金通过加工硬化、固溶强化来提高力学性能。
二、铝及其合金特性特点:与低碳钢相比较,具有密度小,电阻率小,线膨胀系数大(约为低碳钢线膨胀系数的2倍),导热系数大(铝及其合金熔合区的冷却速度为高强钢熔合区冷却速度的(4~7)倍)、良好的耐蚀性、较高的比强度,优异的低温韧性,但强度低。
抗拉强度一般不超过100MPa,热处理后能达到400 MPa。
1. 纯铝:高耐蚀性、较好的塑性2. 防锈铝:强度中等,塑性和耐蚀性好,焊接性也好,是目前焊接结构中应用最广泛的铝合金。
典型牌号:LF4、LF5铝锰合金:Mn1.0~1.6%。
大于1.6%脆性化合物增加。
LF21铝镁合金:铝镁合金的强度随含镁量的增高而增高,但含镁量增多(大于7%)出现脆性相(Mg2Al3) 使合金的塑性、耐蚀性、特别是抗应力腐蚀性能下降。
Si的存在形成脆性相Mg2Si塑性、耐蚀性下降、Mn加入0.15~0.8%耐蚀性增加,强度提高。
Ti、V加入0.1%左右,能获得细晶粒组织。
3.硬铝:典型牌号LY12,成分Al-Cu-Mg系。
Cu、Si、Mg等元素,形成溶解于铝的化合物,促使合金热处理时强化,耐蚀性差,焊接性不良,热裂倾向大。
4. 超硬铝:LC4 ,成分Al-Zn-Mg-Cu系。
抗拉强度可达588Mpa,塑性较差。
非时效强化铝合金的强度比纯铝高、塑性及耐磨性好,特别是焊接性好,所以广泛用作焊接结构材料。
时效强化铝合金的焊接性较差,焊接时容易出现裂纹,所以在焊接结构中应用较少。
铸造铝合金的铸造性能良好,强度较高,焊接性也较好,其铸造缺陷可以焊补。
第二节铝及其合金的焊接性分析铝及铝合金与黑色金属不同,由于它容易氧化、导热性强、热容量和线膨胀系数大,熔点低及高温强度小等特性,所以给焊接工作带来一些困难。
铝合金焊接的几种先进工艺:搅拌摩擦焊、激光焊、激光- 电弧复合焊、电子束焊。
针对于焊接性不好和曾认为不可焊接的合金提出了有效的解决方法,几种工艺均具有优越性,并可对厚板铝合金进行焊接。
关键词:铝合金搅拌摩擦焊激光焊激光- 电弧复合焊电子束焊1 铝合金焊接的特点铝合金由于重量轻、比强度高、耐腐蚀性能好、无磁性、成形性好及低温性能好等特点而被广泛地应用于各种焊接结构产品中,采用铝合金代替钢板材料焊接,结构重量可减轻50 %以上。
铝合金焊接有几大难点:①铝合金焊接接头软化严重,强度系数低,这也是阻碍铝合金应用的最大障碍;②铝合金表面易产生难熔的氧化膜(Al2O3 其熔点为2060 ℃) ,这就需要采用大功率密度的焊接工艺;③铝合金焊接容易产生气孔;④铝合金焊接易产生热裂纹;⑤线膨胀系数大,易产生焊接变形;⑥铝合金热导率大(约为钢的4 倍) ,相同焊接速度下,热输入要比焊接钢材大2~4 倍。
因此,铝合金的焊接要求采用能量密度大、焊接热输入小、焊接速度高的高效焊接方法。
2 铝合金的先进焊接工艺针对铝合金焊接的难点,近些年来提出了几种新工艺,在交通、航天、航空等行业得到了一定应用,几种新工艺可以很好地解决铝合金焊接的难点,焊后接头性能良好,并可以对以前焊接性不好或不可焊的铝合金进行焊接。
