电力机车控制
- 格式:rtf
- 大小:239.79 KB
- 文档页数:6
和谐1型电力机车控制系统和谐1型电力机车控制系统一、电子控制系统机车的两节机车电子控制系统具有相同的控制级结构,是基于西门子铁路自动化系统SIBAS32和TCN列车通讯网络技术的成熟产品。
机车各个控制系统间的通讯由总线来完成。
1、中央控制单元(CCU)中央控制单元(CCU)位于司机侧后墙柜中。
中央控制单元(CCU)管理机车的控制系统。
在每节的控制系统中,其控制与监控功能由CCU直接执行,或是由CCU协同处理。
CCU由西门子铁路自动化系统SIBAS32微处理器控制单元组成。
每节机车有两个中央控制单元CCU,一个作为主控CCU,用来完成一节机车的所有开环控制。
另一个为从属CCU(后备级)。
二个CCU拥有相同的结构,当一个CCU失效,第二个也能维持机车运行。
为了确保机车运行的可靠性,,主控CCU与从属CCU要进行周期性的变换。
从属CCU的故障后,对机车运行没有任何影响,该故障信息将发送到司机显示屏上。
在两节机车或四节机车重联运行时,每节机车都有一个主控CCU和一个从属CCU(后备级)。
操纵节的主控CCU也是整个机车组的主控CCU。
这个控制整个机车组的主控CCU通过列车总线WTB向从属CCU发出控制命令和整定值,从属CCU又通过车辆总线MVB传递命令和整定值到它们的子系统。
因此即使一节车只要有一个CCU良好时,整个机车组就可以照常运行。
2、牵引控制单元(TCU)牵引控制单元(TCU)负责电力牵引设备的开环/闭环控制。
同时集成了对PWM辅助逆变器的控制。
每一个中间直流电路都有一个牵引控制单元TCU,以及它所连接的相模块。
TCU也是由西门子铁路自动化系统SIBAS32微处理器控制单元组成,SIBAS32采用32位处理器。
TCU有电子防滑/防空转功能。
3、紧凑型输入/输出模块紧凑型I/O输入输出系统减少了车辆配线的数量,从而提高了机车控制与诊断系统的性能。
对于不直接与车辆总线MVB连接的设备和部件,它们发出的信号可以被离散地检测和控制。
《电力机车控制》课程复习资料一、判断题:1.机车牵引力与机车速度的关系,称为机车的牵引特性。
[ ]2.为保持整流电流的脉动系数不变,要求平波电抗阻器的电感为常数。
[ ]3.机车的速度特性是指机车牵引力与运行速度的关系。
[ ]4.机车的起动必须采用适当的起动方法来限制起动电流和起动牵引力。
[ ]5.SS4改型机车Ⅲ级磁场削弱时,15R和16R同时投入,磁场削弱系数为0.3。
[ ]6.SS4改型机车主电路接地保护采用接地继电器,这是一套无源保护系统。
[ ]7.机械联锁可以避免司机误操作。
[ ]8.控制电路是为主电路服务的各种辅助电气设备和辅助电源连成的一个电系统。
[ ]9.交流电机同直流电机相比,维修量可以减小。
[ ]10.直流传动是我国电力机车传动的主要方式。
[ ]11.零压保护电路同时起到高压室门联锁阀的交流保护作用。
[ ]12.机车故障保护的执行方式有跳主断路器、跳相关的接触器、点亮故障信号显示。
[ ]13.交直交传动系统的功率/体积比小。
[ ]14.当司机将牵引通风机按键开关合上后,不但能使通风机分别起动,还能使变压器风机和油泵起动。
[ ]15.逆变器用于将三相交流电变为直流电。
[ ]16.交直交系统具有主电路复杂的特点。
[ ]17.压缩机的控制需要根据总风压的变化由司机操作不断起动。
[ ]18.整流电路的作用是将交流电转换为直流电。
