2019-2020年高三数学一轮复习3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升第十三章计数原理第
- 格式:ppt
- 大小:3.30 MB
- 文档页数:37
考点 不等式选讲1.(2016·全国Ⅰ,24)已知函数f (x )=|x +1|-|2x -3|. (1)在图中画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.1.解(1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤ 32,-x +4,x >32,y =f (x )的图象如图所示.(2)当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x |x <13或x >5.所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x |x <13或1<x <3或x >5.2.(2016·全国Ⅲ,24)已知函数f (x )=|2x -a |+a . (1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 2.解 (1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a , 所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.① 当a ≤1时,①等价于1-a +a ≥3,无解.当a >1时,①等价于a -1+a ≥3,解得a ≥2. 所以a 的取值范围是[2,+∞).3.(2016·全国Ⅱ,24)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.3.(1)解 f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1,所以,-1<x ≤-12;当-12<x <12时,f (x )<2; 当x ≥12时,由f (x )<2得2x <2,解得x <1,所以,-12<x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明 由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,即(a +b )2<(1+ab )2,因此|a +b |<|1+ab |.4.(2015·重庆,16)若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =________. 4.4或-6 [由绝对值的性质知f (x )的最小值在x =-1或x =a 时取得,若f (-1)=2|-1-a |=5,a =32或a =-72,经检验均不合适;若f (a )=5,则|x +1|=5,a =4或a =-6,经检验合题意,因此a =4或a =-6.]5.(2015·陕西,24)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值; (2)求at +12+bt 的最大值.5.解(1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得a =-3,b =1.(2)-3t +12+t =34-t +t ≤[(3)2+12][(4-t )2+(t )2]=24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立,故(-3t +12+t )max =4.6.(2015·新课标全国Ⅰ,24)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 6.解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).7.(2015·新课标全国Ⅱ,24)设a 、b 、c 、d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.7.证明 (1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2.因此a +b >c +d . (2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd .由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd ,于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.8.(2014·广东,9)不等式|x -1|+|x +2|≥5的解集为________.8.{x |x ≤-3或x ≥2} [原不等式等价于⎩⎪⎨⎪⎧x ≥1,(x -1)+(x +2)≥5或⎩⎪⎨⎪⎧-2<x <1,-(x -1)+(x +2)≥5或⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)≥5, 解得x ≥2或x ≤-3.故原不等式的解集为{x |x ≤-3或x ≥2}.]9.(2014·湖南,13)若关于x 的不等式|ax -2|<3的解集为⎩⎨⎧⎭⎬⎫x |-53<x <13,则a =________.9.-3 [依题意,知a ≠0.|ax -2|<3⇔-3<ax -2<3⇔-1<ax <5,当a >0时,不等式的解集为⎝ ⎛⎭⎪⎫-1a ,5a ,从而有⎩⎪⎨⎪⎧5a =13,-1a =-53,此方程组无解.当a <0时,不等式的解集为⎝ ⎛⎭⎪⎫5a ,-1a ,从而有⎩⎪⎨⎪⎧5a =-53,-1a =13,解得a =-3.]10.(2014·重庆,16)若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是________.10.⎣⎢⎡⎦⎥⎤-1,12 [令f (x )=|2x -1|+|x +2|,易求得f (x )min =52,依题意得a 2+12a +2≤52⇔-1≤a ≤12.]11.(2014·新课标全国Ⅱ,24)设函数f (x )=|x +1a|+|x -a |(a >0).