第八章 基元反应动力学
- 格式:ppt
- 大小:1.89 MB
- 文档页数:72
第四篇化学动力学第七章基元反应动力学化学动力学是研究化学反应速率和历程的学科。
化学动力学的基本任务是:考察反应过程中物质运动的实际途径;研究反应进行的条件(如温度、压力、浓度、介质、催化剂等)对化学反应过程速率的影响;揭示化学反应能力之间的关系。
从而使人们能够选择适当反应条件,掌握控制反应的主动权,使化学反应按所希望的速率进行。
从宏观系统的唯象动力学研究到微观世界的分子反应动态学研究,化学动力学经历了近两个世纪。
近百年来,化学动力学理论和实验方法都获得了很大发展。
虽然它与热力学相比还远不尽人意,但是可以相信随着科学的发展与各领域研究不断深入,化学动力学必将通过自身的发展和相关学科的促进,而取得长足的进步。
化学动力学,按其研究层次常可分为:唯象动力学——在总反应层次上研究化学反应的速率。
即研究温度、浓度、介质、催化剂、反应器等对反应速率的影响。
基元反应动力学——研究基元反应的动力学规律和理论,及从基元反应的角度去探索总反应的动力学行为。
分子反应动态学——从分子反应层次上研究化学反应的动态行为,直至态-态反应研究一次具体的碰撞行为。
这部分内容完全是微观性质的。
物理化学课程中化学动力学部分的重点放在从基元反应的角度研究总反应动力学行为,而对分子反应动态学只略作介绍。
§ 7.1 基本概念几个重要的基本概念:化学反应速率,反应级数,速率系数,基元反应。
一、 化学反应速率1 转化速率—•ξ 按照国家标准,化学反应∑=BB B 0ν的转化速率定义为:该反应的反应进度ξ 随时间t 的变化率•ξ,即 •ξ t d /d ξ=按照反应进度的定义,如果B 为参与反应的任一种物质则 ,那么化学反应转化速率还可以表示为•ξ=)d /(d B B t n ν 2 反应速率—r 定义单位体积反应系统中反应进度随时间的变化率作为反应速率,以符号r 表示,即r = tV d d .1ξ = t n V d d .1B B ν 上式中V 是反应系统的体积,所以这样定义的反应速率通常只适用于均相反应系统。
第八章 复杂反应动力学8-1.对于平行反应 CB A 21−→−−→−k k ┤,设E a 、E 1、E 2分别为总反应的表观活化能和两个平行反应的活化能,证明存在以下关系式:E a = (k 1E 1 + k 2E 2)/(k 1 + k 2) 。
证明: 总速率: - d[A]/d t = k 1[A] + k 2[A] = (k 1 + k 2)[A] = k '[A]其中 k ' = k 1 + k 2 = Ae x p(-E '/RT ), ∵2'd 'ln d RTE T k = 又∵Tk k k k T k k T k d )d(1d )dln(d 'ln d 212121+⋅+=+=⎪⎪⎭⎫⎝⎛+⨯+=⎪⎭⎫ ⎝⎛+⨯+=T k k k T k k k k k T k T kk k d d d d 1d d d d 1222111212121⎪⎭⎫ ⎝⎛+⨯+=⎪⎭⎫ ⎝⎛+⨯+=222211212211211d ln d d ln d 1RT E k RT E k k k T k k T k k k k21221121k k E k E k RT ++⨯=所以 212211'k k E k E k E ++=8-2.醋酸高温裂解制乙烯酮,副反应生成甲烷 CH 3COOH —k 1→CH 2=CO +H 2O CH 3COOH —k 2→CH 4+CO 2已知在1189k 时k 1=4.65s -1,k 2=3.74s -1。
试计算: (1)99%醋酸反应需要的时间;(2)在1189 K 时,乙烯酮的最高效率? 如何提高选则性? 解: A B C t =0 a 0 0 t =t x y z(1) ln(a /x )=(k 1+k 2)t x =(1-0.99)a =0.01at =[ln(a /0.01a )]/(k 1+k 2) =(ln100)/(4.65+3.74)=0.5489s (2) y /z =k 1/k 2=4.65/3.74=1.243 z =0.4414a 解得 :y +z =a -x =0.99a y =0.5486a收率,就是产率=产品量/转化反应物量=0.5486a /0.99a =55.42%由于k 1与k 2 相差不大,说明两者解离能相差不大,改变温度效果不好。
