第四章相似三角形
- 格式:pptx
- 大小:3.39 MB
- 文档页数:166
浙教版数学九年级上册第四章相似三角形第三节 两个三角形相似的判定【课本相关知识点】相似三角形的几个判定:1、 的直线和其他两边相交,所构成的三角形与原三角形相似。
【补充】:平行于三角形一边的直线和其他两边的延长线相交,所构成的三角形也与原三角形相似2、有 角对应相等的两个三角形相似。
3、两边 ,且 的两个三角形相似。
4、三边 的两个三角形相似。
【典型例题】【题型一】判断两三角形是否相似(利用相似三角形的判定定理)现在我们再也不需要利用两个三角形相似的定义来判断它们相似,因为那样做太繁琐了。
1、在△ABC 与△A 1B 1C 1中,(1)AB=3.5,BC=2.5,CA=4;A 1B 1=24.5,B 1C 1=17.5,C 1A 1=28本题可以根据 的两个三角形相似来判定。
这两个三角形 (填相似或不相似)【题型二】利用相似三角形求线段的长度1、如图所示,在梯形ABCD 中,AB ∥CD ,且AB=2CD ,E 、F 分别是AB 、BC 的中点,EF 与BD 相交于点M 。
若DB=9,求BM 的长【题型三】利用相似三角形证明线段比例式或等积式1、如图,四边形ABCD 内接于圆O ,E 为BA ,CD 延长线的交点。
(1)求证:△EDA ∽△EBC (2)求证:AD ﹒CE=BC ﹒AE【题型四】利用相似三角形解决实际生活问题1、如图所示,已知零件的外径为a ,要求出它的厚度x ,需先求出内径AB ,但又不能直接量出AB ,现有一个交叉卡(两条直尺长AC =BD )去量,若1OC OD OA OB n==,且量得CD =b ,求厚度x .【题型五】相似三角形中的“存在性”问题(2)设AB k BC=,是否存在这样的k 值,使得△AEF 与△BFC 相似.若存在,证明你的结论并求出k 的值;若不存在,说明理由。
巩 固 练 习1、如图,在正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O ,则AO DO等于( )B. 13C. 23D. 122、如图,AB 为圆O 的直径,点C 在圆上,CD ⊥AB ,DE ∥BC ,则图中与△ABC 相似的三角形有()A. 4个B. 3个C. 2个D. 1个3、如图所示,在△ABC 中,∠C=90°,∠B=60°,D是AC 上一点,DE ⊥AB 于点E ,且CD=2,DE=1,则BC 的长为( )B. 13C. 23D. 124、如图,如果∠1=∠2,那么添加下列条件后,仍无法判定△ABC ∽△ADE 的是( )A. AB AC AD AE =B. AB BC AD DE= C. ∠B=∠D D. ∠C=∠AED 5、如果一个直角三角形的两条边分别是6和8,另一个与它相邻的直角三角形的边长分别是3和4及x ,那么x 的值( )A. 只有1个B. 可以有2个C. 有2个以上但有限D. 有无数个6、如图,在Rt △ABC 内有边长分别为a 、b 、c 的三个正方形,则a 、b 、c 满足的关系式是( )A.b=a+cB.b=acC.b 2=a 2+c 2D.b=2a=2c7、如图所示,在Rt △ABC 中,AB ⊥AC ,AB=3,AC=4,P 是BC 边上一点,作PE ⊥AB 于E ,PD ⊥AC 于D ,设BP=x ,E A B第1题 第2题 第3题 第4题A. 5x +3B. 4-5xC. 72D. 21212525x x - 8、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )9、在△ABC 与△A 1B 1C 1中,有下列条件:①1111AB BC A B B C =,②1111AC BC A C B C =,③∠A=∠A 1,④∠B=∠B 1, ⑤∠C=∠C 1,如果从中任取两个条件组成一组,那么能判断△ABC ∽△A 1B 1C 1的共有( )组A. 4B. 5C. 6D. 710、如图,在平行四边形ABCD 中,点E 在DC 上,若DE:EC=1:2,则BF:BE=11、如图,FG ∥BC ,FC 与GB 相交于点A ,FG=4,BC=7,FC=10,则FA 的长为12、如图为△ABC 与△DEC 重叠的情形,其中E 在BC 上,AC 交DE 于F 点,且AB ∥DE .若△ABC 与△DEC 的面积相等,且EF=9,AB=12,则DF=【温馨提示:一定要牢牢记住这几个结论:相似三角形的对应边上的高之比、对应边上的中线之比、对应边上的角平分线之比都等于对应边之比】13、已知:在ΔABC 中,BD 平分∠ ABC ,与AC 相交于点D ;DE // BC ,交AB 于点E ,AE=9cm ,BC=12cm ,则BE 的长度为 。