[ ]二、单项选择题:1.机车安全运行速度必须小于机车走行部的( )或线路的限制速度。
[ ]A.旅行速度B.构造速度C.持续速度2.制动电阻柜属于( )电路的电器设备。
[ ]A.主B.辅助C.控制3.SS4改型电力机车固定磁场削弱系数β为 [ ]A.0.90B.0.96C.0.984.SS4改型机车控制电路由110V直流稳压电源、( )以及有关的主令电器各种功能的低压电器及开关等组成。
[ ]A.硅整流装置B.电路保护装置C.蓄电池组5.SS4 改型电力机车采用的电气制动方法为 [ ]A.再生制动B.电磁制动C.加馈电阻抽制动6.SS4改型电力机车主电路有短路、过流、过电压及( )等四个方面的保护。
电力机车控制课程标准电力机车控制课程标准可以涵盖以下方面:电力机车控制理论、电力机车控制系统、电力机车控制操作等。
电力机车控制理论部分是电力机车控制课程的核心内容。
该部分主要介绍机车控制的基本原理、控制理论和相关知识。
包括电力机车的基本概念、组成部分及其作用和功能,电力机车控制的分类和基本原理等。
此外,还需要介绍电力机车的车载设备控制、车辆系、道岔控制等相关理论和技术。
电力机车控制系统部分是电力机车控制课程的重要内容。
该部分主要介绍电力机车控制系统的结构、功能和工作原理等。
首先,需要介绍电力机车控制系统的组成部分,包括主控制器、DC-DC变换器、驱动电机、制动系统等。
然后,需要详细介绍每个组成部分的功能和工作原理,以及它们之间的关系和相互作用。
最后,还需要介绍电力机车控制系统的安全性和可靠性要求,以及相关的检修和故障排除方法。
电力机车控制操作部分是电力机车控制课程的实践环节。
该部分主要通过模拟机、模拟训练装置和实际操作等方式,让学生掌握电力机车的操作技能和方法。
首先,需要介绍电力机车的操作要求和规程,包括起动、制动、变速等操作。
然后,通过模拟训练装置和实际操作让学生掌握电力机车的操作技巧和注意事项。
最后,还需要对学生进行操作评估,以确保他们对电力机车的控制操作有一定的掌握程度。
此外,在电力机车控制课程中还需要注重培养学生的创新意识和解决问题的能力。
可以设置一些实际问题和案例,让学生运用所学知识和技术,进行分析和解决。
同时,还可以组织学生参加相关的实践训练和竞赛活动,提高学生的实践能力和综合素质。
总之,电力机车控制课程标准需要包括电力机车控制理论、电力机车控制系统和电力机车控制操作等内容。
通过该课程的学习,学生应该掌握电力机车控制的基本原理、控制系统的结构和功能,以及电力机车的操作技能和方法。
同时,还应该培养学生的创新意识和解决问题的能力,以适应电力机车控制领域的发展和需求。
电力机车控制题库一、选择题1. 电力机车主电路主要由哪些部分组成?A. 受电弓、主断路器、牵引变压器、整流器B. 主断路器、牵引变压器、整流器、逆变器C. 受电弓、主断路器、整流器、逆变器D. 主断路器、整流器、逆变器、牵引电机答案:B2. 电力机车控制系统中,哪个部分负责将直流电转换为交流电供给牵引电机?A. 整流器B. 逆变器C. 变压器D. 受电弓答案:B3. 电力机车在行驶过程中,司机控制器主要控制什么?A. 机车速度B. 机车方向C. 机车牵引力D. 机车制动力答案:C4. 电力机车的空气制动系统主要由哪些部分组成?A. 风源系统、制动控制系统、基础制动装置B. 风源系统、制动控制系统、辅助制动装置C. 制动控制系统、基础制动装置、辅助制动装置D. 风源系统、基础制动装置、辅助制动装置答案:A5. 电力机车的电气制动方式主要是什么?A. 电阻制动B. 