项目4 制作模拟温度控制器
- 格式:ppt
- 大小:4.99 MB
- 文档页数:64
目录第一章课程设计要求及电路说明 (3)1.1课程设计要求与技术指标 (3)1.2课程设计电路说明 (4)第二章课程设计及结果分析 (6)2.1课程设计思想 (6)2.2课程设计问题及解决办法 (6)2.3调试结果分析 (7)第三章课程设计方案特点及体会 (8)3.1 课程设计方案特点 (8)3.2 课程设计心得体会 (9)参考文献 (9)附录 (9)第一章课程设计要求及电路说明1.1课程设计要求与技术指标温度控制器的设计设计要求与技术指标:1、设计要求(1)设计一个温度控制器电路;(2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图;(3)撰写设计报告。
2、技术指标温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。
1.2课程设计电路说明1.2.1系统单元电路组成温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。
1.2.2设计电路说明主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块.显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。
报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。
温度传感器:主要由DS18B20芯片组成,用于温度的采集。
时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。
第二章课程设计及结果分析2.1课程设计2.1.1设计方案论证与比较显示电路方案方案一:采用数码管动态显示使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。
方案二:采用LCD液晶显示采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。
综合上述原因,采用方案一,使用数码管作为显示电路。
帮不帮温度控制器设计一、设计任务设计一个可以驱动1kW加热负载的水温控制器,具体要求如下:1、能够测量温度,温度用数字显示。
2、测量温度范围0〜100℃,测量精度为0.5℃。
3、能够设置水温控制温度,设定范围40〜90℃,且连续可调。
设置温度用数字显示。
4、水温控制精度W±2℃。
5、当超过设定的温度20℃时,产生声、光报警。
二、设计方案分析根据设计要求,该温度控制器是既可以测量温度也可以控制温度,其组成框图如图1所示。
图1温度控制器原理框图因为要求对温度进行测量显示,所以首先采用温度传感器,将温度变化转换成相应的电信号,并通过放大、滤波后送A/D转换器变成数字信号,然后进行译码显示。
若要求温度被控制在设定值附近,则要求将实际测量温度的信号与温度的设定僮基准电压)进行比较,根据比较结果(输出状态)来驱动执行机构,实现自动地控制、调节系统的温度。
测量的温度可以与另一个设定的温度上限比较器相比较,当温度超过上限温度值时,比较器产生报警信号输出。
1、温度检测及信号处理温度检测是温控系统的最关键部分,它只接影响整个系统的测量、控制精度。
目前检测温度的传感器很多,其测量范围、应用场合等也不尽相同。
例如热电偶温度传感器目前在工业生产和科学研究中已得到了广泛的应用,它是将温度信号转化成电动势。
目前热电偶温度传感器已形成系列化和标准化,主要优点是:它属于自发电型传感器,测量温度时可以不需要外加电源;结构简单,使用方便,热电偶的电极不受大小和形状的限制;测量温度范围广,高温热电偶测温高达1800 c以上,低温热电偶可测-260℃以下,目前主要用在高温测量工业生产现场中。
热电阻温度传感器是利用电阻值随温度升高而增大这一特性来测量温度的,目前应用较为广泛的热材料是铜和铂。
在铜电阻和伯电阻中,伯电阻性能最好,非常适合测量-200〜+960℃范围内的温度。
国内统一设计的工业用伯电阻常用的分度号有Pt25、Pt100 等,Pt100即表示该电阻的阻值在0c时为100Q。
室内温度控制器的制作方法室内温度控制器是一种用来调节和控制室内温度的设备。
通过使用室内温度控制器,我们可以实现室内温度的自动调节,提高室内舒适度,节约能源。
下面我将介绍一种简单的室内温度控制器的制作方法。
制作室内温度控制器的第一步是收集所需材料和工具。
我们需要一个温度传感器、一个温度控制模块、一个继电器、几根导线、一个电源、一个计时器和一个外壳。
工具方面,我们需要一个钳子、一把电钻和一把螺丝刀。
接下来,我们需要将温度传感器连接到温度控制模块上。
