8086指令的机器码表示
- 格式:ppt
- 大小:1.45 MB
- 文档页数:18
汇编语⾔上机实验⼀DEBUG常⽤命令及8086指令使⽤实验⼀DEBUG常⽤命令及8086指令使⽤实验⽬的:通过实验掌握下列知识:1、8086指令: M OV,ADD,SUB,XCHG等2、DEBUG命令: A,D,E,F,H,R,T,U。
3、ASCII码及⽤16进制数表⽰⼆进制码的⽅法。
内容及步骤:⼀、DEBUG 命令使⽤:1、打 DEBUG 进⼊ DEBUG 控制,显⽰提⽰符 '_ '。
2、⽤命令 F100 10F 'A' 将'A'的ASCII码填⼊内存。
3、⽤命令 D100 10F 观察内存中的16进制码及屏幕右边的ASCII字符。
4、⽤命令F110 11F 41 重复上⼆项实验,观察结果并⽐较。
5、⽤命令 E100 30 31 32 …… 3F将30H-3FH写⼊地址为100开始的内存单元中,再⽤D命令观察结果,看键⼊的16进制数是什么字符的ASCII码?6、⽤H命令检查下列各组16进制数加减结果并和你的⼿算结果⽐较:(1)34H,22H (2)56H,78H (3)A5,79H (4)1284H,5678H (5)A758,347FH7、⽤R 命令检查各寄存器内容,特别注意AX,BX,CX,DX,IP及标志位中ZF,CF和AF的内容。
8、⽤R命令将AX,BX内容改写为1050H及23A8H。
⼆、8086常⽤指令练习1、传送指令1)⽤A命令在内存100H处键⼊下列内容: MOV AX,1234MOV BX,5678XCHG A X,BXMOV AH,35MOV AL,48MOV DX,75ABXCHG A X,DX2)⽤U命令检查键⼊的程序并记录,特别注意左边的机器码。
3)⽤T命令逐条运⾏这些指令,每运⾏⼀⾏检查并记录有关寄存器及IP的变化情况。
并注意标志位有⽆变化。
2、加减法指令:1)⽤A命令在内存100H处键⼊下列内容:MOV AH,34MOV AL,22ADD AL,AHSUB AL,78MOV CX,1284MOV DX,5678ADD CX,DXSUB CX,AXSUB CX,CX图略。
8086汇编和机器码的对应表
单⽚机指令功能⼀览表
助记符代码说明
MOV A,Rn E8~EF
寄存器A
MOV A,direct E5 dircet 直接字节送A
MOV A,@Ri ER~E7
间接RAM送A
MOV A,#data 74 data ⽴即数送A
MOV Rn,A F8~FF
A送寄存器
MOV Rn,dircet A8~AF dircet 直接字节送寄存器
MOV Rn,#data 78~7F data ⽴即数送寄存器
MOV dircet,A F5 dircet A送直接字节
MOV dircet,Rn 88~8F dircet 寄存器送直接字节
MOV dircet1,dircet2 85 dircet1 dircet2 直接字节送直接字节MOV dircet,@Ro 86~87
间接RAM送直接字节
MOV dircet,#data 75 dircet data ⽴即数送直接字节MOV @Ri,A F6~F7
A送间接RAM
MOV @Ri,#data 76~77 data 直接字节送间接RAM MOV @Ri,#data 76~77 data ⽴即数送间接RAM
MOV DPTR,#data16 90 data 15~8 16位常数送数据指针data7~0
MOVC A,@A+DPTR 93
由((A)+(DPTR))寻址的程序存贮
器字节选A
MOVC A,@A+PC 83
由((A)+(PC));寻址的程序存贮器字节送A
MOVX A,@Ri E2~E3
送外部数据(8位地址)送A
MOVX A,@DPTR E0
送外部数据(16位地址)送A。
8086汇编中jmp指令详解jmp指令解释:⏹jmp为无条件转移,可以只修改IP,也可以同时修改CS和IP;⏹jmp指令要给出两种信息:⏹转移的目的地址⏹转移的距离(段间转移、段内短转移,段内近转移)格式:一.Jump short 标号这种格式的 jmp 指令实现的是段内短转移,它对IP的修改范围为 -128~127,也就是说,它向前转移时可以最多越过128个字节,向后转移可以最多越过127个字节。
