二阶动态电路响应的研究
- 格式:doc
- 大小:43.50 KB
- 文档页数:2
实验二二阶电路的动态响应
1.一、实验目的:
2.学习用实验的方法来研究二阶动态电路的响应。
3.研究电路元件参数对二阶电路动态响应的影响。
4.研究欠阻尼时, 元件参数对α和固有频率的影响。
5.研究RLC串联电路所对应的二阶微分方程的解与元件参数的关系。
二、实验设备与器件
1.低频信号发生器
2.交流毫伏表
3.双踪示波器
4.万用表
5.可变电阻
电阻、电感、电容(电阻100Ω,电感10mH、4.7mH, 电容47nF), 可变电阻(680Ω)。
三、实验内容
1.按图6.8所示电路接线(R1=100ΩL=10mH C=47nF)
调节可变电阻器R2之值, 观察二阶电路的零输入响应和零状态响应由过阻尼过渡到临界阻尼, 最后过渡到欠阻尼的变化过渡过程, 分别定性地描绘、记录响应的典型变化波形。
临界阻尼图过阻尼图欠阻尼图。
实验室二二阶系统的阶跃响应及稳定性分析实验一.实验目的1.熟悉二阶模拟系统的组成。
2.研究二阶系统分别工作在等几种状态下的阶跃响应。
3.学习掌握动态性能指标的测试方法,研究典型系统参数对系统动态性能和稳定性的影响。
二,实验内容1.ZY17AutoC12BB自动控制原理实验箱。
2.双踪低频慢扫示波器。
四.实验原理典型二阶系统的方法块结构图如图2.1所示:图2.1其开环传递函数为,为开环增益。
其闭环传递函数为,其中取二阶系统的模拟电路如图2.2所示:该电路中该二阶系统的阶跃响应如图所示:图2.3.1,2.3.2,2.3.3,2.3.4和2.3.5分别对应二阶系统在过阻尼,临界阻尼,欠阻尼,不等幅阻尼振荡(接近于0)和零阻尼(=0)几种状态下的阶跃响应曲线。
改变元件参数Rx大小,可研究不同参数特征下的时域响应。
当Rx为50k时,二阶系统工作在临界阻尼状态;当Rx<50K时,二阶系统工作在过阻尼状态;当Rx>50K时,二阶系统工作在欠阻尼状态;当Rx继续增大时,趋近于零,二阶系统输出表现为不等幅阻尼振荡;当=0时,二阶系统的阻尼为零,输出表现为等幅振荡(因导线均有电阻值,各种损耗总是存在的,实际系统的阻尼比不可能为零)。
五. 实验步骤1.利用实验仪器,按照实验原理设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路。
此实验可使用运放单元(一),(二),(三),(五)及元器件单元中的可调电阻。
(1)同时按下电源单元中的按键开关S001,S002,再按下S003,调节可调电位器W001,使T006(-12V—+12V)输出电压为+1V,形成单位阶跃信号电路,然后将S001,S002再次按下关闭电源。
(2)按照图2.2连接好电路,按下电路中所用到运放单元的按键开关。
(3)用导线将连接好的模拟电路的输入端于T006相连接,电路的输出端与示波器相连接。
(4)同时按下按键开关S001,S002时,利用示波器观测该二阶系统模拟电路的阶跃特性曲线,并由实验测出响应的超调量和调节时间,将结果记录下来。
实验一 二阶系统阶跃响应一、 实验目的(1)研究二阶系统的两个重要参数:阻尼比ξ和无阻尼自振角频率ωn 对系统动 态性能的影响。
(2)学会根据模拟电路,确定系统传递函数。
二、实验内容二阶系统模拟电路图如图2-1 所示。
系统特征方程为T 2s 2+KTs+1=0,其中T=RC ,K=R0/R1。
根据二阶系统的标准 形式可知,ξ=K/2,通过调整K 可使ξ获得期望值。
三、 预习要求(1) 分别计算出T=0.5,ξ= 0.25,0.5,0.75 时,系统阶跃响应的超调量σP 和过渡过程时间tS 。
)1(p 2e ζζπσ--=, ζT3t s ≈代入公式得:T=0.5,ξ= 0.25,σp =44.43% , t s =6s ; T=0.5,ξ= 0.5,σp =16.3% , t s =3s ; T=0.5,ξ= 0.75,σp =2.84% , t s =2s ;(2) 分别计算出ξ= 0.25,T=0.2,0.5,1.0 时,系统阶跃响应的超调量σP 和过渡过程时间tS 。
ξ= 0.25,T=0.2,σp =44.43% , t s =2.4s ; ξ= 0.25,T=0.5,σp =44.43% , t s =6s ; ξ= 0.25,T=1.0,σp =44.43% , t s =12s ;四、 实验步骤(1) 通过改变K ,使ξ获得0,0.25,0.5,0.75,1.0 等值,在输入端加同样幅值的阶跃信号,观察过渡过程曲线,记下超调量σP 和过渡过程时间tS,将实验值和理论值进行比较。