首先,使用螺丝刀将外壳打开,然后使用钳子将温度传感器的导线剥开一段。
将温度传感器的导线连接到温度控制模块上,确保连接稳固。
然后,我们需要将继电器连接到温度控制模块上。
使用钳子将继电器的导线剥开一段,然后将其连接到温度控制模块上。
接下来,使用电钻将继电器固定在外壳上,确保牢固不会松动。
接下来,将电源连接到温度控制模块上。
使用钳子将电源的导线剥开一段,然后将其连接到温度控制模块上。
确保连接正确,电源可靠。
最后,将计时器连接到温度控制模块上。
使用钳子将计时器的导线剥开一段,然后将其连接到温度控制模块上。
接下来,使用螺丝刀将计时器固定在外壳上,确保稳固。
经过以上步骤,我们成功制作了一个简单的室内温度控制器。
当室内温度超过设定的温度范围时,温度传感器将检测到这一变化并将信号传递给温度控制模块。
温度控制模块通过继电器控制空调或暖气设备的开启与关闭。
当温度达到设定范围内时,计时器将自动关闭设备,从而实现室内温度的自动调节。
需要注意的是,在制作室内温度控制器时,我们需要确保所有的电线连接正确,不要有任何短路或断路的情况发生。
另外,我们还需要注意选择合适的电源和适当的温度控制模块,以保证设备的稳定性和安全性。
总结起来,制作一个室内温度控制器并不复杂。
我们只需要收集所需材料和工具,然后按照上述步骤进行连接和固定即可。
通过室内温度控制器的使用,我们可以实现室内温度的自动调节,提高室内舒适度,节约能源。
6.4实施—制作过程6.4.1硬件设计温度测量采用最新的单线数字温度传感器DS18B20,DS18B20是美国DALLAS 半导体公司最新推出的一种改进型智能温度传感器。
与传统的热敏电阻相比,它能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
可以分别在93.75ms 和750ms 内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。
因而,使用DS18B20可使系统结构更趋简单,可靠性更高。
降温控制系统采用低压直流电风扇。
当温度高于设定最高限温度时,启动风扇降温,当温度降到指定最高限温度以下后,风扇自动停止运转。
温控系统的温度显示和温度的设定直接采用综合实训板上的显示和键盘。
当环境温度低于设定的最低限温度值时,也采用综合实训板上的蜂鸣器进行报警。
用0#、1#键作为温度最高限、最低限的设定功能键;2#、3#键作为温度值设定的增加和减小功能键。
0#键:作为最高限温度的设定功能键。
按一次进入最高限温度设定状态,选择最高限温度值后,再按一次确认设定完成。
1#键:作为最低限温度的设定功能键。
按一次进入最低限温度设定状态,选择最低限温度值后,再按一次确认设定完成。
2#键:+1功能键,每按一次将温度值加1,范围为1~99℃。
3#键:-1功能键,每按一次将温度值减1,范围为99~1℃。
6.4.2软件设计(1)温控系统采用模块化程序结构,可以分成以下程序模块:①系统初始化程序:首先完成变量的设定、中断入口的设定、堆栈、输入输出口及外部部件的初始化工作。
②主程序MAIN :完成键盘扫描、温度值采集及转换、温度值的显示。
当温度值高于设定最高限时,驱动风扇工作;当温度值低于设定最低限时,驱动蜂鸣器报警。
③键盘扫描程序KEYSCAN :完成键盘的扫描并根据确定的键值执行相应的功能,主要完成最高温度、最低温度的设定。
自制可调温度控制器(附原理图和源程序)2008年06月18日星期三 15:05自制可调温度控制器作者:温正伟原载:无线电杂志近期我发现很多DIY或是电子爱好的朋友们比较关注电子温度控制器制作的文章,前面我也发过一篇AT89C2051控制的简单温度计制作的文章,但是由于电路比较简易,而且没有调温功能.应部分朋友的要求我在此转载一篇温正伟在无线电杂志上发表过的一款可以方便调节、设定温度的控制器。
1.功能介绍笔者设计的这一款温度控制器是使用仍是比较常用的DS18B20集成温度传感器,还是用七段数码管做显示,完成温度采集与处理控制的CPU仍是AT89C2051单片机,但该电路具有电路简单,制作起来也无需调试,安装好后就可以使用等方便DIY的优点。
该电路最大的特点是用可以直观方便的调节所要限定的温度值,温度值是用3个7段共阳极数码管显示的,上电后会显示当前的温度值,按设定键时会闪烁显示设定温度值,这时可以按上/下调节键调整设定温度值,再次按下设定键时返回当前温度显示同时会对设定温度值进行保存,这个设定值会保存在DS18B20中,掉电后也不会丢失,下次上电时,单片机会自动读入上次的温度设定值。
长按设定键为关闭显示和温控,再次按下时功能再次打开。
电路中还设计了一路继电器控制,程序中设定超出设定温度时继电器被驱动吸合。
2.元器件背景及选用表一是元器件列表。