(1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.11.(1)证明 由a >0,有f (x )=|x +1a |+|x -a |≥|x +1a -(x -a )|=1a+a ≥2.所以f (x )≥2.(2)解 f (3)=|3+1a |+|3-a |.当a >3时,f (3)=a +1a ,由f (3)<5得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5得1+52<a ≤3.综上,a 的取值范围是⎝ ⎛⎭⎪⎫1+52,5+21212.(2014·天津,19)已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n qn -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A ; (2)设s ,t ∈A ,s =a 1+a 2q +…+a n qn -1,t =b 1+b 2q +…+b n qn -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .12.(1)解 当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3}.可得,A ={0,1,2,3,4,5,6,7}.(2)证明 由s ,t ∈A ,s =a 1+a 2q +…+a n qn -1,t =b 1+b 2q +…+b n qn -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q -1)+(q -1)q +…+(q -1)·q n -2-qn -1=(q -1)(1-q n -1)1-q-q n -1=-1<0.所以,s <t .。
第十四章 推理与证明1.(2016·新课标全国Ⅲ,4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( ) A.各月的平均最低气温都在0 ℃以上 B.七月的平均温差比一月的平均温差大 C.三月和十一月的平均最高气温基本相同 D.平均最高气温高于20 ℃的月份有5个1.解析 由题意知,平均最高气温高于20 ℃的六月,七月,八月,故选D. 答案 D2.(2016·浙江,8)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n+2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A.{S n }是等差数列B.{S 2n }是等差数列C.{d n }是等差数列D.{d 2n }是等差数列2.解析 S n 表示点A n 到对面直线的距离(设为h n )乘以|B n B n -1|长度一半,即S n =12h n |B n B n -1|,由题目中条件可知|B n B n -1|的长度为定值,过A 1作垂直得到初始距离h 1,那么A 1,A n 和两个垂足构成等腰梯形,则h n =h 1+|A 1A n |tan θ(其中θ为两条线所成的锐角,为定值), 从而S n =12(h 1+|A 1A n |tan θ)|B n B n +1|,S n +1=12(h 1+|A 1A n +1|)|B n B n +1|,则S n +1-S n =12|A n A n +1||B n B n +1|tan θ,都为定值,所以S n +1-S n 为定值,故选A.答案 A3.(2014·山东,4)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A.方程x 3+ax +b =0没有实根 B.方程x 3+ax +b =0至多有一个实根 C.方程x 3+ax +b =0至多有两个实根 D.程x 3+ax +b =0恰好有两个实根 3.解析 至少有一个实根的否定是没有实根,故做的假设是“方程x 3+ax +b =0没有实根”. 答案 A4.(2016·新课标全国Ⅱ,16)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.4.解析 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”. 答案 1和35.(2016·山东,12)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝⎛⎭⎪⎫sin 2π3-2=43×1×2;⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝⎛⎭⎪⎫sin 8π9-2=43×4×5; …照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝⎛⎭⎪⎫sin 2π2n +1-2+⎝⎛⎭⎪⎫sin 3π2n +1-2+…+⎝⎛⎭⎪⎫sin 2n π2n +1-2=________.5.解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.答案 43×n ×(n +1)6.(2015·陕西,16)观察下列等式 1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, …据此规律,第n 个等式可为________.6.解析 等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且由前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+ (12). 答案 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n7.(2014·福建,16)已知集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2;②b =2;③c ≠0有且只有一个正确,则100a +10b +c 等于________. 7.