再生制动C. 液压制动D. 电磁制动答案:B6. 电力机车控制系统中的逆变器主要负责什么功能?A. 将直流电转换为交流电B. 将交流电转换为直流电C. 控制机车的行驶速度D. 控制机车的制动力答案:A7. 电力机车在行驶过程中,哪个部分负责为照明、空调等辅助设备提供电能?A. 主电路B. 控制电路C. 辅助电路D. 保护电路答案:C8. 电力机车控制系统中,司机控制器的主要功能是什么?A. 控制机车的行驶方向B. 控制机车的制动系统C. 调节机车的牵引力和速度D. 控制机车的照明系统答案:C9. 电力机车在制动时,以下哪种制动方式是通过电气系统实现的?A. 空气制动B. 液压制动C. 电阻制动D. 机械制动答案:C10. 电力机车主电路中的牵引变压器起什么作用?A. 降低电压供给牵引电机B. 提高电压供给受电弓C. 控制电流大小D. 保护电路免受短路影响答案:A11. 电力机车控制系统中,哪个部分负责监测和保护电路的安全运行?A. 整流器B. 逆变器C. 保护电路D. 控制电路答案:C12. 电力机车在行驶中,哪个部分负责控制机车的行驶方向和速度?A. 牵引电机B. 司机控制器C. 制动系统D. 辅助电路答案:B13. 电力机车控制系统中,哪个部分负责将接触网上的高电压转换为适合机车使用的低电压?A. 受电弓B. 主断路器C. 牵引变压器D. 整流器答案:C二、填空题1. 电力机车控制系统主要由主电路、控制电路、________和________等部分组成。
《电力机车控制》作业参考答案作业一1.直流电力机车的优点?答:结构简单,工作可靠,牵引性能好,容易实现电气制动。
2.直流电力机车的缺点?答:供电效率低,投资大,调速性能差,且有级有损耗。
3.整流器式机车优点?答:供电效率高,投资小,牵引性能好,调速性能较好运行可靠。
4.整流器式机车缺点?答:电压电流脉动产生损耗电机整流条件差,结构复杂,对通讯有干扰。
5.哪种电动机更有利于机车使用?答:直流电动机。
作业二1.共有几种励磁调节法,哪种是常用的?答:励磁绕阻分段法,励磁绕阻串并联转换法,磁场分路法,也叫电阻分路法,带感应分路的磁场分路法,晶闸管分路法。
后三种是经常用的。
2.恒电压条件下磁削的意义何在?答:可以提高机车的功率,开始提高牵引力,最后提高速度。
3.有几种斩波调压方法?答:三种。
分别是脉宽调制、频率调制、混合调制。
4.扩大低压侧调压级数的方法是什么?答:有不对称调压、加固定绕组。
5.移相调压的特点是什么?答:整流电压平均值与控制角的大小有关、移相调压可以实现无机调压、电压脉动、电流脉动、可能造成电流间断。
6.晶闸管级间平滑调压的意义何在?答:使机车的功率系数提高。
7.电压变化对速度特性、牵引力特性有何影响?答:速度特性可以使速度特性随电压的提高而提高、牵引力特性则与电压的变化无关。
作业三1.常用的电阻制动是哪种?优点是什么?答:电阻制动;减小磨损、有利于高速运行。
2.电阻制动的缺点是什么?答:不能反馈电能。
3.整流与逆变的区别是什么?答:控制角小于九十度是整流,大于九十度是逆变。
4.再生制动与电阻制动的根本区别是什么?答:发电机发出的电能消耗在电阻上时是电阻制动。
反馈到电网是再生制动。
作业四1.有几种供电式方式?各自的优缺点?答:优点是结构简单,配线方便、缺点是有环流,反向惰行时会出现自激发电短路现象,整流臂故障功率下降到一半2.电阻制动与再生制动的特点是什么?共同点、不同点?答:减小磨损、有利于高速运行、再生制动时可反馈电能、不能用来制停。