相似三角形的判定(一)知识点1:两条直线被一组平行线所截,所得的对应线段成比例:知识点2:平行三角形的一边的直线截其它两边(或两边的延长线),所得的线段成比例;知识点3:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.(1)A型:如图1,ED∥BC,则△ADE∽△ABC.(2)8字型:(或漏斗型)如图2,ED∥BC,则△ADE∽△ACB.(3)A型线簇型:如图3,ED∥BC,则DF:FE=BM:MC;DF:FG:GE=BM:MN:MC(4)8字型(或漏斗型)线簇型如图4,AB平行CD,则AE:EB=CM:MD; AF:FE:EB=CN:NM:MD(5)三角形内接矩形:如图5,四边形DEFG为矩形,AN⊥BC与点N,则AM:AN=DE:BC;若四边形ABCD是正方形,则有1BG+1CG=1GF(6)三平行型:如图6,已知AB∥EF∥CD,1AB+1CD=1EF;1S△ABC+1S△BCD=1S△BCF图4图5图6图1图2图3【课堂巩固提升】1. 如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,P 是线段DE 边上的任意一点(不与点D ,E 重合),连接AP 并延长交BC 于点Q .若BQ =5,CQ =4,DE =6,则DP =2. 在平行四边形ABCD 中,AC 与BD 相交于点O ,点E 在线段DO 上,OE :DE =3:2,连接AE 并延长交DC 于点F ,则DF :FC3. 如图,点D ,G 分别在△ABC 的边AC ,AB 上,AD :CD =2:3,BG =4AG .延长GD 与BC 的延长线交于点F ,作AE ∥BC 交DG 延长线于点E ,则BC :BF4.如图,在△ABC 中,在BC 边上取一点P ,使得BP :PC =2:5,点Q 是AC 的中点,AP ,BQ 相交于点R ,则AR :RP5. 如图,在△ABC 中,AD 是BC 边上的中线,F 是线段AD 上的一点,AF :FD =1:5,连接CF , 并延长交AB 于点E ,则AE :EB6. 如图,B 为AC 的中点,E 为BD 的中点,AE 的延长线与CD 交于点F ,则AF :AE7. 如图,在△ABC 中,AB =AC =12,AD ⊥BC 于点D ,点E 在线段AD 上且DE =2AE ,连接BE 并延长交AC 于点F ,则线段AF 的长为第2题第3题第1题8.如图,在△ABC中,中线AD与角平分线BE交于点G,且AD⊥BE,AD=BE=10,则AC9.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,AD=EC,BD=1,AE=4,BC=5,则DE=10.如图,在△ABC中,点D在AB上,AD=3BD,作DE∥BC,交AC于点E,点M在线段DE上,DM:EM=3:2,CM交AB于点N,则BD:ND11.如图,AD是△ABC的中线,点E在线段AD上,AE=3DE,连接BE并延长交AC于点F,则AF:AC12.如图,在RT△ABC中有一正方形DEFG,点D在斜边AC上,EF在边AB上,连接AB 并延长,分别交DE,BC于点M,N,AB=4,BC=3,EF=1则BN=13.如图,AB∥CD,AD,BC相交于点E,过点E作EF∥AB交BD于点F,AB=10,EF=4,则CD=第16题第17题图 第18题图14. 如图,AB 是⊙O 的直径,P 是AB 延长线上一点,PC 与⊙O 相切于点C ,过点A 作AD ⊥PC 于点D ,已知PC =6,PB =3,则PD15.如图,在△ABC 中,底边BC 上的两点E ,F 把BC 分成三等分,BM 是AC 边上的中线,AE ,AF 分别交BM 于G ,H 两点,则BG :GH :HM16.如图,已知梯形ABCD ,AB ∥CD ,AC 交BD 于点O ,过点O 作EF ∥CD 交AB 于点E ,交CD 于点F ,EF =10,则1AB + 1CD =17.如图,已知P 为△ABC 的中位线MN 上的任意一点,BP ,CP 的延长线分别交对边AC ,AB 于点D ,E ,则AD DC + AE AB =18.如图,在△ABC 中,AC >AB ,AD 是角平分线,AE 是中线,作BF ⊥AD 于点G ,交AE于点F ,交AC 于点M ,EG 延长线交AB 于点H ,则AH BH =19.AD 是△ABC 的角平分线,AB =8,AC =6,当∠BAC =120°,AD = ,当∠BAC =90°,AD = ,当∠BAC =60°,AD =20.