解析 可分下列三种情形:(1)若只有①正确,则a ≠2,b ≠2,c =0,所以a =b =1与集合元素的互异性相矛盾,所以只有①正确是不可能的;(2)若只有②正确,则b =2,a =2,c =0,这与集合元素的互异性相矛盾,所以只有②正确是不可能的;(3)若只有③正确,则c ≠0,a =2,b ≠2,所以b =0,c =1,所以100a +10b +c =100×2+10×0+1=201. 答案2018.(2014·课标Ⅰ,14)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为________.8.解析 根据甲和丙的回答推测乙没去过B 城市,又知乙没去过C 城市,故乙去过A 城市. 答案 A9.(2016·浙江,20)设函数f (x )=x 3+11+x,x ∈[0,1], 证明:(1)f (x )≥1-x +x 2; (2)34<f (x )≤32. 9.证明 (1)因为1-x +x 2-x 3=1-(-x )41-(-x ) =1-x 41+x,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f (x )≥1-x +x 2. (2)由0≤x ≤1得x 3≤x , 故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32, 所以f (x )≤32.由(1)得f (x )≥1-x +x 2=221⎪⎭⎫ ⎝⎛-x +34≥34,又因为⎪⎭⎫ ⎝⎛21f =1924>34,所以f (x )>34.综上,34<f (x )≤32.10.(2015·四川,21)已知函数f (x )=-2x ln x +x 2-2ax +a 2,其中a >0. (1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解. 综上,34<f (x )≤32.10.解 (1)由已知,函数f (x )的定义域为(0,+∞),g (x )=f ′(x )=2(x -1-ln x -a ),所以g ′(x )=2-2x =2(x -1)x,当x ∈(0,1)时,g ′(x )<0,g (x )单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )单调递增.(2)由f ′(x )=2(x -1-ln x -a )=0,解得a =x -1-ln x ,令φ(x )=-2x ln x +x 2-2x (x -1-ln x )+(x -1-ln x )2=(1+ln x )2-2x ln x , 则φ(1)=1>0,φ(e)=2(2-e)<0, 于是,存在x 0∈(1,e),使得φ(x 0)=0,令a 0=x 0-1-ln x 0=u (x 0),其中u (x )=x -1-ln x (x ≥1), 由u ′(x )=1-1x≥0知,函数u (x )在区间(1,+∞)上单调递增,故0=u (1)<a 0=u (x 0)<u (e)=e -2<1, 即a 0∈(0,1),当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0, 再由(1)知,f ′(x )在区间(1,+∞)上单调递增,当x ∈(1,x 0)时,f ′(x )<0, 从而f (x )>f (x 0)=0;当x ∈(x 0,+∞)时,f ′(x )>0, 从而f (x )>f (x 0)=0;又当x ∈(0,1]时,f (x )=(x -a 0)2-2x ln x >0, 故x ∈(0,+∞)时,f (x )≥0,综上所述,存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.11.(2015·江苏,20)设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由;(3)是否存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k 3,a n +3k4依次构成等比数列?并说明理由. 11.(1)证明 因为2a n +12a n =2a n +1-a n =2d (n =1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,2a 4依次构成等比数列,(2)令a 1+d =a ,则a 1,a 2,a 3,a 4分别为a -d ,a ,a +d ,a +2d (a >d ,a >-2d ,d ≠0). 假设存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列, 则a 4=(a -d )(a +d )3,且(a +d )6=a 2(a +2d )4.令t =d a ,则1=(1-t )(1+t )3,且(1+t )6=(1+2t )4⎝ ⎛⎭⎪⎫-12<t <1,t ≠0,化简得t 3+2t 2-2=0(*),且t 2=t +1.将t 2=t +1代入(*)式,t (t +1)+2(t +1)-2=t 2+3t =t +1+3t =4t +1=0, 则t =-14,显然t =-14不是上面方程的解,矛盾,所以假设不成立.因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列.(3)解 假设存在a 1,d 及正整数n ,k ,使得a n1,a n +k2,a n +2k3,a n +3k4依次构成等比数列, 则a n1(a 1+2d )n +2k=(a 1+d )2(n +k ),且(a 1+d )n +k (a 1+3d )n +3k=(a 1+2d )2(n +2k ).分别在两个等式的两边同除以a 2(n +k )1及a 2(n +2k )1,并令t =d a 1⎝ ⎛⎭⎪⎫t >-13,t ≠0,则(1+2t )n +2k=(1+t )2(n +k ),且(1+t )n +k(1+3t )n +3k=(1+2t )2(n +2k ).将上述两个等式两边取对数,得(n +2k )ln(1+2t )=2(n +k )ln(1+t ), 且(n +k )ln(1+t )+(n +3k )ln(1+3t )=2(n +2k )ln(1+2t ). 化简得2k [ln(1+2t )-ln(1+t )]=n [2ln(1+t )-ln(1+2t )], 且3k [ln(1+3t )-ln(1+t )]=n [3ln(1+t )-ln(1+3t )].