电力机车调速电力机车调速电力机车调速电力机车牵引列车运行中,根据运行条件对机车的运行速度进行控制和调节的技术.电力机车调速的目的是充分发挥机车的功率,提高运抽能力,完成运输任务。
列车在线路上由于线路状态、坡度、曲线和牵引重量不同,及遇有临时线路施工、进出站等需要急行或停车的情况,速度变化范围较大,要求电力机车具备良好的调速性能,以满足运行需要。
对调速的基本要求:①在调速过程中不能中断主电路供电,由一个速度级转换到另一速度级应平稳过渡,避免牵引力突变引起列车冲动。
②不因调速引起倾外能量损耗。
③调速方法应力求简便、可靠。
调速原理电力机车调速实质是牵引电动机(电力机车电机电器)的调速问题。
电力机车是以牵引电动机通过齿轮等传动装置驱动机车运行的。
电力机车中应用较多的是直流串励电动机(见直流电动机),这种电动机有调速简单,调节范围广,起动力矩大等优点。
直流串励电动机的转速公式为 U.一I.R. C巾,r/min 式中U.为牵引电动机端电压,V;1.为电枢电流,A;凡为牵引电动机电路中总电阻,n;巾为励磁磁通,Wb, c.为电动机结构常数。
从公式可知,改变U.、凡以及巾,均可改变电动机的转速,达到调速目的。
分类电力机车的调速分为直流电力机车调速、交流电力机车调速、交流一直流一交流传动系统变频调速。
直流电力机车调速又可分为变阻调速、变压调速、变磁调速(磁场削弱〕、斩波调速。
前三种为有级调速,最后一种为无级平滑调速。
变阻调速:其基本工作原理是改变串接在牵引电动机电路中的电阻值以调节机车的速度. 按运行要求,改变可调电阻R的数值,即可改变牵引电动机的端电压,从而使机车的速度变化。
变阻调速的值再进一步提速,可充分发挥高速运行时牵引电动机的功率。
此时通过采用主极绕组上并联分路电阻(R、与 RZ并联)来减少牵引电动机主极磁通必(一般称为磁场削弱),从而使电机电流一部分流经分路电阻,减少励磁电流,即相应减少磁通。
这种调速方法简单、方便.利用改变分路电阻值的方法,即可得到几个不同的磁场削弱强度.斩波调速:在直流接触网电压电源与直流牵引电动机之间接人可控晶闸管直流斩波器,通过调节可控晶闸管每一周期内导通时间(即改变导通比),可以改变牵引电动机的端电压,从而调节机车的运行速度. 这种斩波调速方法,不仅损耗小而且可以无级平滑调速。
在地下铁道、动车及城市无执电车上广泛采用斩波调速。
(见斩波控制直流调速) 交流电力机车调速在交流电力机车中,以整流器式电力机车用的最多。
它由单相高压交流接触网供电,经过机车的牵引变压器降压和整流装t整流后以低压直流(实为脉流)形式供给直流牵引电动机.由于这种电力机车上装有牵引变压器、整流器,可以采用多种调压方式。
这些调压方式既可用改变牵引变压器输出电压方法来调节牵引电动机的端电压,也可用直接改变整流装置的整流电压方法来调节牵引电动机的端电压,以达到电力机车调速的目的。
利用牵引变压器调压方法进行机车调速的优点是:调压电路简单,调速范围广,经济运行级多,调节方便,功率因数和效率比较高。
采用直接改变整流电压调速方法,即晶闸管相位控制调压,则可实现平滑无级调速,即每级均可长期运行,都是经济运行级。
(l)牵引变压器调压方法分为高压侧调压及低压侧调压两种,使用较多的是低压侧调压。
1)高压侧调压:改变牵引变压器的高压侧绕组 (即一次绕组)抽头,调节其输出电压,从而达到机车调速目的。
高压侧调压的基本原理如图4所示。
变压器的基本关系式为竺_丛.0._。
坠 uZw:’一‘一’wz 式中WI为高压绕组匝数;WZ为低压绕组匝数;“,为牵引变压器输入电压;uZ为牵引变压器输出电压。
