离心泵性能实验
- 格式:doc
- 大小:154.41 KB
- 文档页数:7
离心泵性能试验姓名:班级:学号:同组人:实验日期:离心泵性能试验摘要:离心泵的性能实验以常温常压下水为流体, 测出在一定的转速下, 离心泵的扬程He、轴功率N和效率η与流速qv的关系, 并以三条曲线分别表示出来, 即离心泵的特性曲线。
根据此曲线可求出泵的最佳操作范围。
管路中需安装孔板流量计, 测定不同流速下孔板流量计的孔流系数C0和雷诺数, 并在单对数坐标轴上画出C0-Re关系曲线。
改变泵的频率, 从而改变流量, 再由压力表分别测得管路的进口压降和出口压降, 求出管路的压头H, 在坐标轴上绘制H-qv的关系曲线, 即管路特性曲线。
将离心泵的特性曲线He-qv与其所在管路特性曲线H-qv 绘于同一坐标上, 两交点称为泵在该管路上的工作点。
该点所对应的流量和压头既能满足管路系统要求, 又能为泵所能提供。
关键词: 流量、压头、效率、轴功率、孔流系数实验目的:了解离心泵的构造, 掌握其操作和调节方法。
2.测定离心泵在恒定转速下的特性曲线, 并确定泵的最佳工作范围。
3. 熟悉孔板流量计的构造、性能及安装方法。
4. 测定孔板流量计的孔流系数5. 测定管路特性曲线。
三. 实验原理:1.离心泵特性曲线测定对一定类型的泵来说, 泵的特性曲线主要是指在一定转速下, 泵的扬程(He)、轴功率(N) 和效率(η) 与流量(Q) 之间的关系。
由于离心泵的结构和流体本身的非理想性以及流体在流动过程中的种种阻力损失, 难以推出扬程的纯理论计算式。
因此, 一般采用实验的方法直接测定He- Q、N- Q、η- Q的关系, 及离心泵的特性曲线。
另外, 根据特性曲线也可求出泵的最佳操作范围, 作为选泵的依据。
图 1离心泵的理论压头与实际压头(1)泵的扬程He分别取泵的进出口为1-1截面与2-2截面, 建立机械能衡算式:g p ρ1+ z 1 + gu 221+ He= g p ρ2+ z 2 + g 2u 22 He =H 真空表 + H 压力表 + H0He = (Z2 - Z1) + (p 2 - p 1 ) / g ρ式中: H 压力表----泵出口处的压力 H 真空表----泵入口处的真空度H0 — 表示压力表和真空表测压口间的垂直距离, H0 =0.85m ;p1.p2 — 分别为泵进、出口的真空度和表压, Pa ; u1、u2 — 分别为泵进、出口的流速, m/s, u1=u2;计算出泵进出管路上的压差, 就可计算出泵提供给液体的扬程。
离心泵性能实验实验报告一、实验目的1、了解离心泵的结构、工作原理和性能特点。
2、掌握离心泵性能参数的测量方法,包括流量、扬程、功率和效率。
3、绘制离心泵的性能曲线,分析其性能变化规律。
4、探究离心泵的运行工况对其性能的影响。
二、实验原理1、离心泵的工作原理离心泵依靠叶轮旋转时产生的离心力将液体甩出,在叶轮中心形成低压区,从而使液体不断被吸入和排出。
2、性能参数的定义及计算流量(Q):单位时间内泵排出的液体体积,通过流量计测量。
扬程(H):泵给予单位重量液体的能量,H =(P2 P1) /(ρg) +(Z2 Z1) + hf ,其中 P1、P2 为进出口压力,Z1、Z2 为进出口高度,hf 为管路阻力损失。
功率(P):包括轴功率和有效功率。
轴功率由功率表测量电机输入功率,有效功率 Pe =ρgQH 。
效率(η):η = Pe / P 。
三、实验装置1、离心泵:实验所用离心泵型号为_____,额定流量为_____,额定扬程为_____。
2、水箱:用于储存实验液体。
3、流量计:选用_____流量计,测量范围为_____,精度为_____。
4、压力表:分别安装在泵的进出口处,测量压力。
5、功率表:测量电机的输入功率。
6、管路系统:包括吸入管路和排出管路,管路上安装有调节阀用于调节流量。
四、实验步骤1、检查实验装置,确保各仪器仪表正常工作,管路连接紧密无泄漏。
2、向水箱中注入适量的实验液体(通常为清水)。