2. 1 铝合金的搅拌摩擦焊接搅拌摩擦焊FSW( Friction Stir Welding) 是由英国焊接研究所TWI ( The Welding Institute) 1991 年提出的新的固态塑性连接工艺[1~2 ] 。
图1为搅拌摩擦焊接示意图[3 ] 。
其工作原理是用一种特殊形式的搅拌头插入工件待焊部位,通过搅拌头高速旋转与工件间的搅拌摩擦,摩擦产生热使该部位金属处于热塑性状态,并在搅拌头的压力作用下从其前端向后部塑性流动,从而使焊件压焊在一起。
图2 为搅拌摩擦焊接过程[4 ] 。
由于搅拌摩擦焊过程中不存在金属的熔化,是一种固态连接过程,故焊接时不存在熔焊的各种缺陷,可以焊接用熔焊方法难以焊接的有色金属材料,如铝及高强铝合金、铜合金、钛合金以及异种材料、复合材料焊接等。
铝和铝合金扩散焊接摘要:一、铝及铝合金概述二、扩散焊接原理三、铝和铝合金扩散焊接工艺1.焊接前准备2.焊接参数选择3.焊接过程中注意事项四、焊接接头性能分析五、应用实例及优缺点六、发展趋势与展望正文:一、铝及铝合金概述铝及铝合金在我国工业领域具有广泛的应用,其优良的性能如轻质、高强度、良好的耐腐蚀性等,使其在航空、航天、交通运输、建筑等领域受到青睐。
然而,铝及铝合金的焊接性能相对较差,传统的焊接方法难以获得高质量的焊接接头。
为此,扩散焊接技术应运而生,成为解决这一问题的有效手段。
二、扩散焊接原理扩散焊接是一种固态连接方法,通过高温和压力作用下,使焊接界面两侧的金属原子发生扩散,从而实现连接。
在扩散焊接过程中,焊接参数的选择至关重要,直接影响到焊接接头的质量。
三、铝和铝合金扩散焊接工艺1.焊接前准备在进行铝和铝合金扩散焊接前,应充分了解焊接材料的性能、焊接接头的使用要求等,以确保选用合适的焊接参数。
此外,还需对焊接表面进行严格清理,去除油污、氧化膜等,以提高焊接质量。
2.焊接参数选择焊接参数主要包括焊接温度、保温时间、焊接压力和冷却速度等。
焊接温度的选择应使焊接界面两侧金属的原子扩散速度达到最佳,一般控制在400-500℃;保温时间要充分保证扩散过程的进行;焊接压力根据焊接件的厚度和性能要求选取,一般为0.5-1.0MPa;冷却速度应适当,过快会导致焊接接头性能下降。
3.焊接过程中注意事项在焊接过程中,应严格控制焊接参数,确保焊接过程中焊接件的变形和裂纹等缺陷。
同时,要注意观察焊接接头的形成情况,及时调整焊接参数,以获得最佳的焊接效果。
四、焊接接头性能分析铝和铝合金扩散焊接接头的性能较好,可以实现无缝连接,提高焊接接头的强度和耐腐蚀性能。
此外,焊接接头的性能还与焊接参数、焊接材料等因素密切相关。
通过合理调整焊接参数和选用合适的焊接材料,可以进一步提高焊接接头的性能。
五、应用实例及优缺点铝和铝合金扩散焊接在航空航天、交通运输、建筑等领域具有广泛的应用。
铝合金型材焊接方法
铝合金型材是一种常见的结构材料,广泛应用于汽车、航空、电子、
建筑和家具等领域。
为了更好地利用和加工铝合金型材,我们需要掌
握铝合金型材的焊接方法。
下面我将介绍有关铝合金型材焊接的一些
常用方法。
1. TIG焊接法
TIG焊接法是一种常用的铝合金型材焊接方法。
该方法利用钨极电弧