示例:assume cs:codesgcodesg segmentstart:mov ax,0jmp short sadd ax,1s:inc axcodesg endsend start说明:上面的程序执行后, ax中的值为 1 ,因为执行 jmp short s 后,越过了add ax,1 ,IP 指向了标号 s处的 inc ax。
也就是说,程序只进行了一次ax加1操作。
注意:⏹汇编指令jmp short s 对应的机器指令应该是什么样的呢?⏹我们先看一下别的汇编指令和其对应的机器指令可以看到,在一般的汇编指令中,汇编指令中的idata(立即数),不论它是表示一个数据还是内存单元的偏移地址,都会在对应的机器指令中出现,因为CPU执行的是机器指令,它必须要处理这些数据或地址。
⏹但是:当我们查看jmp short s或jmp 0008所对应的机器码,却发现了问题。
看到了吗?机器码中并不含有立即数。
为什么呢,解释如下⏹在“jmp short 标号”指令所对应的机器码中,并不包含转移的目的地址,而包含的是转移的位移。
⏹这个位移,使编译器根据汇编指令中的“标号”计算出来的。
如果我们在第一行程序后加上Mov bx,0000,你会发器机器码没变,还是EB03,为什么呢?jm p 0008对应的偏移就是0003大家可以回忆一下cpu中指令的执行流程,就会发现当执行完EB03后,ip=ip+2=0005,大家注意看EB03后面有个03,表示再向后三个单位,这样就到了0008这个偏移处了。
8086指令码汇总表8086指令有汇编语言指令和指令码两种形式,汇编语言指令形式经过汇编程序处理后生成指令码形式。
通过指令码形式可帮助理解汇编语言指令格式的含义和用法。
O、8086指令码格式0B/1B 1B或2B 0B/1B 0B/1B/2B/4B 0B/1B/2B/4B 指令前缀操作码段寻址方式段偏移量参数立即数参数说明:偏移量参数和立即数参数的有无由寻址方式段决定。
一、传送类指令MOV指令REG/MEM→/←REG 100010dw mod reg r/mIMME→REG/MEM 1000111w mod 000 r/m data data if w=1 IMME→REG 1011wreg data data if w=1MEM→AX 1010000w addr-low addr-highAX→MEM 1010001w addr-low addr-highREG/MEM→段REG 10001110 mod reg r/m 8E段REG→REG/MEM 10001100 mod reg r/m 8CPUSH指令REG/MEM 11111111 mod 110 r/m FFREG 01010reg段REG 000reg110POP指令REG/MEM 10001111 mod 000 r/m 8FREG 01011reg段REG 000reg111XCHG指令REG/MEM←→REG 1000011w mod reg r/mREG←→AX 10010regXLAT指令11010111 D7LEA指令10001101 mod reg r/m 8DLDS指令11000101 mod reg r/m C5LES指令11000100 mod reg r/m C4LAHF指令10011111 9FSAHF指令10011110 9EPUSHF指令10011100 9CPOPF指令10011101 9DIN指令直接寻址1110010w port间接寻址1110110wOUT指令直接寻址1110011w port间接寻址1110111wCBW指令10011000 98CWD指令10011001 99 说明:d—0/1表示REG为源/目的操作数;w—0/1表示操作数类型为BYTE/WORD;mod、r/m—寻址方式,参见教材P56~57;IMME—立即数操作数,字段中用data表示;reg—通用REG用3位编码,段REG只用2位编码(即为0xx)。
第3章指令系统机器指令:能指示计算机完成基本操作的二进制代码指令系统:CPU可执行的机器指令的集合。
为了方便编程,人们又把完成特定操作的机器码用特定的符号表示,这就产生了符号表示的机器指令-------指令助记符。
第3章8086指令系统机器指令由二进制代码组成,一条指令包括操作码和操作数(或地址)两部分,操作码指明该指令进行何种操作,操作数用来说明操作对象。
个别指只有操作码没有操作数。
由于不同的指令所表达的信息不尽相同,因此指令的长度即机器码字节数也有长有短。