再将这两式相除,化简得ln(1+3t )ln(1+2t )+3ln(1+2t )ln(1+t )=4ln(1+3t )ln(1+t )(**).令g (t )=4ln(1+3t )ln(1+t )-ln(1+3t )ln(1+2t )-3ln(1+2t )ln(1+t ), 则g ′(t )=2[(1+3t )2ln (1+3t )-3(1+2t )2ln (1+2t )+3(1+t )2ln (1+t )](1+t )(1+2t )(1+3t ).令φ(t )=(1+3t )2ln(1+3t )-3(1+2t )2ln(1+2t )+3(1+t )2ln(1+t ), 则φ′(t )=6[(1+3t )ln(1+3t )-2(1+2t )ln(1+2t )+(1+t )ln(1+t )]. 令φ1(t )=φ′(t ),则φ1′(t )=6[3ln(1+3t )-4ln(1+2t )+ln(1+t )]. 令φ2(t )=φ1′(t ),则φ2′(t )=12(1+t )(1+2t )(1+3t )>0.由g (0)=φ(0)=φ1(0)=φ2(0)=0,φ′2(t )>0,知φ2(t ),φ1(t ),φ(t ),g (t )在⎪⎭⎫ ⎝⎛-0,31和(0,+∞)上均单调. 故g (t )只有唯一零点t =0,即方程(**)只有唯一解t =0,故假设不成立. 所以不存在a 1,d 及正整数n ,k ,使得a n1,a n +k 2,a n +2k 3,a n +3k4依次构成等比数列.12.(2014·天津,20)已知q 和n 均为给定的大于1的自然数,设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A ; (2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n qn -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .12.(1)解 当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3}.可得A ={0,1,2,3,4,5,6,7}. (2)证明 由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )qn -1≤(q -1)+(q -1)q +…+ (q -1)qn -2-qn -1=(q -1)(1-q n -1)1-q-q n -1=-1<0.所以s <t .。
考点 坐标系与参数方程1.(2014·安徽,4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( ) A.14 B.214 C. 2 D.2 2 1.D [由⎩⎪⎨⎪⎧x =t +1,y =t -3消去t 得x -y -4=0,C :ρ=4cos θ⇒ρ2=4ρcos θ,∴C :x 2+y 2=4x ,即(x -2)2+y 2=4,∴C (2,0),r =2.∴点C 到直线l 的距离d =|2-0-4|2=2,∴所求弦长=2r 2-d 2=2 2.故选D.]2.(2014·北京,3)曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上 2.B [曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的普通方程为(x +1)2+(y -2)2=1,该曲线为圆,圆心(-1,2)为曲线的对称中心,其在直线y =-2x 上,故选B.]3.(2014·江西,11(2))若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π43.A [∵⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴y =1-x 化为极坐标方程为ρcos θ+ρsin θ=1,即ρ=1cos θ+sin θ.∵0≤x ≤1,∴线段在第一象限内(含端点),∴0≤θ≤π2.故选A.]4.(2016·北京,11)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,则|AB |=________.4.2 [直线的直角坐标方程为x -3y -1=0,圆的直角坐标方程为x 2+y 2=2x ,即(x -1)2+y 2=1.圆心坐标为(1,0),半径r =1.点(1,0)在直线x -3y -1=0上,所以|AB |=2r =2.]5.(2016·全国Ⅰ,23)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .5.解(1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆. 将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1.6.(2016·全国Ⅱ,23)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A 、B 两点,|AB |=10,求l的斜率.6.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153.7.(2016·全国Ⅲ,23)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标系方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 7.解 (1)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12.8.(2015·广东,14)已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎪⎫θ-π4=2,点A 的极坐标为A ⎝⎛⎭⎪⎫22,7π4,则点A 到直线l 的距离为________. 8.522 [依题已知直线l :2ρsin ⎝ ⎛⎭⎪⎫θ-π4=2和点A ⎝⎛⎭⎪⎫22,7π4可化为l :x -y +1=0和A (2,-2),所以点A 到直线l 的距离为d =|2-(-2)+1|12+(-1)2=522.]9.