加热,将铝焊丝加热到熔化状态并填充到焊缝中。
TIG焊接法的优点
在于可以产生高质量的焊接,焊缝美观,同时使铝合金型材更加耐腐
蚀和耐热。
这种方法需要高度熟练的焊接技能和适当的工具设备才能
完成。
2. MIG焊接法
MIG焊接法是另一种常用的铝合金型材焊接方法,它使用惰性气体保
护焊缝并加热铝材料。
MIG焊接法的优点在于速度快,输出电流稳定,适合大量生产。
而且,该方法也具有易于控制和实现自动化等优点。
3. 气焊法
气焊法也可用于铝合金型材的焊接,但应注意避免出现氧化问题。
在气焊焊接铝合金型材时,我们需要特别注意材料清洁度,使用高纯度的焊条和适当的助剂,以及在阳光下的安置轨迹等。
总之,铝合金型材的焊接方法各有特点,我们需要根据具体情况和要求选择正确的焊接工艺。
同时,我们还应该掌握焊接技能和使用适当的装备和设备,以确保焊接质量和工作效率。
铝板焊接方式
铝板焊接可以采用多种方式,以下是一些常见的焊接方式:
1.熔化极氩弧焊:该方法适用于中等厚度和大厚度的铝及铝合金板材的焊接,采
用直流反接。
焊接速度快,焊接接头热影响区和焊件的变形量小,且具有广泛的适用范围。
2.非熔化极氩弧焊:适用于铝及铝合金的焊接,需要掌握机器调节、材料选择以
及铝板焊接的特殊要求。
3.钨极氩弧焊:在氩气保护下施焊,热量集中,稳定性高,适用于在工业中获得
广泛应用。
4.低温钎焊:需要处理表面氧化膜,选择熔点偏低的钎料进行焊接,例如
WEWELDING53低温铝焊条或303的低温铝焊条。
5.激光焊接:这是一种高端的焊接技术,将激光束聚焦在铝板表面,使其快速加
热并熔化。
6.电阻焊:适用于铝合金的点焊,只能用于5mm以下的板材叠焊或Φ10mm
以下的棒材叠焊。
7.摩擦焊:适用于铝合金的搅拌摩擦焊,综合性能良好。
除此之外,还有TIG氩弧焊、MIG/MAG CO2气体保护焊、气焊、红外线焊接和热棒焊等多种方式可供选择。
具体选择哪种方式进行铝板焊接,需要根据实际情况和焊接要求进行综合考虑。
铝及铝合金的焊接导言:铝及铝合金是目前工业中广泛应用的材料,其具有轻质、导热性好、耐腐蚀等优点,被广泛用于航空、汽车、建筑等领域。
然而,铝及铝合金的焊接过程相对较为复杂,需要注意焊接技术、焊接参数以及焊接材料的选择等方面的问题。
本文将从这些方面对铝及铝合金的焊接进行探讨。
一、焊接技术1. 熔化极氩弧焊(GTAW)熔化极氩弧焊是铝及铝合金焊接中常用的技术之一。
其特点是焊接过程中产生的热量较小,对基材影响小,焊缝质量较高。
在熔化极氩弧焊中,焊工需要注意控制电弧长度、氩气流量和焊接速度等参数,以确保焊接质量。
2. 金属惰性气体保护焊(MIG)金属惰性气体保护焊是另一种常用的铝及铝合金焊接技术。
在该技术中,焊丝通过喷射的惰性气体(如氩气)进行保护,防止氧气和水蒸气等对焊接过程的干扰。
金属惰性气体保护焊适用于大批量生产,焊接速度快,效率高。
二、焊接参数1. 电弧电流电弧电流是影响焊接质量的重要参数之一。
对于铝及铝合金的焊接,一般需要较大的电弧电流,以确保焊接区域能够达到足够高的温度,从而保证焊缝的质量。
2. 电弧电压电弧电压也是影响焊接质量的重要参数。