8086指令系统的指令是可变长指令(1~6个字节)3.18086CPU寻址方式重点是存储器寻址存放在存储器中的数据称为存储器操作数。
指令中需要确定存储单元的段地址、偏移地址(亦称有效地址EA),以及存储器操作数的类型。
段地址存放在段寄存器中,确定段地址实际上就是确定段寄存器,采用的方法是默认或添加段超越前缀。
生成存储器有效地址有多种方法,这些方法形成了对存储器操作数的多种寻址形式。
确定数据类型的方法是源操作数和目的操作数类型一致原则或附加类型说明。
立即寻址方式中操作数也在存储器中,但立即寻址中的立即数包含在指令中,随程序存放在代码段,CPU在取指令时就获得操作数。
这里所说的存储器操作数是存放在数据段、附加段或堆栈段中,取指令时也不会被立即取到。
段超越前缀变量的定义在第四章详细介绍直接寻址:MOV AX,[2000H];寄存器间接寻址:MOV ES:[DI],AH基址寻址:MOV BYTE PTR[BX+1200H],10变址寻址:MOV DL,[SI+2AH]基址加变址寻址:MOV CL,[BX+SI+5]MOV AX,[BP+DI]MOV CL,[BX+SI+5]的等价形式:MOV CL,5[BX][SI]、MOV CL,5[BX+SI]、MOV CL,[BX][SI+5]MOV CL,[BX+SI-5]等价于MOV CL,[BX+SI+65531] MOV CL,[BX-SI]MOV CL,[SI+DI]错误!MOV[BX+DI],1000H正确吗?3.2.1数据传送类指令传送指令把数据从一个位置传送到另一个位置使用MOV指令应注意1.立即数只能作为源操作数2.无存储器之间直接传送与交换的指令3.没有用立即数对段寄存器直接赋值的指令4.段寄存器之间无传送指令5.两个操作数的类型要一致6.要能确定是字节还是字操作mov ah,al mov bvar,ch mov ax,bx mov ds,ax mov al,[bx]下列MOV指令正确吗?MOV AL,050AHMOV SI,DLMOV[BX+SI],255MOV DS,100HMOV[BX],[SI]MOV[BX+SI],bvarbvar是一个已定义过的字节变量 MOV CS,[SI]将数据段中偏移地址为2000H、2001H、2002H的3个字节的存储单元置数FFH。
汇编指令和机器码的对应表汇编2010-04-20 21:07:19 阅读259 评论0 字号:大中小订阅一、汇编速查MOV AA,BB 将BB 放到AA 里CALL 调用子程序(相当于BASIC 的GOSUB)RET 与RETF 返回程序(相当于BASIC 的RETURN)CMP XX,YY 比较XX 与YYJZ 若相等则转移JNZ 若不相等则转移JB 若小于则转移JG 若大于则转移JMP 无条件转移J??? (各种转移指令)LOOP 循环直到CX为0INT XX 类似CALL 的中断涵数PUSH 推入栈(STACK)ESP:PUSH AXPOP 出栈ESP:POP CXXCHG 交换ESP:XCHG AX,BXIN、OUT 与PORT有关的IN/OUTXLAT 查表LEA 段内偏移量。
ESP:LEA AX,AREA1=MOV AX,OFFSET AREA1 LAHF、SAHF与棋标有关的寄存器AHPUSHF、POPF将棋标入/出栈ADD ESP ADD AX,CX (AX=AX+CX)ADC 加入棋标C的ADDINC ESP INC AX(AX=AX+1)AAA 加法校正SUB、SBB 减法DEC ESP:DEC AX(AX=AX-1)NEG 去补,MUL、IMUL 乘DIV、IDIV 除SHR、SAR、SHL 算术、逻辑位移R=RIGHT L=LEFTOR、XOR、AND 逻辑运算ESP :XOR AX,AX(AX=0)直接标志转移指令格式机器码测试条件如...则转移JC 72 C=1 有进位JNS 79 S=0 正号JNC 73 C=0 无进位JO 70 O=1 有溢出JZ/JE 74 Z=1 零/等于JNO 71 O=0 无溢出JNZ/JNE 75 Z=0 不为零/不等于JP/JPE 7A P=1 奇偶位为偶JS 78 S=1 负号JNP/IPO 7B P=0 奇偶位为奇间接标志转移指令格式机器码测试格式如...