电气理想元件
- 格式:doc
- 大小:20.00 KB
- 文档页数:1
理想元件与电路模型分析电的应用十分广泛,实际电路的形式也是多种多样,用途各异,为了方便实际电路的分析研究设计,需要首先建立实际电路的模型。
学习的电路基本理论都是针对理想元件构成了实际电路的电路模型进行。
所以首先要了解什么是理想的元件及其电路模型的建立方法和原则。
然后进一步理解电路的特性。
理想元件电路模型。
在我们的工作,学习和日常生活中,实际电路的应用随处可见,例如我们每天都离不开手的手机(图1)。
它的电路主要是由各种电子元器件和一些集成芯片图1手机电路图2照明电路图3电路模型构成。
还有我们常用的照明电(图2)。
它是由交流电源照明灯开关还有导线所构成。
无论是手机电路还是照明电路,这些实际的电路都是由元器件或设备,为实现某种应用的目的,按照一定的方式连接而成的。
任何一个实际电路在通电后,它的内幕将会呈现各种各样的现象,表现出来的特征也都比较复杂。
电路中最常见的电阻、电容和电感元件(图4)。
它们的电磁关系也并不简单。
先以电阻为例,当电流通过电阻时,它会发热消耗电能。
在物理课中,它只具有单一的电阻特性。
但是实际上,当它通过的电流发生变化的时候,在他周围的电磁场也会发现微弱的变化。
实际特性相当,一个电阻,一个小电感的串联。
电容元件,给电容两端加上电压时候,它除了存储电场能量,也会发生热消耗电能,实际特性相当于一个电容与一个小电阻的串联。
电感元件通过电流时,除了储存磁场能量外,他也会发热消耗电能,实际特性相当,一个电感与一个小电阻串联。
实际电路的构成往往比较复杂。
为了便于对实际电路进行分析和数学描述。
人们常图4常讲实际的元器件理想化,即在一定条件下只考虑其主要呈现的电磁特性,而忽略其次要的特性,把它们近似的看做一个单一的理想元件,或者有若干理想化元件所组成的电路。
例如电阻器,在通常情况下,只可考虑其消耗电能的特性而忽略其存储磁场的性能。
可以把它近似的看成为理想化的电阻元件,并且用精确的数学关系加以定义。
理想的电阻元件可以用R 表示。
机械相关电气知识点总结一、电流、电压和电阻1. 电流电流是流经导体的电荷的数量。
单位为安培(A),符号为I。
电流的大小与导体中的电荷数和速度有关。
电流可以由下述公式计算得出:I=Q/t,其中I为电流,Q为电荷量,t为时间。
2. 电压电压是电荷在电路中移动时,所具有的能量,也称为电势差。
单位为伏特(V),符号为U。
电压可以由下述公式计算得出:U=IR,其中U为电压,I为电流,R为电阻。
3. 电阻电阻是电流在电路中传播时所受到的阻力。
单位为欧姆(Ω),符号为R。
电阻可以由下述公式计算得出:R=U/I,其中R为电阻,U为电压,I为电流。
二、直流电路和交流电路1. 直流电路直流电路指电流方向不变的电路。
在直流电路中,电子只能在一个方向上流动。
常见的直流电源有电池和太阳能电池。
2. 交流电路交流电路指电流方向不断变化的电路。
在交流电路中,电子来回摆动。
交流电路常用于家庭和工业电力应用中,如插座和电器。
三、电路元件1. 电源电源是一个能将其他形式的能量转化为电能的装置。
电源可以是化学能、光能或机械能。
2. 电阻电阻是电路中的一种被动元件,其主要作用是阻碍电流的流动。
常见的电阻有电阻器和电线。
3. 电容电容是一种电路元件,它能够存储电荷。
电容可以储存电能,是电路中的重要组成部分。
4. 电感电感是电路中的一种元件,它能够通过磁场存储电能。
电感通常由线圈构成,是电路中的重要组成部分。
四、电路分析1. 基尔霍夫定律基尔霍夫定律是用来分析电路的一种方法,它包括基尔霍夫电流定律和基尔霍夫电压定律。
基尔霍夫电流定律指出,一个节点的输入电流等于输出电流的代数和;基尔霍夫电压定律指出,一个闭合回路的电压代数和为零。
2. 理想电路元件理想电路元件是一种简化电路分析的方法,它将电路中的元件视为理想的电源、电阻、电容和电感,从而简化了电路分析。
3. 理想电路模型理想电路模型是将电路中的元件视为理想元件的一种方法,从而可以简化电路分析。