过高或过低的电弧电压都会影响焊缝的质量。
过高的电弧电压容易导致熔融过深,过低的电弧电压则容易导致焊缝质量不合格。
3. 焊接速度焊接速度是焊接过程中需要控制的另一个重要参数。
过快的焊接速度会导致焊缝质量不佳,焊接强度降低;过慢的焊接速度则容易导致熔融过深,产生热影响区过大。
三、焊接材料选择1. 焊丝对于铝及铝合金的焊接,一般选择铝合金焊丝作为填充材料。
铝合金焊丝具有良好的流动性和机械性能,可以保证焊缝的质量。
在选择焊丝时,需要根据焊接材料和焊接要求进行合理的选择。
2. 气体保护剂在焊接过程中,需要使用惰性气体对焊接区域进行保护,以防止氧气和水蒸气的干扰。
常用的气体保护剂有纯氩气、氩气和氦气的混合气体等。
选择合适的气体保护剂可以提高焊接质量。
结语:铝及铝合金的焊接是一项复杂而重要的工艺,需要掌握合适的焊接技术、合理的焊接参数以及选择适当的焊接材料。
铝及铝合金的焊接方法铝及铝合金是一种常见的金属材料,由于其优异的性能,在工业制造、航空航天、汽车制造等领域得到了广泛的应用。
然而,铝及铝合金的焊接技术却是一个备受关注的问题。
由于铝及铝合金的特殊性质,其焊接方法与普通的钢铁焊接有很大的区别。
本文将就铝及铝合金的焊接方法进行介绍,希望能够为相关领域的从业者提供一些参考和帮助。
首先,我们需要了解铝及铝合金的特性。
铝及铝合金具有低熔点、导热性好、密度小、导电性好等特点,这些特性决定了其在焊接过程中需要特殊的处理方法。
针对铝及铝合金的这些特性,我们需要选择适合的焊接方法,比如氩弧焊、电子束焊、激光焊等。
这些方法能够有效地保证焊接质量和效率。
其次,焊接前的准备工作也是至关重要的。
在进行铝及铝合金的焊接前,需要对焊接材料进行严格的清洁处理,以去除表面的氧化物和杂质,从而保证焊接的质量。
同时,还需要对焊接设备进行调试和检测,确保焊接过程中的稳定性和安全性。
接下来,我们需要选择合适的焊接材料和焊接工艺。
对于铝及铝合金的焊接,我们通常会选择纯铝、铝硅合金、铝镁合金等作为焊接材料,同时根据不同的焊接要求选择合适的焊接工艺,比如直流氩弧焊、交流氩弧焊等。
这些选择都需要根据具体的焊接需求来进行合理的匹配。
最后,焊接后的处理也是不可忽视的。
在铝及铝合金的焊接过程中,由于其特殊的性质,往往会产生一些焊接缺陷,比如气孔、裂纹等。
因此,我们需要对焊接后的材料进行检测和修复,以确保焊接质量和使用安全。
总的来说,铝及铝合金的焊接方法是一个复杂而又重要的技术问题。
只有深入了解其特性,选择合适的焊接方法和工艺,进行严格的准备和处理,才能够保证焊接质量和效果。
希望本文能够为相关领域的从业者提供一些参考和帮助,也希望大家能够在实际的工作中不断探索和总结,不断提高自己的焊接技术水平。
铝及铝合金摩擦焊接加工工艺
铝及铝合金摩擦焊接加工工艺,是通过摩擦搅拌的方法使两个待焊接的铝及铝合金表面产生摩擦热,并通过控制摩擦的速度、压力、时间等参数,使两个表面的原子发生相互扩散、溶解,形成合金,从而实现焊接的过程。
铝及铝合金摩擦焊接加工工艺适用于各种铝及铝合金材料的焊接,可用于铝合金压力容器、汽车、飞机、火车等轻量化领域,也可用于船舶、轨道交通、建筑等领域。