(2)当ξ=0.25 时,令T=0.2 秒,0.5 秒,1.0 秒(T=RC,改变两个C),分别测出超调量σP 和过渡过程tS,比较三条阶跃响应曲线的异同。
五、实验数据记录与处理:阶跃响应曲线图见后面附图。
原始数据记录:(2)ξ=0.25,改变C的大小改变T值理论值与实际值比较:对误差比较大,比如T=0.5,ξ=0.75时,超调量的相对误差为30%左右。
实验十四二阶动态电路响应及其测试1实验目的1.学会用示波器观测二阶电路的响应曲线,加深对二阶电路的认识。
2.了解电路元件的参数对响应的影响。
3.学会用实验的方法测量二阶电路的衰减系数和振荡频率。
2实验器材1.QY-DT01电源控制屏2.QY-DG02仪器仪表模块I3.函数信号发生器4.QY-DG05通用电路实验模块5.示波器3实验原理1.原理图图1二阶动态电路响应测试原理图二阶电路由二阶微分方程描述,本实验中的二阶电路由电阻、电容、电感元件串联而成,由于电容和电感为动态元件,所以当激励信号发生突变时,电路会经历一个过渡过程,当R、L、C的参数值不同时,过渡过程也不完全相同,在本实验中,我们只以u C的波形作为二阶电路的响应来进行研究。
根据R 、L 、C 取值不同,电路的过渡过程会出现三种情况:当C L R 2>时,电路工作于过阻尼状态;当C L R 2<时,电路工作于欠阻尼状态;当CLR 2=时,电路工作于临界阻尼状态。
当为该电路施加一个脉冲激励时,即能观察到电容电压的波形变化曲线,即电路的零状态响应和零输入响应。
2.预习内容衰减系数的计算公式:LR 2=δ 振荡频率的计算公式:LC10=ω电路的三种过渡情况:(1) 当CLR 2>,即0ωδ>时,响应为非振荡性质,称为过阻尼状态,波形如图16-2所示;图2过阻尼响应曲线(2) 当C LR 2=,即0ωδ=时,响应仍属于非振荡性质,称为临界阻尼状态,临界阻尼响应曲线与过阻尼相同;(3) 当C LR 2<,即0ωδ<时,响应为振荡性质,称为欠阻尼状态,欠阻尼响应曲线如图3所示。
图3欠阻尼响应曲线当R=0时,称为无阻尼状态。
振荡频率和衰减系数的测量方法:调节电路中元件参数,使其工作于欠阻尼振荡状态,用示波器观察电容电压u C 的波形如图4所示:图4欠阻尼响应曲线T10=ω , m m u u T 21ln 1=δ (T=t 2-t 1)4 实验内容在RLC 的串联和并联实验中,我们研究的是二阶电路的稳态响应,但由于电路中存在电容和电感这些动态元件,使得电路从上电开始带进入稳态之间会经历一个过渡过程。
实验二:二阶电路的动态响应学号:0928402012 姓名:王畑夕 成绩:一、 实验原理及思路图6.1 RLC 串联二阶电路用二阶微分方程描述的动态电路称为二阶电路。
图6.1所示的线性RLC 串联电路是一个典型的二阶电路。
可以用下述二阶线性常系数微分方程来描述:s 2U 2=++c c c u dt du RC dtu d LC (6-1) 初始值为CI C i dtt du U u L t c c 000)0()()0(===-=--求解该微分方程,可以得到电容上的电压u c (t )。
再根据:dtdu ct i cc =)( 可求得i c (t ),即回路电流i L (t )。
式(6-1)的特征方程为:01p p 2=++RC LC 特征值为:20222,11)2(2p ωαα-±-=-±-=LCL R L R (6-2)定义:衰减系数(阻尼系数)LR 2=α 自由振荡角频率(固有频率)LC10=ω 由式6-2 可知,RLC 串联电路的响应类型与元件参数有关。
1.零输入响应动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。
电路如图6.2所示,设电容已经充电,其电压为U 0,电感的初始电流为0。
(1) CL R 2>,响应是非振荡性的,称为过阻尼情况。
电路响应为:)()()()()(212112012120t P t P t P t P C e e P P L U t i e P e P P P U t u ---=--=响应曲线如图6.3所示。
可以看出:u C (t)由两个单调下降的指数函数组成,为非振荡的过渡过程。
整个放电过程中电流为正值, 且当2112lnP P P P t m -=时,电流有极大值。
(2)CL R 2=,响应临界振荡,称为临界阻尼情况。
电路响应为tt c te LUt i e t U t u ααα--=+=00)()1()( t ≥0响应曲线如图6.4所示。