基元反应动力学练习题7-1 双分子反应2A(g) B(g) + D(g),在623K、初始浓度为0.400mol dm-3时,半衰期为105s,请求出(1) 反应速率系数k(2) A(g)反应掉90%所需时间为多少?(3) 若反应的活化能为140 kJ mol-1, 573K时的最大反应速率为多少?解:(1) r = k[A]2 , t0.5= 1/(2 k[A]0) , k = 0.012dm3mol-1s-1(2) 1/[A]– 1/[A]0 =2 k t , t = 945 s(3) ln(k/k’)=(E a/R)(1/T ’-1/T) , 573K时k = 0.00223dm3mol-1s-1,最大反应速率r max = k[A]02=3.6×10-4 moldm-3s-1.7-2 500K时气相基元反应A + B = C,当A和B的初始浓度皆为0.20 mol dm-3时,初始速率为5.0×10-2 mol dm-3 s-1(1) 求反应的速率系数k;(2) 当反应物A、B的初始分压均为50 kPa(开始无C),体系总压为75 kPa时所需时间为多少?解:(1) r0 = k[A]0 [B]0 , k =1.25 dm3 mol-1 s-1(2) p0(A) = p0(B) , r = k p p (A) 2 , p =2 p0(A) - p (A) , p (A)= p0(A)/ 2 , k p = k/(RT) ,t1/2 =1/[ k p p0(A)] = 66 s7-3 已知在540―727K之间和定容条件下,双分子反应CO(g)+ NO2(g)→CO2(g)+NO(g)的速率系数k表示为k / (mol-1 dm3 s-1) = 1.2×1010exp[E a /(RT)],E a= -132 kJ mol-1。
若在600K时,CO和NO2的初始压力分别为667和933Pa,试计算:(1) 该反应在600K时的k值; (2) 反应进行10 h以后,NO的分压为若干。
《物理化学》高等教育出版(第五版)第八章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第八章化学动力学(2)练习题一、判断题:1.碰撞理论成功处之一,是从微观上揭示了质量作用定律的本质。
2.确切地说:“温度升高,分子碰撞次数增大,反应速度也增大”。
3.过渡状态理论成功之处,只要知道活化络合物的结构,就可以计算出速率常数k。
4.选择一种催化剂,可以使Δr G m> 0的反应得以进行。
5.多相催化一般都在界面上进行。
6.光化学反应的初级阶段A + hv-→P的速率与反应物浓度无关。
7.酸碱催化的特征是反应中有酸或碱存在。
8.催化剂在反应前后所有性质都不改变。
9.按照光化当量定律,在整个光化学反应过程中,一个光子只能活化一个分子,因此只能使一个分子发生反应。
10.光化学反应可以使Δr G m> 0 的反应自发进行。
二、单选题:1.微观可逆性原则不适用的反应是:(A) H2 + I2 = 2HI ; (B) Cl· + Cl· = Cl2;(C) 蔗糖 + H2O = C6H12O6(果糖) + C6H12O6(葡萄糖) ;(D) CH3COOC2H5 + OH-=CH3COO-+ C2H5OH 。
2.双分子气相反应A + B = D,其阈能为40 kJ·mol-1,有效碰撞分数是6 × 10-4,该反应进行的温度是:(A) 649K ;(B) 921K ;(C) 268K ;(D) 1202K 。
3.双分子气相反应A + B = D,其阈能为50.0 kJ·mol-1,反应在400K时进行,该反应的活化焓≠∆mrH为:(A) 46.674 kJ·mol-1;(B) 48.337 kJ·mol-1;(C) 45.012 kJ·mol-1;(D) 43.349 kJ·mol-1。
基元反应和非基元反应都是化学动力学中重要的概念,它们在反应速率和反应机理的研究中起着至关重要的作用。
本文将从简述基元反应和非基元反应的定义和特点开始,然后分析它们在动力学处理方式上的区别,并结合具体的化学实例进行讨论。
1. 基元反应和非基元反应的定义和特点在化学动力学中,基元反应指的是一个反应步骤中所涉及的物质的化学变化,并且该反应步骤是不可再分的。
以简单的反应为例,如A+B→C,则这个反应只有一个步骤,其中A和B的转化为C即为基元反应。
而非基元反应则是指多个基元反应所组成的复合反应步骤,它们有着较为复杂的反应机理和过程。
2. 区别在何处?基元反应和非基元反应在动力学处理方式上的区别主要表现在其反应速率方程和反应机理的研究方法上。
对于基元反应,由于其只涉及一个步骤,因此其反应速率方程可以直接从反应物的浓度进行推导。
通常情况下,基元反应的反应速率方程能够用简单的公式进行描述,例如一级反应速率方程v=k[A]或二级反应速率方程v=k[A][B]。
而非基元反应由于涉及多个步骤,其反应速率方程通常需要通过多步催化反应动力学的研究方法进行推导,这就需要对反应机理进行更加深入的探讨和分析。
3. 通过实例进行讨论以催化剂的作用为例,当催化剂参与到基元反应中时,我们可以直接通过实验数据和反应速率方程来对催化剂的作用进行研究和分析。