铝及铝合金摩擦焊接加工工艺的关键在于控制摩擦的速度、压力、时间等参数,以实现待焊接表面的原子发生相互扩散、溶解,形成合金。
具体操作步骤包括:
准备待焊接的铝及铝合金材料,确保表面清洁、干燥、无油污;
将待焊接的铝及铝合金材料固定在夹具上;
将夹具固定在摩擦焊接机上,并调整摩擦焊接机的参数,使其符合待焊接材料的要求;
将待焊接的铝及铝合金材料放置在摩擦焊接机上,并开始进行摩擦焊接;
观察焊接过程,调整摩擦焊接机的参数,以获得更好的焊接效果;
停止摩擦焊接,取下待焊接的铝及铝合金材料。
需要注意的是,铝及铝合金摩擦焊接加工工艺对设备和材料有一定的要求,需要选择适当的摩擦焊接机,并确保待焊接材料的表面清洁干燥,无油污。
同时,在进行摩擦焊接时,需要根据待焊接材料的要求,调整摩擦焊接机的参数,以获得更好的焊接效果。
铝及铝合金焊接要点解析铝(Aluminium)是一种金属元素,元素符号为Al,原子序数为13。
其单质是一种银白色轻金属,有延展性。
商品常制成棒状、片状、箔状、粉状、带状和丝状。
在潮湿空气中能形成一层防止金属腐蚀的氧化膜。
铝粉在空气中加热能猛烈燃烧,并发出眩目的白色火焰。
易溶于稀硫酸、硝酸、盐酸、氢氧化钠和氢氧化钾溶液,难溶于水。
相对密度2.70。
熔点660℃。
沸点2327℃。
铝元素在地壳中的含量仅次于氧和硅,居第三位,是地壳中含量最丰富的金属元素。
航空、建筑、汽车三大重要工业的发展,要求材料特性具有铝及其合金的独特性质,这就大大有利于这种新金属铝的生产和应用。
应用极为广泛。
工业纯铝具有铝的一般特点,密度小,导电、导热性能好,抗腐蚀性能好,塑性加工性能好,可加工成板、带、箔和挤压制品等,可进行气焊、氩弧焊、点焊。
工业纯铝不能热处理强化,可通过冷变形提高强度,惟一的热处理形式是退火,再结晶开始温度与杂质含量和变形度有关,一般在200℃左右。
退火板材的σb=80~100MPa,σ0.2=30~50MPa,ζ=35%~40%,HB=25~30。
经60%~80%冷变形,虽然能提高到150~180MPa,但ζ值却下降到1%~1.5%。
增加铁、硅杂质含量能提高强度,但降低塑性、导电性和抗蚀性。
铝合金焊接是指铝合金材料的焊接过程。
铝合金强度高和质量轻。
主要焊接工艺为手工TIG焊(非熔化极惰性气体保护焊)、自动TIG焊和MIG焊(熔化极惰性气体保护焊),其母材、焊丝、保护气体、焊接设备。
铝及铝合金在现代工程技术所用的各种材料中占有举足轻重的地位,它在世界年产量仅次于钢铁而居第二位,在有色金属中则居第一位。
如果说铝合金最初是在航空工业中崭露头角的话,那么近几十年来,除航空工业外,在航天、汽车、船舶、桥梁、机械制造、电纯铝的熔点低(660℃),熔化时颜色不变,难以观察到熔池,焊接时容易塌陷和烧穿;热导率是低碳钢的三倍,散热快,焊接时不易熔化;线膨胀系数是低碳钢的二倍,焊接时易变形;在空气中易氧化成致密的高熔点氧化膜Al2O3(熔点2050℃),难熔且不导电,焊接时易造成未熔合、夹渣并使焊接过程不稳定。
铝及铝合金的焊接工艺一、常用铝及铝合金及其分类铝及铝合金按铝制产品形式不同可分为变形铝合金及铸造铝合金。