3、启动离心泵,待运行稳定后,记录初始的流量、扬程、功率等参数。
4、逐渐调节调节阀,改变流量,每次调节后待运行稳定,记录相应的流量、进出口压力和功率等数据。
5、重复步骤 4,测量多组数据,流量调节范围应涵盖离心泵的正常工作范围。
6、实验结束后,关闭离心泵,清理实验装置。
五、实验数据记录与处理|流量 Q(m³/h)|扬程 H(m)|轴功率 P(kW)|效率η(%)|||||||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____|根据实验数据,计算出不同流量下的有效功率和效率,并绘制离心泵的性能曲线,包括扬程流量曲线(HQ 曲线)、功率流量曲线(PQ 曲线)和效率流量曲线(ηQ 曲线)。
离心泵性能测定实验天津翔宇学校刘国英离心泵性能测定实验 一.试验目的:1. 熟悉离心泵的结构与操作方法,了解常用测压仪表。
2. 掌握离心泵特性曲线测定方法,加深对离心泵性能的理解。
二.试验内容:1. 熟悉离心泵的结构与操作2. 测定IH50-32-125型离心泵在一定转速下Q 与H ,N ,Ƞ之间的特性曲线,并确定最佳操作区。
三.试验原理:离心泵是最常见的液体输送设备。
对一定型号的泵在一定转速下,离心泵的扬程H ,轴功率N 及效率ƞ随流量Q 的改变而改变。
通常通过实验测定Q-H ,Q-N ,Q-Ƞ关系,并用曲线进行表示,称离心泵特性曲线。
该曲线是确定泵适宜操作条件和选用泵的重要依据。
测定方法如下:1. H 的测定(在泵的吸入口和后出口之间列柏努利方程)泵进,出口径相同,U 入=U 出H=(Z 出-Z 入)+gP P 出ρ入+zgU U 22入出-(Z 出-Z 入)=0.5 m ,因(Z 出-Z 入)很小,则∑hf 入-出≈0,然后将实测的P 出、P 入数值代入方程,即可得不同流量下的H 值。
2. N 的测定泵的轴功率=电机输出功率(直连式离心泵) 电机输出功率=电机输入功率 × 电机效率N=功率表读数 × 电机效率(电机效率取60%) 3. Ƞ的测定: Ƞ=N Ne × 100% Ne=102HQP (kw )式中:Ƞ-泵的效率%, N-泵轴功率 kw Q-泵的流量m 3/s , Ne-泵有效功率 kw H-泵的丫头 m, ρ-水的密度 kg/m 3四.试验方法 (离心泵性能测定工艺过程) 1) 离心泵正常开、停车操作① 先将泵入口阀全部开启,出口阀全部关闭,关闭出口压力表,控制阀V A14b ,然后启动电机。
② 当泵出口压力高于0.2Mpa 时,逐渐打开出口阀门。
然后进行离心泵性能测定的工艺过程。
2) 流体由原料罐V105径阀门V A152,在泵P103输送作用下,通过电动调节阀V A145——涡轮流量计F105——V A140后回到原料罐。
离心泵性能实验指导书一、实验目的了解实验设备,掌握离心泵实验方法,测绘离心泵在给定转速下,泵的压头H 、功率P 和效率η与流量Q 的关系曲线,验证理论推导特性曲线的正确性,并分析确定泵的额定工作点。
二、实验装置水泵试验台按其回路系统形式一般分为开式和闭式两种。
本试验台为开式试验装置,如图所示,由电机1、联轴节、传感器2、离心泵3、吸水池13、底阀6、吸入管8、排出管9、涡轮流量变送器10、调节阀门11及排出尾管12组成。
三、实验原理1、流量的测量它是由LW —SO 涡轮流量变送器10及XSF —40B 型流量积算仪配套使用,从而实现流量的测量。
A 、LW —50涡轮流量变送器它是由叶轮组件、导流体、壳体及前置放大器组成,其结构简图见图示、其工作原理是当被测液体流经变送器时。
变送器内的叶轮借助于流体的动能而旋转,叶轮则周期性地改变磁电感应系统中的磁阻值,使通过线圈中的磁通量发生变化而产生脉冲电信号,经前置放大后,送至二次仪表,实现流量的测量。