而对于非基元反应,涉及多个步骤和中间物质的转化,我们就需要通过更加复杂的催化反应动力学实验和理论分析来揭示催化剂的作用机理。
4. 个人观点和理解在化学动力学研究中,基元反应和非基元反应的区别不仅仅在于其反应速率方程的推导和反应机理的研究方法上,更重要的是它们对于我们理解化学反应的本质和规律有着不同的启示。
基元反应能够帮助我们从简单的角度去理解反应速率和反应机理,而非基元反应则为我们提供了更复杂的反应过程和机理的研究对象。
总结回顾通过对基元反应和非基元反应的区别进行深入的讨论和分析,我们不仅能够更清晰地理解它们在动力学处理方式上的差异,更能够从中获得对化学反应本质和规律的更深刻和全面的理解。
第一章 理想气体1、理想气体:在任何温度、压力下都遵循P V=nRT 状态方程的气体。
2、分压力:混合气体中某一组分的压力。
在混合气体中,各种组分的气体分子分别占有相同的体积(即容器的总空间)和具有相同的温度。
混合气体的总压力是各种分子对器壁产生撞击的共同作用的结果。
每一种组分所产生的压力叫分压力,它可看作在该温度下各组分分子单独存在于容器中时所产生的压力B P 。
P y P B B =,其中∑=BBB B n n y 。
分压定律:∑=BB P P道尔顿定律:混合气体的总压力等于与混合气体温度、体积相同条件下各组分单独存在时所产生的压力的总和。
∑=BB V RT n P )/(3、压缩因子ZZ=)(/)(理实m m V V 4、范德华状态方程 RT b V V ap m m=-+))((2 nRT nb V Van p =-+))((225、临界状态(临界状态任何物质的表面张力都等于0)临界点C ——蒸气与液体两者合二为一,不可区分,气液界面消失; 临界参数:(1)临界温度c T ——气体能够液化的最高温度。
高于这个温度,无论如何加压 气体都不可能液化;(2)临界压力c p ——气体在临界温度下液化的最低压力; (3)临界体积c V ——临界温度和临界压力下的摩尔体积。
6、饱和蒸气压:一定条件下,能与液体平衡共存的它的蒸气的压力。
取决于状态,主要取决于温度,温度越高,饱和蒸气压越高。
7、沸点:蒸气压等于外压时的温度。
8、对应状态原理——处在相同对比状态的气体具有相似的物理性质。
对比参数:表示不同气体离开各自临界状态的倍数 (1)对比温度c r T T T /= (2)对比摩尔体积c r V V V /= (3)对比压力c r p p p /= 9、rr r c r r r c c c T Vp Z T V p RT V p Z =⋅=10、压缩因子图:先查出临界参数,再求出对比参数r T 和r p ,从图中找出对应的Z 。
第八章 化学动力学基础(一)主要公式及其适用条件1、化学反应速率的定义 tv c t V v n t V d d d d d d B B B B def==ξυ=式中:d ξ / d t 为反应进度随时间的变化率;V 为反应系统的体积;v B 参加化学反应的物质B 的计量系数,对产物取正值,对反应物则取负值;c B 为参加反应B 的物质的量浓度。
此式适用于恒容反应,反应无中间产物或d c (中间产物)/d t ≈0的反应。
2、反应速率与反应物消耗的速率及产物生成速率之间的关系反应:M L B A 0M L B A v v v v +++=tv ct v c t v c t v c d d d d d d d d L L M M B B A A ==-=-=υ 用参加反应的不同物质表示反应速率时,其速率常数k 之间的关系:L L M M B B A A //)/()/(v k v k v k v k ==-=-上式二式适用于恒温、恒容反应,且反应中间产物或d c (中间产物)/d t ≈0。
3、速率方程的一般形式 βαB A A A d /d c c k t c =-式中:α和β分别称为反应物A 的分级数和反应物B 的分级数;α+β=n 称为反应的总级数。
α和β可分别为整数、分数或者是零,既可以是正值也可以是负值。
k A 称为用反应物A 表示反应速率时的速率常数,其物理意义为当c A =c B =1mol ·dm -3时的反应速率。
4、零级反应速率方程式:-d c A / d t = k速率方程的积分式:c A,0 -c A = kt式中:c A,0为反应前反应物A 的初始浓度;c A 为反应进行t 时刻时的反应物A 的浓度。
零级反应的半衰期:t 1/2 = c A,0/2k 5、一级反应速率方程式:-d/c A / d t = k A c A速率方程的的积分式:)1/(1ln )/ln(A A 0A x c c t k -==式中:x A 为反应A 初始浓度c 0经过时间t 的转化率。