在这个电路中关键的两个元器件分别是单片机AT89C2051和温度传感传感芯片DS18B20。
AT89C2051具有2K的可多次擦写的FLASH存储器,有15个I/O口,用于做一些小型的控制显示和数据采集系统是很好的选择,本制作中2051单片机除要完成数据采集、处理、控制和显示的任务外,还要完按键值的采集、处理。
如果要用常规的数字加模拟电路实现起来就相对困难多了。
DS18B20是DALLAS半导体公司(现属MAXIM公司)设计生产的单总线数字温度传感器,单总线也就是说只用一根I/O引线完成数据的输入输出功能,所以它的体积很小,而且电压适用范围在3-5.5V,封装形式除有SO/uSO 的8PIN贴片式,还有更方便的三极管形式的TO-92封装(封装形式和引脚说明请看图一)。
温度控制器实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验设备与材料 (2)3. 实验原理 (3)二、实验内容与步骤 (4)1. 实验内容 (5)1.1 温度控制器的基本操作 (6)1.2 温度控制器的参数设置与调整 (7)2. 实验步骤 (8)2.1 安装温度控制器 (9)2.2 校准温度计 (9)2.3 设置温度控制器参数 (11)2.4 观察并记录实验数据 (13)2.5 分析实验结果 (13)三、实验数据与结果分析 (14)1. 实验数据 (15)1.1 温度控制器的温度读数 (17)1.2 温度控制器的设定温度 (18)1.3 温度控制器的实际输出温度 (19)2. 结果分析 (19)2.1 温度控制器的性能评价 (20)2.2 温度控制器在不同条件下的适应性分析 (21)四、实验结论与建议 (22)1. 实验结论 (23)2. 实验建议 (24)一、实验概述本实验旨在通过设计和制作一个温度控制器,让学生了解温度控制器的基本原理、结构和工作原理,并掌握温度控制器的制作方法。
学生将能够熟练掌握温度控制器的设计、制作和调试过程,为今后从事相关领域的工作打下坚实的基础。
本实验的主要内容包括,在实验过程中,学生将通过理论学习和实际操作相结合,全面掌握温度控制器的相关知识和技能。
1. 实验目的本实验旨在探究温度控制器的性能及其在实际应用中的表现,通过一系列实验,了解温度控制器的控制原理、操作过程以及性能特点,验证其在实际环境中的温度控制精度和稳定性。
本实验也旨在培养实验者的实践能力和问题解决能力,为后续相关领域的深入研究和实践打下坚实的基础。
2. 实验设备与材料温度控制器:作为实验的核心设备,本实验选择了高精度数字式温度控制器,具备较高的稳定性和精确度,能够确保实验结果的可靠性。
恒温箱实验箱:为了模拟不同的环境温度,采用了具有温控功能的恒温箱或实验箱。
通过调节箱内的温度,可以观察温度控制器在不同环境下的表现。
温控器设计与调试一、实验目的1、掌握PN结温度特性及其应用2、提高对运算放大器的灵活运用能力。
3、加深理解D触发器在实际电路中的应用。
4、提高对电路综合布局的能力。
5、进一步提高对中小规模电路的搭接成功率、调试、故障分析及排除能力。
二、实验仪器及材料1、直流稳压电源(这里使用TAP-2A模电实验箱内的电源)2、数字万用表(DM-441B)3、万能实验板(这里使用TAP-2A模电实验箱内的面包板)4、温度计、电路所需的电子元器件(详见元件清单)三、预习要求1、上网查阅有关二极管PN结的温度特性资料。
2、复习同相运算放大器、差动运算放大器(加法运算放大器)的特性、放大倍数A v的计算。
3、复习D触发器的逻辑功能及用法。
4、复习74LS194移位寄存器的逻辑功能及用法。
5、上网查阅CD4051、CD4502、CD4503、CD4066等模拟电子开关的使用方法,并仿照模块4的控制原理,写出CD4502和CD4053完成三种电压值切换显示所需的时序控制代码,并用74LS161、LM358、CD4052(或者CD4053)设计一个温度显示切换控制电路。
四、实验原理、步骤及调试(一)电源模块设计与调试1、原理如图1-1所示,U101是一个比较精密的三端电压基准源器件,用它获得一个比较稳定的10V电压。
此电路的输出电压Vr由R102和R103共同决定,其计算公式Vr=(1+R103/R102)*2.5V,同时应注意R101限流电阻的选择应保证IAK(从TL431的K极流入,A极流出的电流)≥1mA。
U102是LM7805三端集成稳压电路,该三端稳压电路的封装不同其输出电流也有所不同,通常情况下TO-220封装的为1A,TO-92封装的为500mA。
其输入端和输出端的最小压差不能低于2V,最高输入电压极限为36V。
与LM78xx相对应的负电源稳压电路是LM79xx,后面的“xx”表示稳压值,前面的78表示正电源稳压,79表示负电源稳压。