一阶电路和二阶电路的动态响应学号:1028401083 姓名:赵静怡一、实验目的1、掌握用Multisim研究一阶电路的动态响应特性测试方法2、掌握用Multisim软件绘制电路原理图3、掌握用Multisim软件进行瞬态分析4、深刻理解和掌握零输入响应、零状态响应和完全响应5、深刻理解欠阻尼、临界、过阻尼的意义6、研究电路元件参数对二阶电路动态响应的影响二、实验原理⑴一阶电路含有一个独立储能元件,可以用一阶微分方程来描述的电路,称为一阶电路。
一阶RC电路零输入响应:当U s=0时,电容的初始电压U c(0+)=U0时,电路的响应称为零输入响应。
RCt c U t u -=0)((t>=0)零状态响应:当电容电压的初始值U c (0+)=0时,而输入为阶跃电压u s =U S u(t)时,电路的响应称为零状态响应。
)()1()(t u eU t u RCts c --=⑵二阶电路用二阶微分方程描述的动态电路称为二阶电路。
RLC 串联二阶电路如上图就是一个典型的二阶电路,可以用下述二阶线性常系数微分方程来描述:s c cc U u dt du RC dtu d LC =++22 衰减系数(阻尼系数)LR2=α 自由振荡角频率(固有频率)LCw o 1=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=<=>,称为无阻尼情况,响应是等幅振荡性的0伟欠阻尼情况,响应是振荡性的,陈2临界阻尼情况,响应临界振荡,称为2为过阻尼情况响应是非振荡性的,称,2RCLR CLR CLR三、实验内容:1.用Multisim研究一阶电路的动态响应(1)实验电路(a) (b) (c)(2)初始条件如图所示,t=0电路闭合,分别仿真出电容上电压(从零时刻开始)的波形,说明各属于什么响应?三种情况下分别测量电容电压达到3v所用的时间。
①图(a)为零状态相应,电容上电压的波形如下图:由上图可知,电容电压达到3v所用的时间约为91.6146μm②图(b)为零输入相应,电容上电压的波形如下图:由上图可知,电容电压达到3v所用的时间为51.1196μm ③图(c)为全响应,电容上电压的波形如下图:由上图可知,电容电压达到3v 所用的时间为40.6082μm(3)写出三种情况下电容电压随时间的函数表达式,并分别计算出电容电压为3V 时的时间。
实验八 二阶动态电路响应的研究
一、实验目的
1. 测试二阶动态电路的零状态响应和零输入响应, 了解电路元件参数对响应的影响。
2. 观察、分析二阶电路响应的三种状态轨迹及其特点, 以加深对二阶电路响应的认识与理解。
二、原理说明
一个二阶电路在方波正、负阶跃信号的激励下,可获得零状态与零输入响应,其响应的变化轨迹决定于电路的固有频率。
当调节电路的元件参数值,使电路的固有频率分别为负实数、共轭复数及虚数时,可获得单调地衰减、衰减振荡和等幅振荡的响应。
在实验中可获得过阻尼,欠阻尼和临界阻尼这三种响应图形。
简单而典型的二阶电路是一个RLC 串联电路和GCL 并联电路,这二者之间存在着对偶关系。
本实验仅对GCL 并联电路进行研究。
三、实验设备
四、实验内容
动态电路实验板与实验七相同,如图7-3所示。
利用动态电路板中的元件与开关的配合作用,组成如图8-1所示的GCL 并联电路。
令R 1=10K Ω,L =4.7mH , C =1000PF ,R 2为10K Ω可调电 阻。
令脉冲信号发生器的输出为 U m =1.5V ,f =1KHz 的方波脉冲, 通过同轴电缆接至图中的激励端, 同时用同轴电缆将激励端和响应 输出接至双踪示波器的Y A 和Y B
两个输入口。
图 8-1
调节可变电阻器R 2之值, 观察二阶电路的零输入响应和零状态响应由过阻尼过渡到临界阻尼,最后过渡到欠阻尼的变化过渡过程,分别定性地描绘、记录响应的典型变化波形。
2. 调节R 2使示波器荧光屏上呈现稳定的欠阻尼响应波形, 定量测定此时电路的衰减常数δ和振荡频率ωd 。
3. 改变一组电路参数,如增、减L 或C 之值,重复步骤2的测量,并作记录。
随后仔细观察,改变电路参数时,ωd 与δ的变化趋势,并作记录。
五、实验注意事项
1. 调节R2时,要细心、缓慢,临界阻尼要找准。
2. 观察双踪时,显示要稳定,如不同步,则可采用外同步法触发(看示波器说明)。
六、预习思考题
1. 根据二阶电路实验电路元件的参数,计算出处于临界阻尼状态的R2之值。
2. 在示波器荧光屏上,如何测得二阶电路零输入响应欠阻尼状态的衰减常数α和振荡频率ωd?
七、实验报告
1. 根据观测结果,在方格纸上描绘二阶电路过阻尼、临界阻尼和欠尼的响应波形。
2. 测算欠阻尼振荡曲线上的α与ωd。
3. 归纳、总结电路元件参数的改变对响应变化趋势的影响。
4. 心得体会及其他。