按强化方式可分为非热处理强化铝合金及热处理强化铝合金。
按合金化系列,可分为工业纯铝、铝铜合金、铝锰合金、铝硅合金、铝镁合金、铝镁硅合金、铝锌镁铜合金等七大类,特种设备常用纯铝、铝锰合金和铝镁合金。
铝锰合金仅可变形强化,其强度比纯铝略高,成形工艺性及耐蚀性、焊接性好。
铝镁合金也仅可变形强化,与其他铝合金相比,铝镁合金具有中等强度,其延性、焊接性能、耐蚀性能良好。
铝在空气和氧化性水溶液介质中,表面会产生致密的氧化铝钝化膜,因而在氧化性介质中具有良好的耐蚀性。
铝在低温下不存在脆性转变,因此铝制设备可用在很低的温度。
二、铝及铝合金的焊接特点1、铝的氧化性铝极易氧化,在常温空气中即生成致密的氧化铝薄膜,焊接时容易造成夹渣,氧化铝膜还会吸附水分,焊接过程中会促使焊缝生成气孔。
因此,焊接时应对熔化金属和高温金属进行有效的保护。
2、铝的线膨胀系数铝的线膨胀系数比较大,约为钢的两倍,铝凝固时的体积收缩率也比钢大得多,铝焊接时熔池容易产生缩孔、缩松、热裂纹及较高的热应力。
3、气孔铝及铝合金液体熔池易吸收氢等气体,若焊后冷却凝固过程中来不及析出,则在焊缝中形成气孔。
4、热影响区的强度下降当母材为变形强化或固溶时效强化时,焊接热影响区强度将下降。
三、焊接方法的选择铝及铝合金适应的方法很多,气焊、钨极气体保护焊、熔化极气体保护焊、等离子弧焊、焊条电弧焊等都适用。
选择焊接方法时,应考虑产品结构特点、制造工艺要求、焊件厚度、铝合金类别、牌号、对焊接接头质量及性能的要求等综合选择。
特种设备施焊时,经常采用钨极氩弧焊和熔化极气体保护焊,这两种焊接方法热量比较集中,电弧燃烧稳定,由于采用惰性气体,保护良好,容易控制杂质和水分来源,减少热裂纹和气孔的发生,焊缝质量优良,钨极氩弧焊一般用于薄板,熔化极气体保护焊用于厚板。
等离子弧焊接的接头性能一般比氩弧焊好,但设备工艺复杂,使用尚不多。
铝及铝合金的焊接方法铝及铝合金是相当常见的材料,因为具有较高的强度和良好的耐腐蚀性能,被广泛应用于汽车制造、航空航天、建筑、船舶以及机电设备等领域。
然而,由于铝及铝合金的化学性质和结构特点,其焊接较为困难,需要特殊的焊接方法和技术,本文将重点介绍铝及铝合金的焊接方法。
1. TIG焊接法氩弧焊接(TIG)法是目前铝及铝合金最常用的焊接方法之一,其特点在于能够焊接很薄的材料,焊接质量高,且不会产生太多的热变形,但是需要较高的技术要求和操作技巧。
在进行TIG焊接时,需要将铝材预热,以避免冷裂的产生,同时选择合适的氩弧电流和焊接速度,以达到最佳的焊接效果。
2. MIG焊接法惰性气体保护焊(MIG)法是另一种常用的铝及铝合金焊接方法,其特点在于可以快速地焊接大量的材料,但是需要高度精密的焊接设备和较高水平的技术人员。
在进行MIG焊接时,需要选择合适的气体,并将焊接区域清洁干净,以防止氧化皮和其他杂质的干扰,同时适当控制焊接速度和电流,以获得最佳的焊接效果。
3. 拉丝焊接法拉丝焊接法比较适用于较大的铝合金部件的焊接,在进行拉丝焊接时使用的是特殊的焊接材料,可以有效地降低氧化皮的生成,并且具有相对较高的耐腐蚀性能。