(2015·北京,11)在极坐标系中,点⎝⎛⎭⎪⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离为________.9.1 [在平面直角坐标系下,点⎝⎛⎭⎪⎫2,π3化为(1,3),直线方程为:x +3y =6,∴点(1,3)到直线的距离为d =|1+3×3-6|2=|-2|2=1.]10.(2015·安徽,12)在极坐标系中,圆ρ=8sin θ上的点到直线θ=π3(ρ∈R )距离的最大值是________.10.6 [由ρ=8sin θ得x 2+y 2=8y ,即x 2+(y -4)2=16,由θ=π3得y =3x ,即3x-y =0,∴圆心(0,4)到直线y =3x 的距离为2,圆ρ=8sin θ上的点到直线θ=π3的最大距离为4+2=6.]11.(2015·重庆,15)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.11.(2,π) [直线l 的直角坐标方程为y =x +2,由ρ2cos 2θ=4得ρ2(cos 2θ-sin 2θ)=4,直角坐标方程为x 2-y 2=4,把y =x +2代入双曲线方程解得x =-2,因此交点为(-2,0),其极坐标为(2,π).]12.(2015·江苏,21)已知圆C 的极坐标方程为ρ2+22ρsin ⎝ ⎛⎭⎪⎫θ-π4-4=0,求圆C 的半径.12.解 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝⎛⎭⎪⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0.则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0,即(x -1)2+(y +1)2=6,所以圆C 的半径为 6.13.(2015·新课标全国Ⅰ,23)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.13.解 (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 为等腰直角三角形,所以△C 2MN 的面积为12.14.(2015·福建,21(2))在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =1+3cos t ,y =-2+3sin t (t 为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m (m ∈R ).①求圆C 的普通方程及直线l 的直角坐标方程; ②设圆心C 到直线l 的距离等于2,求m 的值.14.解 ①消去参数t ,得到圆C 的普通方程为(x -1)2+(y +2)2=9. 由2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m ,得ρsin θ-ρcos θ-m =0.所以直线l 的直角坐标方程为x -y +m =0.②依题意,圆心C 到直线l 的距离等于2,即|1-(-2)+m |2=2,解得m =-3±2 2.15.(2015·湖南,16Ⅱ)已知直线l :⎩⎪⎨⎪⎧x =5+32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 15.解 (1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.② (2)将⎩⎪⎨⎪⎧x =5+32t ,y =3+12t代入②式,得t 2+53t +18=0.设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知,|MA |·|MB |=|t 1t 2|=18.16.(2014·湖北,16)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.则C 1与C 2交点的直角坐标为________.16.(3,1) [曲线C 1为射线y =33x (x ≥0).曲线C 2为圆x 2+y 2=4.设P 为C 1与C 2的交点,如图,作PQ 垂直x 轴于点Q .因为tan ∠POQ =33,所以∠POQ =30°,又∵OP =2,所以C 1与C 2的交点P 的直角坐标为(3,1).]17.(2014·重庆,15)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.17. 5 [直线l 的普通方程为y =x +1,曲线C 的直角坐标方程为y 2=4x ,故直线l 与曲线C 的交点坐标为(1,2).故该点的极径ρ=x 2+y 2= 5.]18.(2014·天津,13)在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,则a 的值为________.18.3 [圆的直角坐标方程为x 2+y 2=4y ,直线的直角坐标方程为y =a ,因为△AOB 为等边三角形,则A (±a3,a ),代入圆的方程得a 23+a 2=4a ,故a =3.]19.(2014·湖南,11)在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.19.2·ρcos ⎝ ⎛⎭⎪⎫θ+π4=1 [曲线C 的普通方程为(x -2)2+(y -1)2=1,由直线l 与曲线C相交所得的弦长|AB |=2知,AB 为圆的直径,故直线l 过圆心(2,1),注意到直线的倾斜角为π4,即斜率为1,从而直线l 的普通方程为y =x -1,从而其极坐标方程为ρsin θ=ρcos θ-1,即2·ρcos ⎝ ⎛⎭⎪⎫θ+π4=1.]20.(2014·广东,14)在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2交点的直角坐标为________.20.(1,1) [由ρsin 2θ=cos θ得ρ2sin 2θ=ρcos θ,其直角坐标方程为y 2=x ,ρsinθ=1的直角坐标方程为y =1,由⎩⎪⎨⎪⎧y 2=x ,y =1得C 1和C 2的交点为(1,1).]21.