正弦余弦函数性质
- 格式:ppt
- 大小:3.54 MB
- 文档页数:49
1.4.2 正弦函数、余弦函数的性质知识点一 正弦函数、余弦函数的周期性函数的周期性1、(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.2、A sin[(ωx +φ)+2π]=A sin(ωx +φ),A sin ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎪⎫x +2πω+φ=A sin(ωx +φ),即f ⎝ ⎛⎭⎪⎫x +2πω=f (x ),所以f (x )=A sin(ωx +φ)(Aω≠0)是周期函数,2πω就是它的一个周期.3、由sin(x +2k π)=sin_x ,cos(x +2k π)=cos_x (k ∈Z )知,y =sin x 与y =cos x 都是周期函数,2k π(k ∈Z 且k ≠0)都是它们的周期,且它们的最小正周期都是2π.知识点二 正弦函数、余弦函数的奇偶性(1)对于y =sin x ,x ∈R ,恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. (2)对于y =cos x ,x ∈R ,恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称.知识点三 正弦、余弦函数的单调性[-1,1][-1,1]对于形如函数y =A sin(ωx +φ),Aω≠0时的最小正周期的求法常直接利用T =2π|ω|来求解,对于y =|A sin ωx |的周期情况常结合图象法来求解. 1、求下列函数的最小正周期. (1)y =sin ⎝ ⎛⎭⎪⎫2x +π3(x ∈R );(2)y =|sin x |(x ∈R ).2、下列函数是以π为周期的函数是( )A .y =sin xB .y =sin x +2C .y =cos2x +2D .y =cos3x -13.函数f (x )是周期函数,10是f (x )的一个周期,且f (2)=2,则f (22)=________.4.函数y =sin ⎝ ⎛⎭⎪⎫ωx +π4的最小正周期为2,则ω的值为________.类型二 三角函数的奇偶性对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断. 判断函数奇偶性应把握好两个关键点关键点一:看函数的定义域是否关于原点对称; 关键点二:看f (x )与f (-x )的关系.1、判断下列函数的奇偶性.(1) f (x )=sin(-x )(2)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2sin x ; (3)f (x )=1-2cos x +2cos x -1.2、若函数y =cos(ωx +φ)是奇函数,则( )A .ω=0B .φ=k π(k ∈Z )C .ω=k π(k ∈Z )D .φ=k π+π2(k ∈Z )3、已知函数f (x )=ax +b sin x +1,若f (2018)=7,则f (-2018)=________.类型三 三角函数的奇偶性与周期性的综合应用1.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数2、定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值.2、已知函数f (x )=cos π3x ,求f (1)+f (2)+f (3)+…+f (2020)的值.3、设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2018)=________.类型四 求正弦、余弦函数的单调区间用整体替换法求函数y =A sin(ωx +φ)或y =A cos(ωx +φ)的单调区间时,如果式子中x 的系数为负数,先利用诱导公式将x 的系数变为正数再求其单调区间.求单调区间时,需将最终结果写成区间形式.1.函数y =sin2x 的单调递减区间。
三角函数的正弦和余弦关系三角函数是数学中重要的概念之一,它在几何、物理、工程等领域中都具有广泛的应用。
其中,正弦函数和余弦函数是最常见和基础的三角函数,它们之间存在着紧密的关系。
一、正弦和余弦的定义和性质正弦函数和余弦函数是定义在单位圆上的函数。
在单位圆上,以原点为中心作一个半径为1的圆,对于任意一点P(x,y),该点到x轴的距离为x,到y轴的距离为y,这时角OPx的弧度就是点P的角度。