在进行拉丝焊接时,需要选用合适的焊接材料、清洁焊接区域,并注意适当的拉丝速度和焊接电流,以获得最佳的焊接效果。
4. 超声波焊接法超声波焊接法适用于薄壁铝及铝合金零件的焊接,其物理原理在于利用高频震动产生的热能将零件焊接在一起。
在进行超声波焊接时,需要选择合适的焊接设备、正确选择焊接参数,以避免过热损伤,并采用合适的夹具,以保证焊接部件的稳定性。
总之,铝及铝合金的焊接方法有多种,每种方法都有其适用的焊接材料、焊接工艺和操作技巧,只有选择适合的焊接方法才能获得最佳的焊接效果。
无论采用何种焊接方法,其关键在于对焊接材料、焊接设备、焊接工艺以及焊接操作等方面全局的认真考虑和细致的把握。
铝及铝合金的焊接工艺方法焊接铝及铝合金的方法铝及铝合金材料具有低密度、高强度、高热电导率和耐腐蚀能力强等优点,因此在工业产品的焊接结构上得到广泛应用。
然而,由于焊接方法及焊接工艺参数的选取不当,会导致铝合金零件焊接后因应力过于集中产生严重变形,或因为焊缝气孔、夹渣、未焊透等缺陷,导致焊缝金属裂纹或材质疏松,从而严重影响产品的质量和性能。
铝合金材料的特点铝是一种银白色的轻金属,具有良好的塑性、较高的导电性和导热性,同时还具有抗氧化和抗腐蚀的能力。
然而,铝极易氧化产生三氧化二铝薄膜,在焊缝中容易产生夹杂物,从而破坏金属的连续性和均匀性,降低其机械性能和耐腐蚀性能。
常见铝合金母材和焊丝的化学成分及机械性能请参见表1.铝合金材料的焊接难点1.极易氧化。
在空气中,铝容易同氧化合,生成致密的三氧化二铝薄膜(厚度约0.1-0.2μm),熔点高(约2050℃),远远超过铝及铝合金的熔点(约600℃左右)。
氧化铝的密度为3.95-4.10g/cm3,约为铝的1.4倍。
氧化铝薄膜的表面易吸附水分,在焊接时,它阻碍基本金属的熔合,极易形成气孔、夹渣、未熔合等缺陷,引起焊缝性能下降。
2.易产生气孔。
铝和铝合金焊接时产生气孔的主要原因是氢。
由于液态铝可溶解大量的氢,而固态铝几乎不溶解氢,因此当熔池温度快速冷却与凝固时,氢来不及逸出,容易在焊缝中聚集形成气孔。
氢气孔目前难于完全避免,氢的来源很多,有电弧焊气氛中的氢,铝板、焊丝表面吸附空气中的水分等。
实践证明,即使氩气按GB/T4842标准要求,纯度达到99.99%以上,但当水分含量达到20ppm时,也会出现大量的致密气孔,当空气相对湿度超过80%时,焊缝就会明显出现气孔。
3.焊缝变形和形成裂纹倾向大。
铝的线膨胀系数和结晶收缩率约比钢大两倍,易产生较大的焊接变形的内应力,对刚性较大的结构将促使热裂纹的产生。
4.铝的导热系数大(XXX℃),约为钢的4倍。
因此,焊接铝和铝合金时,比焊钢要消耗更多的热量。
铝及铝合金的焊接方法铝及铝合金是一种轻质、耐腐蚀、导热性能良好的金属材料,广泛应用于航空航天、汽车制造、建筑等领域。
在实际生产中,铝及铝合金的焊接工艺是非常重要的,因为焊接质量直接影响到整体产品的性能和质量。
本文将介绍铝及铝合金的常见焊接方法及其特点。
首先,铝及铝合金的常见焊接方法包括氩弧焊、气体保护焊、电阻焊、激光焊等。
其中,氩弧焊是应用最为广泛的一种方法。