则转移JA/JNBE(比较无符号数) 77 C或Z=0 > 高于/不低于或等于JAE/JNB(比较无符号数) 73 C=0 >= 高于或等于/不低于JB/JNAE(比较无符号数) 72 C=1 < 低于/不高于或等于JBE/JNA(比较无符号数) 76 C或Z=1 <= 低于或等于/不高于JG/JNLE(比较带符号数) 7F (S异或O)或Z=0 > 大于/不小于或等于JGE/JNL(比较带符号数) 7D S异或O=0 >= 大于或等于/不小于JL/JNGE(比较带符号数) 7C S异或O=1 < 小于/不大于或等于JLE/JNG(比较带符号数) 7E (S异或O)或Z=1 <= 小于或等于/不大于无条件转移指令JMP指令格式执行操作机器码说明段内直接短转移Jmp short (IP)←(IP)+8位位移量EB 转移范围-128到+127字节段内直接近转移Jmp near (IP)←(IP)+16位位移量E9 转移到段内的任一位置段内间接转移Jmp word (IP)←(有效地址EA) FF段间直接(远)转移Jmp far (IP)←(偏移地址)(CS)←(段地址) EA段间间接转移Jmp dword (IP)←(EA)(CS)←(EA+2)********************************************************************************************************************************/article/2/2300.shtm汇编指令与机器码的相互转换(转载)查看上面的网址。
8086汇编和机器码的对应表(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--单片机指令功能一览表助记符代码说明MOV A,Rn E8~EF 寄存器AMOV A,direct E5 dircet 直接字节送AMOV A,@Ri ER~E7 间接RAM送AMOV A,#data 74 data 立即数送AMOV Rn,A F8~FF A送寄存器MOV Rn,dircet A8~AF dircet 直接字节送寄存器MOV Rn,#data 78~7F data 立即数送寄存器MOV dircet,A F5 dircet A送直接字节MOV dircet,Rn 88~8F dircet 寄存器送直接字节MOV dircet1,dircet2 85 dircet1 dircet2 直接字节送直接字节MOV dircet,@Ro 86~87 间接RAM送直接字节MOV dircet,#data 75 dircet data 立即数送直接字节MOV @Ri,A F6~F7 A送间接RAMMOV @Ri,#data 76~77 data 直接字节送间接RAM MOV @Ri,#data 76~77 data 立即数送间接RAM MOV DPTR,#data16 90 data 15~8 16位常数送数据指针 data7~0MOVC A,@A+DPTR 93 由((A)+(DPTR))寻址的程序存贮器字节选AMOVC A,@A+PC 83 由((A)+(PC));寻址的程序存贮器字节送AMOVX A,@Ri E2~E3 送外部数据(8位地址)送A MOVX A,@DPTR E0 送外部数据(16位地址)送AMOVX @Ri,A F2~F3 A送外部数据(8位地址)MOVX @DPTR,A F0 A送外部数据(16位地址)PUSH dircet C0 dircet 直接字节进栈,SP加1 POP dircet D0 dircet 直接字节退栈,SP减1XCH A,Rn C8~CF 交换A和寄存器XCH A,dircet C5 dircet 交换A和直接字节XCH A,@Ri C6~C7 交换A和间接RAMXCH A,@Ri D6~D7 交换A和间接RAM的低位SWAP A C4算术操作(A的二个半字节交换)ADD A,Rn 28~2F 寄存器加到AADD A,dircet 25 dircet 直接字节加到AADD A,@Ri 26~27 间接RAM加到AADD A,#data 24data 立即数加到AADD A,Rn 38~3F 寄存器和进位位加到A ADD A,dircet 35dircet 直接字节和进位位加到A ADD A,@Ri 36~37 间接字节和进位位加到A ADD A,data 34 data 立即数和进位位加到A ADD A,Rn 98~9F A减去寄存器和进位位ADD A,dircet 95 dircet