1 电流(current):电荷在电场力作用下的有序运动形成电流,衡量电流大小的量是电流强度,简称电流。
其量值为单位时间内通过电路某一导体横截面的电荷量。
用符号i(t)表示,单位为A(安培)。
2 电压(voltage):电场力将单位正电荷由一点移到另一点时所做的功,是衡量电场力做功能力的物理量。
用符号u(t )表示,单位为V(伏特)。
3 电动势(electromotive force):电源中的局外力(非电场力)将单位正电荷从电源负极移到电源正极所做的功,是衡量局外力做功能力的物理量。
用符号e(t )表示,单位为V(伏特)。
4 电位(electric potential):在电路中任选一点为参考点,由某点到参考点之间的电压称为该点的电位,用符号V表示,单位为V(伏特)。
5 电能(electrical energy):在一段时间内电场力所做的功称为电能,用符号W表示,单位为J(焦耳)。
6 戴维宁定理(Thevenin’s theorem):在线性电路中,任何一个含有独立源的二端网络,对外电路而言,可以用一个理想电压源与电阻串联的电路等效代替。
电压源的电压等于有源二端网络的开路电压,电阻等于有源二端网络中所有独立电源置零后的等效电阻。
7 叠加定理(superposition theorem):在线性电路中,任一支路的电流或电压,均等于电路中各个独立电源单独作用时,在该支路产生的电流或电压的代数和。
8 基尔霍夫电流定律(Kirchhoff’s current law简称KCL):电路中任一瞬间,流入任一结点的支路电流之和恒等于流出该结点的支路电流之和。
或表述为电路中任一瞬间,任一结点的支路电流的代数和恒等于零。
9 基尔霍夫电压定律(Kirchhoff’s voltage law简称KVL):电路中任一瞬间,任一回路各元件电压升之和恒等于电压降之和。
或表述为电路中任一瞬间,任一回路各支路电压的代数和恒等于零。
漏电开关,主要用于防止漏电事故的发生,其开关的动作原理是在一个铁芯上有两个绕组,主绕组和副绕组。
主绕组也有两个绕组,分别为输入电流绕组和输出电流绕组.无漏电时,输入电流和输出电流相等,在铁芯上二磁通的矢量和为零,就不会在副绕组上感应出电势,否则副绕组上就会感应电压形成,经放大器推动执行机构,使开关跳闸。
不管三相还是单相的漏电开关都是,上面进线,下面出线。
熔断器(fuse)是指当电流超过规定值时,以本身产生的热量使熔体熔断,断开电路的一种电器.熔断器是根据电流超过规定值一段时间后,以其自身产生的热量使熔体熔化,从而使电路断开;运用这种原理制成的一种电流保护器。
熔断器广泛应用于高低压配电系统和控制系统以及用电设备中,作为短路和过电流的保护器,是应用最普遍的保护器件之一。
中间继电器(intermediate relay):用于继电保护与自动控制系统中,以增加触点的数量及容量。
它用于在控制电路中传递中间信号.中间继电器的结构和原理与交流接触器基本相同,与接触器的主要区别在于:接触器的主触头可以通过大电流,而中间继电器的触头只能通过小电流。
所以,它只能用于控制电路中。
它一般是没有主触点的,因为过载能力比较小。
所以它用的全部都是辅助触头,数量比较多.新国标对中间继电器的定义是K,老国标是KA。
一般是直流电源供电。
少数使用交流供电。
工作原理/交流接触器当线圈通电时,静铁芯产生电磁吸力,将动铁芯吸合,由于触头系统是与动铁芯联动的,因此动铁芯带动三条动触片同时运行,触点闭合,从而接通电源。
当线圈断电时,吸力消失, 动铁芯联动部分依靠弹簧的反作用力而分离,使主触头断开,切断电源。
交流接触器是电力拖动和自动控制系统中应用最普遍的一种低压控制电器。
作为执行元件,用于接通、分断线路、或频繁的控制电动机等设备运行。
由动、静主触头,灭弧罩,动、静铁芯,辅助触头和支架外壳等组成。
电磁线圈通电后,使动铁芯在电磁力作用下吸合,直接或通过杠杆传动使动触头与静触头接触,接通电路.电磁线圈断电后,动铁芯在复位弹簧作用下自动返回,俗称释放,触头分开,电路分断。