定义:对于单位圆上的任意一个点P(x, y),它的角度为θ,则点P的正弦和余弦值分别定义为:sinθ = ycosθ = x性质:1. 在单位圆上,正弦值的取值范围在[-1, 1]之间,而余弦值的取值范围也在[-1, 1]之间。
2. 当角θ为0或2π的整数倍时,正弦值为0,余弦值为1。
当角θ为π的奇数倍时,正弦值为-1,余弦值为0。
3. 对于任意的角θ,有sin^2θ + cos^2θ = 1,这一关系被称为三角恒等式。
二、正弦和余弦的图像特点正弦函数和余弦函数的图像是周期性的波形图,其周期为2π。
正弦函数的图像是一条上下振荡的曲线,而余弦函数的图像则是一条左右偏移的曲线。
1. 正弦函数图像特点:正弦函数图像在θ = 0, π, 2π 等处过零点,即sin(0) = 0, sin(π) = 0, sin(2π) = 0。
在θ = π/2, 3π/2 等处达到最大值1,即sin(π/2) = 1, sin(3π/2) = 1。
在θ = π, 2π 等处达到最小值-1,即sin(π) = -1, sin(2π) = -1。
2. 余弦函数图像特点:余弦函数图像在θ = 0, 2π 等处达到最大值1,即cos(0) = 1, cos(2π) = 1。
在θ = π/2, 3π/2 等处过零点,即cos(π/2) = 0, cos(3π/2) = 0。
在θ = π, 2π 等处达到最小值-1,即cos(π) = -1, cos(2π) = -1。
正弦余弦知识点总结一、正弦和余弦函数的定义1. 正弦函数的定义正弦函数是周期函数,它的周期是2π。
正弦函数的定义域是整个实数集,值域是区间[-1, 1]。
正弦函数的定义如下:y = sin(x) = A * sin(ωx + φ)其中,A 是振幅,ω 是角速度,φ 是初相位。
在一般情况下,A=1,ω=1,φ=0。
2. 余弦函数的定义余弦函数也是周期函数,它的周期也是2π。
余弦函数的定义域是整个实数集,值域是区间[-1, 1]。
余弦函数的定义如下:y = cos(x) = A * cos(ωx + φ)同样,A 是振幅,ω 是角速度,φ 是初相位。
在一般情况下,A=1,ω=1,φ=0。
二、正弦函数和余弦函数的性质1. 周期性正弦函数和余弦函数都是周期函数,它们的周期都是2π,即在一个周期内,函数值会重复出现。
2. 奇偶性正弦函数是奇函数,即sin(-x)=-sin(x),图像关于原点对称;余弦函数是偶函数,即cos(-x)=cos(x),图像关于y轴对称。
3. 极值正弦函数的最大值是 1,最小值是 -1;余弦函数的最大值是 1,最小值是 -1。
4. 函数图像正弦函数的图像是一条周期为2π的波浪线,而余弦函数的图像也是一条周期为2π的波浪线,但相位不同,形状相似但位置不同。
三、正弦和余弦函数的图像特点1. 正弦函数的图像正弦函数的图像是一条周期为2π的波浪线,在区间[0, 2π]上,它的图像从原点开始,向右上方偏移,并不断震荡上下,形成波浪状的曲线。
2. 余弦函数的图像余弦函数的图像也是一条周期为2π的波浪线,但它的图像在区间[0, 2π]上,从最大值1开始,并向下偏移,然后不断震荡上下,形成波浪状的曲线。
四、正弦和余弦函数的导数和积分1. 正弦函数的导数和积分正弦函数的导数是余弦函数,即(sin(x))' = cos(x);正弦函数的积分是-余弦函数,即∫sin(x)dx=-cos(x)。
正弦函数余弦函数的性质(单调性)正弦函数和余弦函数是高中数学中的重要概念,它们在数学和物理中都有着广泛的应用。
在学习正弦函数和余弦函数时,了解它们的性质是非常重要的。
单调性是其中一条重要的性质。
在本文中,我们将重点介绍正弦函数和余弦函数的单调性,帮助读者更好地理解这两个函数。
让我们先来了解一下正弦函数和余弦函数的定义。
正弦函数和余弦函数都是周期函数,其定义域是实数集,值域是[-1,1]。
正弦函数的定义如下:\[ y = \sin(x) \]而余弦函数的定义如下:\[ y = \cos(x) \]接下来,让我们来探讨正弦函数和余弦函数的单调性。
我们来看正弦函数的单调性。
正弦函数的图像是一条波浪线,其周期为2π。
从图像上可以直观地看出,正弦函数在0到2π的区间上是单调递增的。
在0到π之间,正弦函数的值是逐渐增大的,而在π到2π之间,正弦函数的值是逐渐减小的。
我们正弦函数在0到2π的区间上是单调的。
根据正弦函数的奇函数的性质,我们可以推断出,正弦函数在整个定义域上都是奇函数,即在任何一个对称的区间上,正弦函数都是单调的。
除了图像直观地展示了正弦函数和余弦函数的单调性之外,我们还可以通过导数来证明它们的单调性。
我们知道,函数的导数可以表示函数的增减性。