A减去直接字节和进位位ADD A,@Ri 36~37 间接RAM和进位位加到A ADD A,data 34 data 立即数和进位位加到A SUBB A,Rn 98~9F A减去寄存器和进位位SUBB A,dircet 95 dircet A减去直接字节和进位位SUBB A,@Ri 96~97 A减去间接RAM和进位位SUBB A,#data 94 data A减去立即数和进位位INC A 04 A加1INC Rn 08~0F 寄存器加1INC dircet 05 dircet 直接字节加1INC @Ri 06~07 间接RAM加1DEC A 14 A减1DEC Rn 18~1F 寄存器减1DEC dircet 15 dircet 直接字节减1DEC @Ri 16~17 间接RAM减1INC DPTR A3 数据指针加1MUL AB A4 A乘以BDIV AB 84 A除以BDA A D4 A的十进制加法调整逻辑操作ANL A,Rn 58~5F 寄存器“与”到AANL A,dircet 55 dircet 直接字节“与”到AANL A,@Ri 56~57 间接RAm“与”到AANL A,#data 54 data 立即数“与”到AANL dircet A 52 dircet A“与”到直接字节ANL dircet,#data 53 dircet data 立即数“与”到直接字节ORL A,Rn 48~4F 寄存器“或”到AORL A,dircet 45 dircet 直接字节“或”到AORL A,@Ri 46~47 间接RAM“或”到AORL A,#data 44 data 立即数“或”到AORL dircet,A 42 dircet A“或”到直接字节ORL dircet,#data 43 dircet data 立即数“或”到直接字节XRL A,Rn 68~6F 寄存器“异或”到AXRL A,dircet 65 dircet 直接字节“异或”到AXRL A,@Ri 66~67 间接RAM“异或”到AXRL A,#data 64 data 立即数“异或”到AXRL dircet A 62 dircet A“异或”到直接字节XRL dircet,#data 63 dircet data 立即数“异或”到直接字节CLR A E4 清零CPL A F4 A取反RL A 23 A左环移RLC A 33 A通过进位左环移RR A 03 A右环移RRC A 13 A通过进位右环移控制程序转移ACALL addr 11 *1 addr(a7~a0) 绝对子程序调用LCALL addr 16 12 addr(15~8) 长子程序调用addr(7~0)RET 22 子程序调用返回RETI addr 11 32 中断调用返回AJMP addr 11 △1 addr(a7~a6) 绝对转移LJMP addr 16 02addr(15~8) 长转移addr(7~0)SJMP rel 80 rel 短转移,相对转移JMP @A+DPTR 73 相对于DPTR间接转移JZ rel 60 rel A为零转移JNZ rel 70 rel A为零转移CJNE A,dircet,rel B5 dircet rel 直接字节与A比较,不等则转移CJNE A,#data,rel B4 data rel 立即数与A比较,不等则转移CJNE A,Rn,#data,rel B8~BF data rel 立即数与寄存器比较,不等则转移CJNE @Ri,#data,rel B6~B7 data rel 立即数与间接RAM比较,不等则转移DJNZ Rn,rel D8~DF rel 寄存器减1,不为零则转移DJNZ dircet,rel B5 dircet rel 直接字节减1,不为零则转移NOP 00 空操作*=a10a9a8l△=a10a9a80 布尔变量操作CLR C C3 清零进位CLR bit C2 清零直接位SETB C D3 置位进位SETB bit D2 置位直接位CPL C B3 进位取反CPL bit B2 直接位取反ANL C,bit 82 dit 直接数“与”到进位ANL C,/bit B0 直接位的反“与”到进位ORL C,bit 72 bit 直接位“或”到进位ORL C,/bit A0 bit 直接位的反“或”到进位MOV C,bit A2 bit 直接位送进位MOV bit,C 92 bit 进位送直接位JC rel 40 rel 进位位为1转移JNC rel 50 rel 进位位为0转移JB bit,rel 20 bit rel 直接位为1相对转移JNB bit,rel 30 bit rel 直接位为0相对转移JBC bit,rel 10 bit rel 直接位为1相对转移,然后清零该位0人 | 分享到:阅读(213)| 评论(0)| 引用(0) |举报。