B 、 S F —40B 流量指示积算仪XSF —40B 能测定电频率讯号的瞬时值,当它与频率输出的流量变送器使用时,可测定流量的瞬时值,瞬时值的指示以HZ (赫兹)表示,量程分二档:0~500HZ 0~3000HZ由涡轮变送器送来的电脉冲信号的频率(f) 与流量(Q)在测量范围内有线性关系:F=ξQ (HZ )其中ξ为涡轮变送器的流量系数,其物理意义是:每流过单位容积(升)的液体所发出的脉冲数(脉冲数/升)所以Q=f(L/S —升/秒) 2.泵的转矩、转速及轴功率P 的测量采用JCIA 转矩转速传感器及其配套的二次仪表JSGS —1转矩转速功率仪配合测量。
A . JCIA 传感器该传感器的基本原理是通过磁电变换,把被测转矩、转速换成具有相位差的两个电信号。
这两个电信号的相位差的变化与被子测转矩的大小成正比,把这两个电信号输入到JSGS —1。
转矩转速功率仪即显示出转矩、转速及功率的大小。
实验一 离心泵性能测定实验一、实验目的1.测定离心泵在恒定转速下的性能,绘制出该泵在恒定转速下的扬程—流量(H-Q )曲线;轴功率—流量(N-Q )曲线及泵效率—流量(η-Q )曲线;2.熟悉离心泵的操作方法,了解流量仪表、测功装置的原理及操作使用方法,进一步巩固离心泵的有关知识。
二、实验装置过程设备与控制多功能综合试验台 三、基本原理 1.扬程H 的测定根据柏努利方程,泵的扬程H 可由下式计算:gu u z g p p H bc b c 222-+∆+-=ρ (1-1)式中 :H ——泵的扬程,m 水柱; b p ——真空表读数(为负值),Pa ;c p ——压力表读数,Pa ;b u ——真空表测量点接头处管内水流速度,m/s ;b b A Q u /103⨯=- A b =π/4×d b 2c u ——压力表测量点接头处管内水流速度,m/s ;Ac Q u c /103⨯=- A c =π/4×d c 2 , m 2z ∆——压力表与真空表测量点之间的垂直距离,m ; ρ——水的密度,ρ=1000 3/m kg ;g ——重力加速度,9.812/s m 。
在本实验装置中,z ∆=0、真空表测量点接头处管内径d b =32mm 、压力表测量点接头处管内径d c =25mm2.功率测定(1)轴功率N (电动机传到泵轴上的功率)9554n M N ⋅= kW(1-2)式中: M ——转矩,N ·m; n ——泵转速,r.p.m 。
(2)有效功率N e (单位时间内离心泵所做的有用功)1000gHQ N e ρ= kW(1-3)式中 :Q ——流量,s m /3。
3.效率η%100⨯=NN e η(1-4)四、实验步骤1.关闭热流体进出口阀门,打开换热器管程的进出口阀门;2.打开自来水阀门灌泵,保证离心泵中充满水,开排气阀放净空气;3.启动水泵(11-9),向右转动“11-6”水泵运行选择开关为直接启动运转方式; 4. 启动组态王程序,进入“实验一”画面后,清空数据库;5. 调节冷水泵出口流量调节阀,改变流量Q 1,使冷水流量从0.5到2.5L/s,每间隔0.4L/s 单击“记录”按钮,记录一次数据。
离心泵性能测定与管路性能测定实验一、实验目的1.了解离心泵的操作及有关仪表的使用方法。
2.测定离心泵在固定转速下的操作特性, 作出特性曲线;3、测定管路性能, 作出高阻和低阻管路性能曲线。
二、实验原理提示1、 离心泵性能曲线:2、 离心泵的特性曲线取决于泵的结构、尺寸和转速。
对于一定的离心泵, 在一定的转速下, 泵的扬程H 与流量q 之间存在一定的关系。
此外, 离心泵的轴功率和效率亦随泵的流量而改变。
因此H -q,P -q 和η-q 三条关系曲线反应了离心泵的特性, 称为离心泵的特性曲线。
由于离心泵内部作用的复杂性, 其特性曲线必须用实验方法的测定。
流量q 测定: (经典体积法)]/[312s m S t h h q ⋅-=h2, h1—计量前后计量槽液面高m2;t —计量时间s ;S —计量槽横截面积, 0.1718m2。