(2014·辽宁,23)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程. 21.解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1,由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos ty =2sin t(t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0解得:⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2. 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.22.(2014·江苏,21C)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.22.解 将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2.所以|AB |=|t 1-t 2|=8 2.。
2019-2020年高三一轮复习数学(理)考试题及答案一、 选择题(本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合{}{2|20,|A x x x B x x =->=<,则 ( )A.A∩B=∅B.A ∪B=RC.B ⊆AD.A ⊆B2. i 为虚数单位,则=+-2)11(ii ( ) A. 1- B. 1 C. i - D. i3.已知双曲线C :22221x y a b -=(0,0a b >>C 的渐近线方程为( )A.14y x =±B.13y x =± C.12y x =± D.y x =±5.以下四个命题中:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k 为40.②线性回归直线方程a x b yˆˆˆ+=恒过样本中心),(y x ③在某项测量中,测量结果ξ服从正态分布2(2,) (0)N σσ>.若ξ在(,1)-∞内取值的概率为0.1,则ξ在(2,3)内取值的概率为0.4 ; 其中真命题的个数为 ( )A .0B .1C .2D .36.某几何体的三视图如图所示,则该几何体的体积为 A .6 B .2 3 C .3 D .3 3 7.已知等比数列{}n a 的前n 项和为S n ,且132455,,24n nS a a a a a +=+=则 ( ) A .4n-1 B .4n-1C .2n-1 D .2n-18.同时具有性质“⑴ 最小正周期是π;⑵ 图象关于直线6x π=对称;⑶ 在[,]63ππ上是减函数”的一个函数可以是 A.5sin()212x y π=+ B.sin(2)3y x π=-C.2cos(2)3y x π=+D.sin(2)6y x π=+9.如图所示程序框图中,输出S = ( ) A. 45 B. 55- C. 66- D. 6610.已知函数2()f x x = 的图像在点11(,())A x f x 与点22(,())B x f x 处的切线互相垂直并交于一点P,则点P 的坐标可能为( ) A.3(,3)2-B.(0,4)- C (2,3) D . 1(1,)4- 11.在ABC ∆中,6A π=,3AB AC ==, D 在边BC 上,且2CD DB =,则AD =( )AC .5 D.12.已知函数()2log ,02sin(), 2104x x f x x x π⎧<<⎪=⎨≤≤⎪⎩,若存在实数1234,,,x x x x 满足()()()1234()f x f x f x f x ===,且1234x x x x <<<,则3412(1)(1)x x x x -⋅-⋅的取值范围是( ) A.(20,32) B.(9,21) C.(8,24) D.(15,25)第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = 。
第一章集合与常用逻辑用语考点1 集合1.(2016·新课标全国Ⅰ,1)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( )A.{1,3}B.{3,5}C.{5,7}D.{1,7}解析由A={1,3,5,7},B={x|2≤x≤5},得A∩B={3,5},故选B.答案 B2.(2016·新课标全国Ⅱ,1)已知集合A={1,2,3},B={x|x2<9},则A∩B=( )A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}解析由x2<9解得-3<x<3,∴B={x|-3<x<3},又因为A={1,2,3},所以A∩B={1,2},故选D.答案 D3.(2016·新课标全国Ⅲ,1)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=( )A.{4,8}B.{0,2, 6}C.{0,2,6,10}D.{0,2,4,6,8,10}解析A={0,2,4,6,8,10},B={4,8},∴∁AB={0,2,6,10}.答案 C4.(2016·北京,1)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=( )A.{x|2<x<5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x>5}解析A∩B={x|2<x<4}∩{x|x<3或x>5}={x|2<x<3}.答案 C5.(2016·四川,2)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是( )A.6B.5C.4D.3解析∵A={x|1≤x≤5},Z为整数集,则A∩Z={1,2,3,4,5}.答案 B6.(2016·山东,1)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=( )A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}解析∵A∪B={1,3,4,5},∴∁U(A∪B)={2,6},故选A.