若牵引变压器低压绕组匝数WZ不变时,改变高压实质仍为调节牵引电动机的端电压。
图1变阻调速示意图变阻调速方法简单、方便,将电阻分为几级,便可得到几级调速,但在电阻上有能量损耗,不经济。
它是有级调速,难以实行平滑无级连续调节,故只用在直流电力机车上,作为短时起动调节,不能长期运行。
一般在城市电车上普遍采用变阻调速,而干线大功率电力机车上不采用变阻调速方法。
(2)变压调速:改变作用于牵引电动机上的电压来调节机车的运行速度。
这种调压方法,也称为电机的串并联调压方法。
在直流电力机车上,通常其牵引电动机直接与接触网(见电气化铁路接触网)连接,中间无变换装置,利用电机的串并联方法,改变牵引电动机端电压,达到调节机车速度的目的(见图2)。
如一台直流电力机车装有4台牵引电动机,开始低速运行时采用 ;当台牵引电动机2台串联2组并联时,每台端电压为 U。
后者比前者电压提高1倍.机车速度也提高1倍. 2“若4台电机并联,则牵引电动机的端电压为U,即为接触网电压,因电压又提高,故机车速度再提高1倍改变牵引电动机端电压调压 (a)4台串联;(b)2台串联为一组,2组并联; (e)4台并联这种变压调速方法,需改变牵引电动机的接线,并需相应的转换开关,线路较复杂,且为有级调速,调节级数少(2~3级),但调速时无电能损耗,比较经济,一般在直流电力机车上采用,并可与其他调节方法联合使用。
(3)变磁调速:通过改变励磁即改变牵引电动机的主极励磁磁通来改变电机转速的方法,一般在电力机车运行时,当其速度达到额定低压侧绕组匝数n2;,则可改变牵引变压器输出电压uZ。
在机车起动时,将高压侧绕组W:的全部匝数 C串入接触网,以便得到最小输出电压.此时A点与接触网电位相同.在调压过程中,需逐步减少匝数 W:,来提高低压侧翰出电压。
输出电压达到最大值时, N点电位和仍与接触网电位相同,而此时A点为接触网电位的几倍! 为此,要求变压器的绕组绝缘水平大大提高,设计制造更复杂.实际上高压侧调压的牵引变压器是一台高压自辆变压器与一台一般双绕组变压器的组合,除有高、低压绕组外,还有一个调压绕组(直接与接触网连接),三个绕组共同拐合在一个铁芯柱上。
在机车起动之前 A、T两点重合,此时高压绕组Ll的两端电压为零,低压绕组LZ的两端也无摘出电压。
然后A点向上移动,商压绕组Ll上电压逐渐升高,低压绕组LZ感应相应的输出电压“2,经整流后供给牵引电动机。
调压绕组有若干个绕组抽头,通过高压调压开关将高压绕组A 点与调压绕组的相应抽头连接,有几个抽头便可得到几级调压。
抽头多,调压级也增多。
高压侧调压是有级调压,增加调压级数,以及有调压绕组的存在,都将使变压器的结构复杂、设计容量增加,在机车低速运行时,其效率及功率因数降低。
高压侧调压的优点是:调压过程中转换电流较小 (一般为几百安),开关电器抽头的引线尺寸小、重量轻、调压级数较多(30级左右),对合理选择牵引电动机端电压有利。
2)低压侧调压:改变牵引变压器低压绕组匝数,达到调节供给牵引电动机的电压,控制机车速度的目的。
低压侧调压的优点:牵引变压器的容量较小,对调压开关(为转换变压器低压侧绕组抽头用)的绝缘水平要求较低,机车低速运行时的效率及功率因数较高。
其缺点为:由于牵引变压器低压侧电流比较大(数千安),所以要求调压开关转换电流比较大,低压绕组匝数比较小,设计安排调压用的抽头有一定限制,这一点不如高压侧调压方便。
为得到较多的调压级数,采用一些特殊的调压线路。