2.扬程H 的计算:如右图在1-1 和2-2截面列BNL 方程:212222211122-∑+++=+++f h gu g p z H g u g p z ρρ 整理得:212122122-∑+-+-+∆=f h gu u g p g p z H ρρ 上式中, 知:00''21=≈≈+=∑-f f f f f h H h h h h 内,因此泵内局部阻力已包含在短,其阻力直管阻力由于直管段很 得化简式:表头读数P ’和实际压力P 之间的关系:引压管内充满水, 根据静力学方程知:z h gp g p h g p g p ∆++=+=ρρρρ'11'22 将此关系代入上化简式中得:即 :][106'1'2液柱m g P P H ⨯⋅-=ρP 2’、 P 1’——压力表和真空表表头读数 [MPa]ρ——流体(水)在操作温度下的密度[Kg/m 3]3.电功率P 电:电功率P 电: 电机输入的电功率。
本实验由功率表可直接测出。
轴功率P 轴: 泵轴的功率, 也是泵的输入功率;有效功率P 有:泵对流体所作的有效功, 也是泵的输出功率;三者关系为:有轴电PP P 电有总轴有泵电轴传电P P P P P P ===⋅ηηηη4.泵的总效率:%1001000⨯⨯⋅⋅⋅==电电有总电功率泵有效功率P g H q P P ρη 5.转速效核: 应将以上所测参数校正为额定转速2900rpm 下的数据来作特性曲线图。
离心泵性能综合实验一、实验目的1、观察离心泵汽蚀、气缚现象,了解汽蚀、气缚现象产生原因及其防止方法;2、学习工业上流量、功率、转速、压力和温度等参数的测量方法,了解转子流量计的工作原理;3、测定离心泵特性曲线,绘制出扬程、功率和效率与流量的关系曲线图。
二、实验原理1、气缚现象离心泵靠离心力输送液体。
离心力大小,除与叶轮直径及叶轮旋转速度有关外,还与流体重度有关。
若离心泵启动时,泵壳内存在大量空气,则由于空气的重度远远低于液体的重度,叶轮旋转所造成的离心力也很小,导致泵入口与水池液面间的压差太小,不能把水池内液体抽压到叶轮中心,就会发生离心泵空转却送不出液体的状况,这种现象称“气缚”。
所以,离心泵若安装在液面上方时,启动前必须先使泵体及吸入管路中充满液体(所谓“灌泵”)。
同时,在运转过程中也要防止外界空气大量漏入,以免产生气缚。
2、汽蚀现象离心泵之所以能吸取液体,是由于泵的叶轮旋转时,将液体抛向外沿,而中心形成真空,而贮槽液面上的压力却为大气压,因此,泵就依靠此压差将液体压入泵内,如果输送的是水,并设叶轮进口处为绝对真空,管路阻力为零,液面上为一个标准大气压,那么最大几何吸上高度也不超过10.33米。
图1离心泵吸上真空度参照图1,列0~0,1~1截面间柏努利方程式:0120112s f p p u Z h g g g ρρ-⎛⎫=-++∑ ⎪⎝⎭(1)式中s Z 为几何安装高度。
设:01s p p H gρ-=,s H 为吸上真空高度,则012112o s s f p p u H Z h g gρ--==++∑(2)由此可知,1p 愈小,s H 愈大。
但当1p 低达v p (输送液体的饱和蒸汽压)时,液体就要汽化,就产生汽蚀现象,使泵无法工作,所以对1p 的降低幅度应有限制。
由上式可见,1p 随着泵的几何安装高度s Z 提高而降低,故最终应对泵的几何安装高度加以限制。
在离心泵的铭牌(性能表)上一般都列有允许吸上真空高度s H 允许和汽蚀余量h ∆允许,二者均是对泵的安装高度加以限制,以避免汽蚀现象发生。
实验名称:离心泵性能实验 一、 实验目的① 了解离心泵的构造,掌握其操作和调节方法。
② 测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
③ 熟悉孔板流量计的构造、性能及安装方法。
④ 测定孔板流量计的孔流系数。
⑤ 测定管路特性曲线。
二、 实验器材离心泵性能实验装置三、 实验原理1、离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图-1的曲线。
由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测得:He ~Q 、N ~Q 和η~Q 三条图-1 离心泵的理论压头与实际压头曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出离心泵的最佳操作范围,泵的高效率区作为选用离心泵的依据。
