B′C′ 6 3
6cm
AC = BC . A′C′ B′C′
∵∠C=∠C′=90°, 故能判定△ABC与△A′B′C′相似.
B 4cm C
B′
(两边成比例且夹角相等的两个三角形相似.)
A′ 9cm 6cm C′
1.根据下列条件,可以判定△ABC与△A′B′C′相似的有( ).
③AB=3,BC=4,AC=6,A′B′=3.9,B′C′= 5.2 ,A′C′= 7.8 ;
看到楼顶的点M,已知小明的眼睛(点B)到地面的高度BC是1.6米,则
高楼MN的高度是多少?
解:∵BC⊥CA,MN⊥AN, ∴∠C=∠MNA=90°,
∠BAC=∠MAN
M
∵∠BAC=∠MAN,
∴△BCA∽△MNA.
∴
BC = AC , MN AN
B
?
1.6米
即 1.6 = 1.5 MN 18
∴MN=19.2, ∴高楼MN的高度是19.2米.
1.已知四边形EFGH相似于四边形KNML, 各边长如图所示,求∠E,∠G,∠N的度数以及x,y, z的值.
解:∵四边形EFGH∽四边形KNML ,
∴∠E=∠K=67°,
N
∠G=∠M=107°,
x
F
35
∠H=∠L=143°,
E
∠N=360°-∠K-∠L-∠M
4 H
143 °6
G
10
=360°-67°-143°-107°
一、复习回顾
思考:我们可以怎样作呢?
3.利用直线DE和△ABC作出△ADE与△ABC相似.
A D
B
C
E
一、复习回顾
思考:三种画法都使得 △ADE ∽ △ABC吗?