电工学少学时1-4章课后习题答案第一章电路的基本概念与基本定律11 电路和电路模型1、(1)实际电路是由各种电气器件按照一定的方式连接而成的,用于实现电能的传输、分配和转换,以及信号的传递、处理和控制等功能。
(2)电路模型是对实际电路的理想化和简化,它由理想电路元件组成,如电阻、电感、电容、电源等,用特定的符号表示,以便于对电路进行分析和计算。
2、常见的理想电路元件包括电阻元件、电感元件、电容元件、电压源和电流源。
电阻元件表示消耗电能并将电能转化为热能的元件;电感元件表示储存磁场能量的元件;电容元件表示储存电场能量的元件;电压源提供恒定的电压;电流源提供恒定的电流。
12 电流和电压的参考方向1、电流的参考方向是人为假定的电流流动的方向,若实际电流方向与参考方向相同,电流为正值;若实际电流方向与参考方向相反,电流为负值。
2、电压的参考方向也是人为假定的,通常从高电位指向低电位。
当实际电压方向与参考方向相同时,电压为正值;反之,电压为负值。
13 电功率和电能1、电功率是电路中单位时间内消耗或产生的电能,P = UI。
当 P> 0 时,元件吸收功率;当 P < 0 时,元件发出功率。
2、电能是电功率在一段时间内的积累,W = Pt。
电能的单位通常是焦耳(J)。
14 电路元件1、电阻元件的伏安特性是一条通过原点的直线,其电阻值是常数。
2、电感元件的电压与电流的关系为:$u = L\frac{di}{dt}$。
3、电容元件的电流与电压的关系为:$i = C\frac{du}{dt}$。
15 电源元件1、理想电压源的端电压恒定不变,与通过它的电流无关。
2、理想电流源的输出电流恒定不变,其两端电压由外电路决定。
16 基尔霍夫定律1、基尔霍夫电流定律(KCL):在任一时刻,流入一个节点的电流之和等于流出该节点的电流之和。
2、基尔霍夫电压定律(KVL):在任一时刻,沿任一闭合回路,各段电压的代数和恒等于零。
第二章电路的分析方法21 电阻串并联连接的等效变换1、电阻串联时,等效电阻等于各个电阻之和,即$R_{eq} = R_1 + R_2 +\cdots + R_n$。
电路分析基础耦合电感和理想变压器耦合电感(mutual inductance)是指两个或多个电感器件之间由于相互作用而产生的互感现象,其中一个电感器件的磁通变化会在另一个电感器件中感应出电动势。
理想变压器(ideal transformer)是一种特殊的耦合电感,其工作原理是利用磁感应定律,将输入电压和输出电压之间按一定的变比比例转换。
在电路分析中,耦合电感和理想变压器经常被用来探讨和解决一些特定的问题。
下面将分别介绍其基本原理和应用。
1.耦合电感:耦合电感的基本原理是根据电磁感应定律,当一个电感器件中通过的电流变化时,会在另一个电感器件中感应出电动势。
考虑两个简单的线圈,分别为主线圈和副线圈。
当主线圈中的电流变化时,根据电磁感应定律,在副线圈中也会感应出一个与主线圈中电流变化相关的电动势。
这种相互作用可以由一个耦合系数k表示,取值范围为0-1,表示两个线圈之间磁通的共享程度。
耦合电感可以用于共振电路、振荡电路等。
在共振电路中,当主线圈与副线圈之间有耦合时,可以通过调整耦合系数k来改变电路的共振频率,实现频率调谐的效果。
在振荡电路中,耦合电感可以提供正反馈,增强电路的振荡效果。
2.理想变压器:理想变压器是电路分析中常用的电气元件之一,其特点是无能量损耗、无电阻、无磁滞,能够以一定的变比将输入电压转换为输出电压。
理想变压器的基本结构由两个线圈绕制在共同的磁芯上组成。
理想变压器的工作原理是利用电磁感应定律和电压平衡原理。
当输入线圈(初级线圈)中通过的电流变化时,根据电磁感应定律,在输出线圈(次级线圈)中也会感应出一个与输入电流变化相关的电动势。
由于磁通守恒,输入线圈的磁通变化与输出线圈的磁通变化成一定的比例,从而实现输入电压和输出电压之间的变比转换。
理想变压器可以用于电压调整、功率传递等电路。
在电压调整电路中,通过改变输入线圈和输出线圈的匝数比例,可以实现对输入电压和输出电压之间的调整。
在功率传递电路中,根据变压器的功率平衡原理,输入功率和输出功率之间的关系可以用变压器变比关系表示。