答案 A7.(2016·浙江,1)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=( )A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}解析∵∁U P={2,4,6},∴(∁U P)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.答案 C8.(2015·新课标全国Ⅰ,1)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5 B.4 C.3 D.2解析A={…,5,8,11,14,17,…},B={6,8,10,12,14},集合A∩B中有两个元素.答案 D9.(2015·陕西,1)设集合M={x|x2=x},N={x|lg x≤0},则M∪N= ( )A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]解析由题意得M={0,1},N=(0,1],故M∪N=[0,1],故选A.答案 A10.(2015·新课标全国Ⅱ,1)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=( )A.(-1,3) B.(-1,0)C.(0,2) D.(2,3)解析由A={x|-1<x<2},B={x|0<x<3},得A∪B={x|-1<x<2}∪{x|0<x<3}={x|-1<x<3}.故选A.答案 A11.(2015·北京,1)若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=( ) A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}解析由题意,得A∩B={x|-5<x<2}∩{x|-3<x<3}={x|-3<x<2}.答案 A12.(2015·天津,1)已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩∁UB=( )A.{3} B.{2,5}C.{1,4,6} D.{2,3,5}解析由题意知,∁U B={2,5},则A∩∁U B={2,3,5}∩{2,5}={2,5}.选B.答案 B13.(2015·重庆,1)已知集合A={1,2,3},B={1,3},则A∩B=( )A .{2}B .{1,2}C .{1,3}D .{1,2,3} 解析 A ∩B ={1,2,3}∩{1,3}={1,3}. 答案 C14.(2015·山东,1)已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B =( ) A .(1,3) B .(1,4) C .(2,3) D .(2,4) 解析 ∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}=(2,3). 答案 C15.(2015·广东,1)若集合M ={-1,1},N ={-2,1,0},则M ∩N =( ) A .{0,-1} B .{1} C .{0}D .{-1,1}解析 M ∩N ={-1,1}∩{-2,1,0}={1}. 答案 B16.(2015·福建,2)若集合M ={x |-2≤x <2},N ={0,1,2},则M ∩N 等于( ) A .{0} B .{1} C .{0,1,2}D .{0,1} 解析 M ={x |-2≤x <2},N ={0,1,2},则M ∩N ={0,1},故选D. 答案 D17.(2015·安徽,2)设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则A ∩(∁U B )=( ) A .{1,2,5,6} B .{1} C .{2}D .{1,2,3,4}解析 ∵∁U B ={1,5,6},∴A∩(∁U B)={1,2}∩{1,5,6}={1},故选B. 答案B18.(2015·浙江,1)已知集合P ={x |x 2-2x ≥3},Q ={x |2<x <4},则P ∩Q =( ) A .[3,4) B .(2,3] C .(-1,2)D .(-1,3]解析 P ={x |x ≥3或x ≤-1},Q ={x |2<x <4}.∴P ∩Q ={x |3≤x <4}.故选A. 答案 A19.(2015·湖北,10)已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A ⊕B ={( 1x +2x ,1y +2y )|(1x ,1y )∈A ,(2x 2y )∈B },则A ⊕B 中元素的个数为( )A .77B .49C .45D .30解析 如图,集合A 表示如图所示的所有圆点“”,集合B 表示如图所示的所有圆点“”+所有圆点“”,集合A⊕B显然是集合{(x,y)||x|≤3,|y|≤3,x,y∈Z}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A⊕B表示如图所示的所有圆点“”+所有“”圆点+所有圆点“”,共45个.故A⊕B中元素的个数为45.故选C.答案 C20.(2014·新课标全国Ⅰ,1)已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=( )A.(-2,1) B.(-1,1)C.(1,3) D.(-2,3)解析借助数轴可得M∩N=(-1,1),选B.答案 B21.(2014·湖南,2)已知集合A={x|x>2},B={x|1<x<3},则A∩B=( )A.{x|x>2} B.{x|x>1}C.{x|2<x<3} D.{x|1<x<3}解析由已知直接得,A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3},选C.答案 C22.(2014·湖北,1)已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=( ) A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析由题意知∁UA={2,4,7},选C.