(1) 泵的扬程He0H H H He ++=真空表压力表式中 压力表H ________泵出口处的压力,O H m 2; 真空表H ________泵入口处的真空度,O H m 2;0H _______压力表和真空表测压口之间的垂直距离,m H 85.00=。
(2) 泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值较低,而输入泵的功率又比理论值高,所以泵的总效率为:轴N N e =η 102QHe e ρ=N式中 e N ________泵的有效功率,kW ;Q ________流量,m 3/s ; e H ________扬程,m ;ρ________流体密度,kg/m 3。
由泵轴输入离心泵的功率轴N 为:转电电轴ηηN N =式中 电N ________电机的输入功率,kW ; 电η________电机效率,取0.9;转η________传动装置的传动效率,一般取1.0。
离心泵性能测定实验一、实验目的1. 了解离心泵的构造与操作;2. 测定离心泵在一定转速下的特性曲线;3. 了解离心泵的工作点与流量调节。
二、实验原理离心泵是应用最广的一种液体输送设备。
它的主要特性参数包括:流量、扬程、功率和效率。
这些参数之间存在着一定关系,在一定转速下,扬程、功率和效率都随着流量的变化而变化,通过实验测定不同的流量、扬程、功率和效率的值,就可以作出泵在该转速下的特性曲线。
三、实验设备的特点1.本实验装置数据稳定,重现性好, 使用方便,安全可靠。
2.本装置体积小,重量轻,设备紧凑,功能齐全;实验采用循环水系统,节约实验费用。
四、设备主要技术数据1. 设备参数:(1) 离心泵:流量Q=4m3/h ,扬程H=8m ,轴功率P=168w(2) 真空表测压位置管内径d1=0.025m,压强表测压位置管内径d2=0.025m,实验管路d=0.040m(3) 真空表与压强表测压口之间的垂直距离h0=0.41m(4) 电机效率为60%2. 流量测量采用涡轮流量计测量流量,由仪表调节。
3. 功率测量功率表:型号PS-139 精度1.0级4. 泵吸入口真空度的测量真空表:表盘真径-100mm 测量范围-0.1-0MPa 精度1.5级5. 泵出口压力的测量压力表:表盘直径-100mm 测量范围0-0.25MPa 精度1.5级五、实验装置的流程水泵2将水槽1内的水输送到实验系统,用流量调节阀11调节流量,流体经涡轮流量计6计量后,流回储水槽。
流程示意图见图一。
离心泵性能测定实验装置流程示意图1-水箱2-离心泵3-真空表4-回水阀5-压力表6-涡轮流量计7-温度计8-排水阀计9- 入口压力传感器10—出口压力传感器11—智能流量调节阀六、实验方法及步骤1. 向储水槽1内注入蒸馏水。
2. 检查流量调节阀11,压力表5及真空表3的开关是否关闭(应关闭)。
3.启动实验装置总电源,启动离心泵,利用流量仪表缓慢打开调节阀11至全开。
离心泵性能测定实验报告离心泵性能测定一、实验目的:1、了解离心泵的构造与特性,掌握离心泵的操作方法;2、测定并绘制离心泵在恒定转速下的特性曲线。
二、实验原理:离心泵的压头H、轴功率N及功率η与流量Q之间的对应关系,若以曲线H~Q、N~Q、η~Q表示,则称为离心泵的特性曲线,可由实验测定。
实验时,在泵出口阀全关至全开的范围内,调节其开度,测得一组流量及对应的压头、轴功率和效率,即可测定并绘制离心泵的特性曲线。
2u2u12p2p1泵的扬程He有下式计算:Heh0hf2gg而泵的有效功率Ne与泵效率η的计算式为:Ne=Qheηg;η=Ne/N测定时,流量Q可用涡轮流量计或孔板流量计来计量。
轴功率N可用马达-天平式测功器或功率来表测量。
离心泵的性能与其转速有关。
其特性曲线是某一恒定的给定转速(一般nl =2900PRM)下的性能曲线。