例如,中间抽头式(简称中抽式)调压电路将低压侧绕组每相再分为基本绕组与有几个抽头的可调绕组,利用调压开关的绕组转换开关,将两部分绕组进行正接或反接,调节牵引变压器的输出电压,可得到较多的调压级数。
按规定程序调节,可使愉出电压逐级升高,在最高调压级时,输出电压达最大值(为基本绕组与可调绕组电压之和),反方向调节电压则输出电压下降。
这种中间抽头式调压电路在调压过程中,在奇数级时正负半周中两相绕组的输出电压相等,而偶数级时输出电压不等.不对称调压只有在两组绕组翰出电压相等时的电压级上,才可长期运行。
在调压过程中,为了使调压级间转换时负载电流不致中断(不中断牵引电动机电路电流),同时牵引变压器绕组又不发生局部短路,要在高压侧调压电路中,设里有级间转换用的过渡电阻,在低压侧调压电路中设置有级间转换用硅二极管(也称过渡硅机组)或过波电抗器。
在整流式电力机车上,采用中抽式整流电路低压侧调压时,一般采用有过渡硅机组的低压侧绕组、正反接的不对称调压方式。
中国韶山1型(551型)电力机车即用此调压方式,韶山1型机车低压侧调压及其绕组正反向连接原理 (a)中点抽头线路;(b)反接中抽线路; (c)正接中抽线路牵引变压器低压侧调压方式的基本调压原理也适用于桥式整流电路的电力机车。
(2)晶闸管相位控制调压(简称相控调压):利用反并联连接的晶闸管接人交流侧进行反并联控制.或与二极管组成混合桥路或者全控桥路,利用相位控制直接进行相控调压,省略了调压开关,减少了主电路的开关电器,使机车主电路简化。
为了减少高次谐波电流,在机车牵引变压器二次侧可用多分段绕组,在直流侧采用纵向连接,全控桥时作为逆变器可进行再生制动,晶闸管相控调压可实现无级平滑调压。
相控调压也称移相调压,它是通过控制晶闸管整流装置的导通相角,直接调节整流电压的调压方法。
在相控调压时,牵引变压器低压侧输出电压“2维持不变,而晶闸管整流装置起着整流与调压的双重作用。
最简单的相控调压线路是用一个半控桥式整流电路对牵引电动机供电,但这种电路功率因数很低,对通信干扰大,很少采用。
在晶闸管整流器式电力机车上多用两段半控桥调压电路,见图6。
交流一直流一交流传动系统变频调速20世纪7。
年代电力电子技术迅速发展,出现体积小、功率大、效率高、性能好的静止变频装置,为发展交流传动系统采用异步牵引电动机(或同步电动机)创造了有利条件。
图6两段半控桥调压原理及电压波形 (a)原理图;(b)整流电压波形该电路的牵引变压器低压侧有两段绕组,每段向一个半控桥供电,两个半控桥串联对牵引电动机供电。
调压过程分为两阶段。
第一阶段半控桥UI工作,UZ 中的V7、VS不工作,通过UZ中的V石、V6与电动机组成回路。
当Vl、VZ逐渐导通时,对应于一定的控制角a:,牵引电动机得到相应的电压,若逐渐减少控制角al,则整流电压逐渐升高。
UI全开通后,整流电压平均值升至0.SUd。
(Ud。
为a~。
时空载电压平均值),此时第一阶段调压结束。
然后在Ul桥全开通基础上,投人UZ桥工作,继续提高整流电压,V7、VS开通,牵引电动机电压也相应提高,直到UZ桥全开通时,整流电压平均值达到Ud。
,则整个调压过程完毕。
控制角a 的调节范围为180。
一0o,实际上由于换相过程中有重叠角y存在,所以a的调节范围为18护~2扩,最小允许到150. 两段半控桥调压比一段半控桥虽然整流电压脉动量有所下降,机车功率因数有所提高,但为进一步提高机车功率因数,晶闸管整流器式机车采用多段桥顺序相控调压方式(如四段桥等),见图7,过多分段将使牵引变压器和机车主电路结构复杂化。