通过计算正弦函数和余弦函数的导数,我们可以得出它们的单调性。
通过以上的探讨,我们可以得出结论:正弦函数和余弦函数在其定义域上都是单调的。
这是它们的一个重要性质,对于学习和应用这两个函数都有着重要的意义。
在物理学中,正弦函数和余弦函数经常用于描述周期性变化。
在机械振动学中,正弦函数和余弦函数分别可以描述弹簧振子和单摆的运动规律。
在电磁学中,正弦函数和余弦函数也可以用来描述电流和电压的变化规律。
在工程技术中,正弦函数和余弦函数也有着广泛的应用,比如在通信领域中的信号处理和调制解调领域。
正弦函数和余弦函数的性质
1 正弦函数及其性质
正弦函数也称曲线函数,是坐标系中把角度和弧度的定义用一般的数学形式来表示的函数。
正弦函数的视觉影响可以归结为一条垂直于极轴的曲线。
正弦函数的特征有:
1. 正弦函数是一个周期函数,它的周期是2π,也就是说,它在每个2π的区间里会重复出现相同的函数形式。
2. 正弦函数具有范围称属性,它的值始终在-1和1之间,也就是它以0为中心围绕-1和1旋转2π。
3. 正弦函数具有导数特性,它的导数与其幅值成反比关系,公式为(d/dx)*sin(x)=cos(x)。
2 余弦函数及其性质
余弦函数是正弦函数的镜面对称函数,它以直角坐标系中的水平轴(y轴)为镜面中心反射得到的。
正弦函数和余弦函数有以下相同的性质:
1. 都是周期函数,周期性问题都是2π,且在每个2π的区间里重复出现函数形式相同的函数形式。
2. 都具有范围称属性,它们的值始终在 -1 和 1 之间。
3. 具有导数特性,余弦函数的导数与它的幅值成反比关系,公式为(d/dx)*cos(x)=-sin(x)。
就正弦函数和余弦函数的性质而言,它们都有着类似的特征,这突出了它们是一种互补的函数关系。
正弦函数和余弦函数具有极大的应用性,广泛应用于力学,信号处理,通信等领域。
正弦函数余弦函数的性质正弦函数、余弦函数的性质(1)知识点包括周期性、正、余弦函数的奇偶性、求函数周期的三种方法、利用定义判断函数奇偶性的三个步骤、三角函数周期性与奇偶性的解题策略、探究函数y=a sin(ωx+φ)及y=a cos(ωx+φ)的周期公式、函数的奇偶性与对称性的拓展等部分,有关正弦函数、余弦函数的性质(1)的详情如下:周期性(1)对于函数f(x),如果存在一个非零常数t,使得当x取定义域内的每一个值时,都有f(x+t)=f(x),那么函数f(x)就叫做周期函数,非零常数t叫做这个函数的周期.(2)如果在周期函数f(x)的所有周期中存在一个最小正数,那么这个最小正数叫做f(x)的最小正周期.(3)正弦函数y=sin x(x∈r)和余弦函数y=cos x(x∈r)都是周期函数,最小正周期为2π,2kπ(k∈z且k≠0)是它们的周期.正、余弦函数的奇偶性正弦函数y=sin x(x∈r)是奇函数,图象关于原点对称;余弦函数y=cos x(x∈r)是偶函数,图象关于y轴对称.求函数周期的三种方法(1)定义法:紧扣周期函数的定义,寻求对任意实数x都满足f(x+t)=f(x)的非零常数t.该方法主要适用于抽象函数.(2)图象法:可画出函数的图象,借助于图象判断函数的周期,特别是对于含绝对值的函数一般可采用此法.(3)公式法:利用定义判断函数奇偶性的三个步骤三角函数周期性与奇偶性的解题策略(1)探求三角函数的周期,常用方法是公式法,即将函数化为y=a sin(ωx+φ)或y=a cos(ωx+φ)的形式,再利用公式求解.还可以用求周期.(2)判断函数y=a sin(ωx+φ)或y=a cos(ωx+φ)是否具备奇偶性,关键是看它能否通过诱导公式转化为y=a sin ωx或y=a cos ωx其中的一个.即y=a sin(ωx+φ),当φ=kπ时为奇函数,当φ=时,为偶函数.y=a cos(ωx+φ),当φ=时为奇函数,当φ=kπ时为偶函数.探究函数y=a sin(ωx+φ)及y=a cos(ωx+φ)的周期公式事实上,令z=ωx+φ,那么由x∈r得z∈r,且函数y=a sin z,z∈r及函数y=a cos z,z∈r的周期都是2π.因为z+2π=(ωx+φ)+2π=,所以,自变量x增加函数值就重复出现;并且增加量小于时,函数值不会重复出现.即t=是使等式a sin[ω(x+t)+φ]=a sin(ωx+φ),a cos[ω(x+t)+φ]=a cos(ωx+φ)成立的最小正数,从而,函数y=a sin(ωx+φ),x∈r及函数y=a cos(ωx+φ),x∈r的周期t=函数的奇偶性与对称性的拓展y=sin x,(x∈r)是奇函数,图象关于原点对称,结合周期性其对称中心为(kπ,0)(k∈z),也是轴对称图形,其对称轴为x=kπ+(k∈z).y=cos x也是如此,总结如下。