因此,如果实验中的转速n与给定转速nl有差异,应将实验结果换算成给定转速下的数值,并以此数值绘制离心泵的特性曲线。
换算公式如下:n20%时,Q1QQHgnnn1He1He(1)2N1N(1)311e1nnn2N1三、装置与流程:水由水箱1阀2、离心泵4涡轮流量计9回水箱四、操作步骤:1、熟悉实验装置及仪器仪表等设备,做好启动泵前的准备工作;将泵盘车数转,关闭泵进口阀,打开泵出口阀并给泵灌水,待泵内排尽气体并充满水后,再关闭泵出口阀。
2、启动离心泵,全开泵进口阀,并逐渐打开离心泵出口阀以调节流量。
在操作过程稳定条件下,在流量为零和最大值之间,进行8次测定。
3、在每次测定流量时,应同时记录流量计、转速表、真空计、压力表、功率测定器示值。
数据取全后,先关闭泵出口阀,再停泵。
五、实验数据记录和数据处理:3泵入口管径d1=40mm;出口管径d2=40mm;h0=0.1m;水温T=25.0℃;ρ=997.0kg/m;μ=0.903mPas;V[m3/h]=0.04855I[μA];直管长度l=2m;由公式Q=V=[m/h]=0.04855[μA];He=h0+(P2-P1)/ρgNe=Q_He_ρ_gN=PLn/0.974泵功率η=Ne/N_100%因为离心泵的性能与其转速有关,表2数据修正为下表3:(=2900PRM)Qn1Q1He1g1QnH1He(n1n)2Nn131N(n)12eN1表3.泵性能数据修正表/mHe0.60.40.20.080.0Q/10N/kW六、讨论:1、离心泵开启前,为什么要先灌水排气答:是为了除去泵内的空气,使泵能够把水抽上来。
离心泵性能实验一、目的及任务1、了解离心泵结构于特性,学会离心泵的操作。
2、测定离心泵在恒定转速下得特性曲线,并确定泵的最佳工作范围。
3、熟悉孔板流量计的构造、性能及安装方法。
4、测定孔板流量计的孔流系数。
5、掌握离心泵特性曲线测定方法。
二、实验原理1)离心泵特性曲线的测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可以通过对泵内液体质点运动的理论分析得到,如图所示。
离心泵的主要性能参数有流量Q、扬程(也叫压头)、轴功率η。
在一定的转速下,离心泵的扬程H、轴功率和效率η均随实际流速Q的大小而改变。
通常用水经过试验测出Q-H、Q-N及Q-η之间的关系,并以三条曲线分别表示出来,这三条曲线就称之为离心泵的特性曲线。
实验时,在泵出口阀全关至全开的范围内,调节其开度,测得一组流量及对应的压头、轴功率和效率,即可测定并绘制离心泵的特性曲线。
泵的扬程He有下式计算:He=H压力表+H真空表+Hο式中 H压力表:泵出口处的压力;H真空表:泵入口处十五真空度;Hο:压力表和真空表测压口之间的垂直距离,Hο=0.85m。
2)泵的有效功率和效率泵的效率η为泵的有效功率Ne 与轴功率N 的比值。
有效功率Ne 是流体单位时间内自泵得到的功,轴功率N 是单位时间内泵从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。
Ne=QHe ρ/102η=Ne/N 轴式中 Ne :泵的有效功率,KW; Q:流量,m3/s; He:扬 程,m;ρ: 流体的密度Kg/m3. 由泵轴输入离心泵的功率N 轴为 N=N 电η电η转式中 N 电:电动机的输入功率,KW;η电:电机效率,取0.9;η转:传动装置的传动效率,一般取1.0。
2.孔板流量计孔流系数的测定在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器的两端连接。
孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减少,造成孔板前后压强差,作为测量的依据。