8086汇编语⾔学习(⼀)8086汇编介绍1. 学习汇编的⼼路历程 进⾏8086汇编的介绍之前,想先分享⼀下我学习汇编的⼼路历程。
rocketmq的学习 其实我并没有想到这么快的就需要进⼀步学习汇编语⾔,因为汇编对于我的当前的⼯作内容来说太过底层。
但在⼏个⽉前,当时我正尝试着阅读rocketmq的源码。
和许多流⾏的java中间件、框架⼀样,rocketmq底层的⽹络通信也是通过netty实现的。
但由于我对netty并不熟悉,在⼯作中使⽤spring-cloud-gateway的时候甚⾄写出了⼀些导致netty内存泄漏的代码,却不太明⽩个中原理。
出于我个⼈的习惯,在学习源码时,抛开整体的程序架构不论,希望⾄少能对其中涉及到的底层内容有⼀个⼤致的掌握,能让我像⿊盒⼦⼀样去看待它们。
趁热打铁,我决定先学习netty,这样既能在⼯作时更好的定位、解决netty相关的问题,⼜能在研究依赖netty的开源项⽬时更加得⼼应⼿。
netty的学习 随着对netty学习的深⼊,除了感叹netty统⼀规整的api接⼝设计,内部交互灵活可配置、同时⼜提供了⾜够丰富的开箱即⽤组件外;更进⼀步的,netty或者说java nio涉及到了许多更底层的东西,例如:io多路复⽤,零拷贝,事件驱动等等。
⽽这些底层技术在redis,nginx,node-js等以⾼效率io著称的应⽤中被⼴泛使⽤。
扪⼼⾃问,⾃⼰在多⼤程度上理解这些技术?为什么io多路复⽤在io密集型的应⽤中,效率能够⽐之传统的同步阻塞io显著提⾼?⼀次⽹络或磁盘的io传输内部到底发⽣了什么,零拷贝到底快在了哪⾥? 如果没有很好的弄明⽩这些问题,那么我的netty学习将是不完整的。
我有限的知识告诉我,答案就在操作系统中。
操作系统作为软硬件的⼤管家,对上提供应⽤程序接⼝(程序员们通常使⽤⾼级语⾔提供的api间接调⽤);对下控制硬件(cpu、内存、磁盘⽹卡等外设);依赖硬件提供控制并发的系统原语;其牵涉的许多模块内容都已经独⽴发展了(多系统进程间通信->计算机⽹络、⽂件系统->数据库)。
第三章8086的指令系统3.1 8086指令系统概述所谓一个微处理器的指令系统是一个微处理器所执行的全部指令的集合。
在8086的指令系统中一共有133条指令。
8086指令系统是在8位微处理器8080/8085的指令系统基础上设计的,它兼容了8080/8085的全部指令,这部分对8位微处理器具有兼容性的指令往往是处理字节(8位)的。
此外,8086还有自己所特有的对字或字符串的处理指令,以及对带符号数的运算指令、中断指令和协处理器指令。
对微处理器的指令的描述,一般有两种表示方法:指令的机器码和汇编指令。
无论对于机器码指令还是对于汇编指令均要解决三个问题(三个信息)(1)指令要完成什么操作(操作码);(2)参加这个操作的操作数在哪里(操作数);(3)操作结果放在哪里(结果);为了简化指令,通常在微机系统中规定:操作结果要放在某一个操作数中。
如MOV AL,08H;ADD AX,BX;(源操作数,目标操作数)这样,就将指令所要提供的信息简化为了两部分:操作码、操作数。
指令的机器码就是用二进制码描述指令的操作码和操作数的一种方式,实际上在微机系统内部,指令就是以机器码的形式存在的。
所谓的汇编指令是用指令功能的英文缩写表示操作码,用数字和符号表示操作数的指令描述方法。
例如操作码操作数MOV AX,2000H操作码B8H操作数:00H20H由于汇编语言程序有便于理解、识别、阅读和交流的优点。
所以汇编指令得到了广泛的应用。
但由于最终在机器中使用的是机器码,所以要有一个中间环节就是对其进行翻译。
3.2 8086指令的寻址方式所谓寻址方式就是寻找操作数的方式,所以寻址方式实际上在两种情况下被涉及:一种是用来对操作数进行寻址;另一种是对转移地址和调用地址进行寻址。
下面我们所讨论的寻址方式都是针对操作数的,关于指令地址的寻址,将在讲述转移指令和调用指令时作具体说明。
一条指令的机器码通常包含操作码(OP)和操作数两部分。