氩弧焊是利用氩气作为保护气体,通过电弧加热工件表面,使工件熔化并形成焊缝的方法。
氩气能够有效地保护熔融池,避免氧化和氢的影响,从而保证焊接质量。
气体保护焊是在焊接过程中通过外部供气保护焊缝,常用的保护气体有氩气、氩气和氦气的混合气体等。
电阻焊是利用电流通过工件产生热量,使工件表面熔化并形成焊缝的方法。
激光焊是利用激光束对工件进行加热,实现焊接的方法。
其次,不同的焊接方法有不同的特点和适用范围。
氩弧焊适用于铝及铝合金的薄板焊接,焊缝质量好,但焊接速度较慢。
气体保护焊适用于铝及铝合金的厚板焊接,焊接速度快,但焊缝质量稍逊于氩弧焊。
电阻焊适用于铝及铝合金的薄壁管道等零部件的焊接,焊接速度快,但对工件的厚度和形状有一定要求。
激光焊适用于对焊接速度和焊缝质量要求较高的场合,但设备成本较高,适用范围相对较窄。
最后,无论采用何种焊接方法,都需要注意一些共同的焊接技巧。
首先是焊接设备的选择和调试,包括焊接机、焊枪、气体保护装置等的选择和调试。
其次是焊接工艺参数的控制,包括焊接电流、电压、气体流量等的控制。
再次是焊接工件的准备,包括工件的清洁、预热、固位等工序的准备。
最后是焊接过程中的操作技巧,包括焊接速度、焊接角度、焊接顺序等的控制。
总之,铝及铝合金的焊接方法多种多样,选择合适的焊接方法需要根据具体的焊接要求和工件特点进行综合考虑。
在实际生产中,需要根据具体情况选择合适的焊接方法,并严格控制焊接工艺,以保证焊接质量和产品性能。
铝和铝合金扩散焊接摘要:一、铝和铝合金的特性1.铝的优点2.铝合金的种类二、扩散焊接的原理1.扩散焊接的定义2.扩散焊接的过程三、铝和铝合金的扩散焊接应用1.航空航天领域2.汽车制造领域3.电子设备领域四、扩散焊接的优缺点1.优点2.缺点五、发展趋势与展望1.技术发展方向2.行业前景展望正文:铝和铝合金因其优良的性能在许多领域得到广泛应用。
然而,由于铝及铝合金的特性,传统的焊接方法难以满足其焊接需求。
为此,扩散焊接技术应运而生。
铝和铝合金的扩散焊接是一种在高温高压下,通过原子扩散实现金属连接的焊接方法。
在这个过程中,焊接接头在高温下保持一段时间,使铝和铝合金的原子发生扩散,从而实现焊接接头间的冶金结合。
铝和铝合金的扩散焊接在许多领域都有广泛应用。
在航空航天领域,由于其轻质、高强的特点,铝和铝合金成为飞行器制造的主要材料。
而扩散焊接技术可以实现高强度、高质量的焊接接头,大大提高了飞行器的性能。
在汽车制造领域,铝和铝合金广泛应用于汽车车身、悬挂系统等部件,以降低汽车重量、提高燃油经济性。
扩散焊接技术在这里同样发挥着重要作用。
在电子设备领域,铝和铝合金也常用于散热器、外壳等部件的制造。
由于扩散焊接具有较高的接头强度和密封性能,因此在这些领域的应用前景十分广阔。
尽管铝和铝合金的扩散焊接具有许多优点,如接头质量高、焊缝性能好等,但同时也存在一些缺点,如焊接过程中的高温、高压条件对设备和工艺要求较高,以及焊接速度较慢等问题。
随着科技的不断发展,铝和铝合金的扩散焊接技术也在不断进步。
一方面,通过优化焊接工艺和设备,提高焊接效率和质量;另一方面,通过新材料的研究和开发,拓展铝和铝合金的应用领域。