若管路直径为d1 ,孔板锐孔直径为d0,流体流经孔板后所形成的缩脉的直径为d2,流体的密度为ρ,孔板前测压导管截面处的速度和压强分别为u 1、u2与P1、P2根据伯努力方程,不考虑能量损失,可得:ghu u 22221=-用孔板孔径处的u0代替u2,考虑到流体因局部阻力而造成的能量损失,用校正系数C 后,则有:ghu u 22221=-对于不可压缩的流体,根据连续方程有:1001s s u u =经整理可得:2100)(12S S gh Cu -=令2100)(1S S C C -=,则有ghC u 200=根据u 和S ,即可算出流体的体积流量 SV 为ρPS C V gh S C S u V S S ∆===22000000式中SV : 流体的流量体积,3m /s;p ∆:孔板压差,Pa;S :孔板的面积,2m ;ρ:流体的密度;C :孔流系数。
三、实验装置图水由水箱1,经泵进口阀2、离心泵4、出口阀8 9涡轮流量计9,最后流 10 8 6 回水箱 7 35 42 1四、操作步骤1、关闭进口阀及管道阀门,打开总开关,打开仪表开关通电,把离心泵电源转换到“直接”位置。
停止按钮灯亮。
2、打开进口阀,打开离心泵灌水罚,进行水泵灌水(注意:在打开灌水阀时要慢,且只打开一定的开度,不要开太大,否则会损坏压力表)。
灌好水后关闭泵的出口阀与灌水阀门。
3、一切准备就绪后,按下开启按钮。
启动按钮绿灯亮,即可进行实验。
4、打开泵的出水阀(全开),流量达到最大。
5、等待流动和显示的数据稳定后,测定泵的真空度P1,泵后压力P2,水温t ,流量V 及泵的功率并记录。
6、调节泵的出口阀,调节流量,改变流量大小,测定不同流量下的P1,P2,t ,V 。
7、同样方法测定10次,同时注意流量不低于3m ³/h.8、实验完毕,关闭水泵出口阀。
按下仪表台上的水泵停止按钮,停止运行。
9、进入实验数据处理软件,处理数据。
五、报告要求① 画出离心泵的特性曲线,判断该泵较为适宜的工作范围; ② 在单对数坐标纸上作出eO R C 的曲线;③ 绘出管路特性曲线。
六、数据处理表1—离心泵性能试验原始数据表序号压力表(MPa)真空表(MPa)功率(kw) 时间(s)初始液面h1(mm)最终液面h2(mm)孔板流量计压差P/Kpa1 0.028 -0.022 1.00 19.8 33.0 258.0 39.72 0.060 -0.021 0.99 22.4 57.0 301.5 36.53 0.081 -0.019 0.97 24.9 40.5 291.5 32.34 0.096 -0.018 0.95 25.6 44.5 286.5 28.85 0.116 -0.016 0.91 30.7 41.2 306.0 24.36 0.129 -0.014 0.88 31.5 33.5 288.5 20.57 0.152 -0.012 0.82 40.2 29.6 299.0 14.58 0.165 -0.011 0.79 45.9 26.2 301.6 11.59 0.173 -0.009 0.75 52.0 44.9 311.5 8.310 0.188 -0.007 0.66 66.0 42.5 287.5 4.211 0.197 -0.006 0.50 0.1表2—离心泵性能试验数据处理表序号He/m H2O流量Qv/m^3/s有效功率Ne/kw轴功率/N/kw效率流速u/m/s雷诺数Re孔流系数Co1 5.95 2.78E-030.16230.900 18.03% 2.01 72672 0.6800.6726295522 9.12 2.67E-030.23880.891 26.80% 1.93 69804 0.6813 11.06 2.47E-030.26740.873 30.63% 1.78 64465 0.6694 12.43 2.32E-030.2820.855 32.98% 1.67 60454 0.6645 14.32 2.11E-030.29640.819 36.19% 1.53 55160 0.6606 15.45 1.98E-030.3000.792 37.88% 1.43 51770 0.6757 