如图,在△ABC 中,∠ACB =90°,∠B =60°,DE 为△ABC 的中位线,延长BC 到点F ,使CF =12BC ,连接FE 并延长交AB 于点M ,若BC =a ,则△FMB 的周长为21.如图,在△ABC 中,AB =AC =5,BC =6,以AB 为直径作⊙O 分别交AC ,BC 于点D 、E ,过点E 作⊙O 的切线EF 交AC 于点F ,连接BD .求证:EF 是△CDB 的中位线.22.在△ABC 中,直线DN 平行于中线AF 交AB 于点D ,,交CA 延长线于点E ,交边BC于点N .求证:AD AB = AE AC23.正方形ABCD 中,以AB 为边向外作等边△ABE ,连接DE 交AC 于点F ,交AB 于点G ,连接BF . 求证:(1)AF +BF =EF(2) 1AF +1BF =1GF24.如图,已知正方形OEFG的顶点O为正方形ABCD的对角线AC,BD的交点,连接DG,DG⊥BD,正方形ABCD的边长为5,线段AD与线段OC相交于点M,AM=1,求正方形OEFG的边长.。
探索相似三角形相似的条件【学习目标】1.相似三角形的概念.2.相似三角形的三个判定定理.3.黄金分割.4. 进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形的概念相似三角形:三个角分别相等,三边成比例的两个三角形叫做相似三角形.要点进阶:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的三个判定定理定理:两角分别相等的两个三角形相似.两边成比例且夹角相等的两个三角形相似.三边成比例的两个三角形相似.要点进阶:(1)要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.(2)此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.要点三、相似三角形的常见图形及其变换:要点四、黄金分割1.定义:一般地,点C把线段AB分成两条线段AC和BC两段,如果AC BCAB AC,那么线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比. 要点进阶:512AC AB-=≈0.618AB(0.618是黄金分割的近似值,512-是黄金分割的准确值).2.作一条线段的黄金分割点:如图,已知线段AB,按照如下方法作图:(1)经过点B作BD⊥AB,使BD=21AB.(2)连接AD,在DA上截取DE=DB.(3)在AB上截取AC=AE.则点C为线段AB的黄金分割点.要点进阶:一条线段的黄金分割点有两个.【典型例题】类型一、相似三角形的概念例1、买西瓜为什么挑大个?思驰是一个好奇心很强的女孩,凡事都喜欢问个为什么.一天,思驰跟爸爸上街买西瓜.见爸爸选中的全是大个西瓜,她的小脑袋瓜又转开了:买西瓜为什么挑大个?“你这个沈老师的得意门生,能用学过的数学知识解决吗?”,爸爸“将”了思驰一军.回到学校,思驰就找来远兮一起商量.两人便开始了一番精彩对话.思驰:西瓜可以近似看成球体,可以应用球的体积公式.远兮:大西瓜和小西瓜的皮厚几乎相等.思驰:人们买瓜是为了吃瓤.远兮:瓤的体积在整个西瓜体积中占的比越大越好.思驰:两者的体积比如何求呢?经过一段时间的商讨,她们提出了解决方案:设瓜瓤(视为球体)的半径为r,瓜皮厚度为a,则瓤和整个瓜的体积比为:3333343()4()()3r r rr a r ar aππ==+++<1当a一定时,r值越大,(3()rr a+的值越接近于1,即西瓜越大,瓤与整个瓜的体积比越接近于1.思驰把解决方案讲给父亲听后,父亲充满了赞许之意,但父亲同时又提出了:你能用你正在学习的相似图形知识解决问题吗?等你学完图形的相似这一章后,我相信你还能找出新的方法的.问题:你认为生活中还有哪些与它类似的情形?类型二、相似三角形的三个判定定理例2.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.举一反三【变式】如图,已知在△ABC与△DEF中,∠C=54°,∠A=47°,∠F=54°,∠E=79°,求证:△ABC∽△DEF.例3、如图,△ABC中,AB=5,BC=3,CA=4,D为AB的中点,过点D的直线与BC交于点E,若直线DE截△ABC所得的三角形与△ABC相似,则DE的长为多少?举一反三【变式】如图,在△ABC于△ADE中,AB AEBC ED,要使△ABC于△ADE相似,还需要添加一个条件,这个条件是___________.