17.59 1.64E-030.28280.738 38.32% 1.19 42857 0.6658 18.81 1.47E-030.27080.711 38.09% 1.06 38371 0.6699 19.43 1.26E0.2380.675 35.40% 0.91 32787 0.6741水温:16.5C 0 管子内径/mm : 42 管子面积/2m :0.001385 H 0=0.85m密度/3mkg:998.7 粘度/mPa*s1.16 孔的面积/2m :0.00046以其中第一组数据为例:此时Q=0.495^2×(258.01—33.0)10^(-3)÷19.8=2.78E-03 He=H0+(0.028+0.022)×10^6÷998.7÷9.81=5.95 m Ne =Q×He×ρ÷102=2.78E-03×5.95×998.7÷102=0.162N=N 电η电η转=1.0×0.9=0.9η=Ne/N 轴 =0.162/0.9=18.03% 孔板流量计的孔流系数雷诺数Re=du ρ/μ=4Q ρ/Πd μ=4×2.78E-03×998.7÷3.14÷0.042÷1.16 ×10^3= 72672 孔流系数C0=4Q ÷Π÷d ÷d ÷√2△p ÷ρ=2.78E-03÷0.00046÷√2×39700÷998.7=0.680 由此得到表2七、思考题1、根据离心泵的工作原理,分析为什么离心泵启动前要灌泵?在启动前为何要关闭调节阀?答:灌泵是因为离心泵是靠泵叶旋转产生的离心力把水抽出泵内的水抽出后形成真空负压,把水抽入泵内周此循环。
但的加工精度不高,不能把空气抽空排出,所以使用前要先灌水;而关闭出调节阀是由于在系统启动时,管路常常为空管,没有管阻压力,这样会造成泵在一定转速下启动时的开始短时间内由于没有阻力,会偏大流量运转,常常出现泵振动、噪声,甚至电机超负荷运转,将电机烧毁。
关闭出口阀,等于人为设置管阻压力,随泵正常运转后,缓慢启动阀门,让泵沿其性能曲线规律逐步正常工作。
2、当改变流量调节阀开度时,压力表和真空表的读数按什么规律变化?答:出口阀门开大时,出口压力减小,压力表读数增大,流量随之增大(这是离心泵的一种特性)。
真空表的读数增大,这是因为随着流量增大,吸水管的压力损失增大,管内压强降-039 1020.759.10E -040.18480.594 31.12%0.6623739 0.690低,反映在进口真空表的读数增大(注意真空值增大,压强是减小的)。
(百度里的是——真空表负压变大,压力表逐渐减小)3、用孔板流量计测流量时,应根据什么选择孔口尺寸和压差计的量程?答:用孔板流量计时应选择适当的面积比以期兼顾到U形压差计适宜的读数和允许的压力降差来选择孔口尺寸和压差计的量程。
4、试分析气缚现象和歧视现象的区别?答:因泵入口处变径引起气体积存而形成气囊,大量气体吸入泵内,导致吸不上液体的现象,称为气缚现象。
当Pk降至被输送液体的饱和蒸汽压时,将发生沸腾,所生成的蒸汽泡在随液体从入口向外周流动中,又因压力迅速加大而急剧冷凝,使液体以很大的速度从周围冲向气泡中心,产生频率很、瞬时压力很大的冲击,这种现象称为气蚀。
5、根据什么条件来选择离心泵?答:(1)先根据所输送的液体及操作条件确定泵的类型(2)再根据所要求的流量与压头确定泵的型号(3)若被输送液体的粘度和密度与水相差较大时,应核算泵的特性参数:流量、压头和轴功率。
八、结果讨论与误差分析本实验结果① 测定离心泵在恒定转速下的特性曲线。
② 确定了泵的最佳工作范围是3到10立方米每小时。
③ 测定孔板流量计的孔流系数。
④ 测定管路特性曲线。
实验误差:本实验过程中:1、由于离心泵工作时流量不稳定,使真空表和表压表的读数有误差,还有可能测量离心泵工作范围未取得适当的间隔,使得数据差异有所偏大。
2、在实验控制流量时,泵的出水阀开关可能未完全打开而出口阀控制的不稳定导致了一定误差。
3、实验中通过水柱来测定流量,由于水面的波动使读数有误差,从而致使测得的流量有误差,影响泵的有效功率。