例4、如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由)举一反三【变式】如图,已知每个小正方形的边长均为1,△ABC与△DEF的顶点都在小正方形的顶点上,那么△DEF与△ABC相似的是()类型三、黄金分割例5.折纸与证明---用纸折出黄金分割点:第一步:如图(1),先将一张正方形纸片ABCD对折,得到折痕EF;再折出矩形BCFE的对角线BF.第二步:如图(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AG>GD)举一反三:【变式】如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这时B″就是AB的黄金分割点.请你证明这个结论.【巩固练习】一、选择题1. 如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B. 2个 C.3个D. 4个2.在△ABC中,D、E分别是边AB、AC上的点,下列条件中不能判定△AED∽△ABC是()A.∠ADE=∠C B.∠AED=∠B C. AD ACAE AB= D.AD DEAC BC=3.如图,平行四边形ABCD中,F是CD上一点,BF交AD的延长线于G,则图中的相似三角形对数共有()A.8对 B. 6对 C.4对D. 2对4.下列五幅图均是由边长为1的16个小正方形组成的正方形网格,网格中的三角形的顶点都在小正方形的顶点上,那么在下列右边四幅图中的三角形,与左图中的△ABC相似的个数有()A. 1个B. 2个C. 3个D. 4个5.如图,已知点P是线段AB的黄金分割点,且PA>PB,若S1表示以PA为边的正方形的面积,S2表示长为AB、宽为PB的矩形的面积,那么S1()S2.A.>B.=C.<D.无法确定6.有以下命题:①如果线段d是线段a,b,c的第四比例项,则有a cb d .②如果点C是线段AB的中点,那么AC是AB、BC的比例中项.③如果点C是线段AB的黄金分割点,且AC>BC,那么AC是AB与BC的比例中项.④如果点C是线段AB的黄金分割点,AC>BC,且AB=2,则AC=-1.其中正确的判断有().A.1个B.2个C.3个D.4个二、填空题7.如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)8.在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有条.9.如图,在矩形ABCD中,AB=10,AD=4,点P是边AB上一点,若△APD与△BPC相似,则满足条件的点P有个.10.如图,点D、E、F在△ABC三边上,EF、DG相交于点H,∠ABC=∠EFC=70°,∠ACB=60°,∠DGB=50°,图中与△GFH相似的三角形的个数是.11.如图,在Rt△ABC中,AC=8,BC=6,直线l经过C,且l∥AB,P为l上一个动点,若△ABC与△PAC相似,则PC=.12.如图所示,顶角A为36°的第一个黄金三角形△ABC的腰AB=1,底边与腰之比为K,三角形△BCD为第二个黄金三角形,依此类推,第2008个黄金三角形的周长为____________.三、解答题13. 如图,点P在平行四边形ABCD的CD边上,连接BP并延长与AD的延长线交于点Q.(1)求证:△DQP∽△CBP;(2)当△DQP≌△CBP,且AB=8时,求DP的长.14如图,已知△ABC 中,AB=,AC=,BC=6,点M 为AB 的中点,在线段AC 上取点N ,使△AMN 与△ABC 相似,求MN 的长.15.如图1,点C 将线段AB 分成两部分,如果AC BCAB AC=,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果121S S S S =,那么称直线l 为该图形的黄金分割线.(1)研究小组猜想:在△ABC 中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是△ABC 的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF ∥CE ,交AC 于点F ,连接EF (如图3),则直线EF 也是△ABC 的黄金分割线.请你说明理由.(4)如图4,点E 是平行四边形ABCD 的边AB 的黄金分割点,过点E 作EF ∥AD ,交DC 于点F ,显然直线EF 是平行四边形ABCD 的黄金分割线.请你画一条平行四边形ABCD 的黄金分割线,使它不经过平行四边形ABCD 各边黄金分割点.。