答案 C23.(2014·福建,1)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于( )A.{x|3≤x<4} B.{x|3<x<4}C.{x|2≤x<3} D.{x|2≤x≤3}解析因为P={x|2≤x<4},Q={x|x≥3},所以P∩Q={x|3≤x<4},故选A.答案 A24.(2014·山东,2)设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=( ) A.(0,2] B.(1,2) C.[1,2) D.(1,4)解析由题意得集合A=(0,2),集合B=[1,4],所以A∩B=[1,2).答案 C25.(2014·四川,1)已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=( ) A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}解析由二次函数y=(x+1)(x-2)的图象可以得到不等式(x+1)(x-2)≤0的解集A=[-1,2],属于A的整数只有-1,0,1,2,所以A∩B={-1,0,1,2},故选D.答案 D26.(2014·浙江,1)设集合S={x|x≥2},T={x|x≤5},则S∩T=( )A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5]解析S={x|x≥2},T={x|x≤5},∴S∩T=[2,5].答案 D27.(2015·湖南,11)已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=________.解析∁U B={2},∴A∪(∁U B)={1,3}∪{2}={1,2,3}.答案 {1,2,3}28.(2014·重庆,11)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=________. 解析A∩B={3,5,13}.答案 {3,5,13}考点2 命题及其关系、充要条件1.(2016·山东,6)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b 相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件1.解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.答案 A2.(2016·四川,5)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.解析当11x y>一定成立,即p qx y,时,+2>>⇒;当+2⇒,,,即q px yx y>时,可以=-1=4故p是q的充分不必要条件.答案 A3.(2016·浙江,6)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.解析 由题意知f (x )=x 2+bx =22⎪⎭⎫ ⎝⎛+b x -b 24,f (x )min =-b 24,令t =x 2+bx ≥-b 24,则f (f (x ))=f (t )=t 2+bt =22⎪⎭⎫ ⎝⎛+b t -b 24,当b <0时,f (f (x ))的最小值为-b 24,所以“b <0”能推出“f (f (x ))的最小值与f (x )的最小值相等”;当b =0时,f (f (x ))=x 4的最小值为0,f (x )的最小值也为0,所以“f (f (x ))的最小值与f (x )的最小值相等”不能推出“b <0”,选A. 答案 A4.(2015·山东,5)若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0 B .若方程x 2+x -m =0有实根,则m ≤0 C .若方程x 2+x -m =0没有实根,则m >0 D .若方程x 2+x -m =0没有实根,则m≤04.解析 原命题为“若p ,则q”,则其逆否命题为“若綈q ,则綈p”. ∴所求命题为“若方程x2+x -m =0没有实根,则m≤0”. 答案 D5.(2015·天津,4)设x ∈R ,则“1<x <2”是“|x -2|<1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件5.解析 由|x -2|<1得1<x <3,所以1<x <2⇒1<x <3;但1<x <31<x <2,故选A.答案 A .6.(2015·重庆,2)“x =1”是“x 2-2x +1=0”的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件D .既不充分也不必要条件6.解析 解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件. 答案 A7.(2015·福建,12)“对任意x ∈⎪⎭⎫⎝⎛2,0π,k sin x cos x <x ”是“k <1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7.解析 ∀x ∈⎪⎭⎫ ⎝⎛2,0π,k sin x cos x <x ⇔∀x ∈⎪⎭⎫⎝⎛2,0π,k <2x sin 2x , 令f(x)=2x -sin 2x.∴f′(x)=2-2cos 2x >0, ∴f(x)在⎪⎭⎫⎝⎛2,0π为增函数,∴f(x)>f(0)=0. ∴2x >sin 2x ,∴2xsin 2x >1,∴k≤1,故选B.答案 B8.(2015·安徽,3)设p :x <3,q :-1<x <3,则p 是q 成立的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件8.解析 ∵x<3-1<x<3,但-1<x<3⇒x<3,∴p 是q 的必要不充分条件,故选C.答案 C9.(2015·陕西,6)“sin α=cos α”是“cos 2α=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件9.解析 ∵sin α=cos α⇒cos 2α=cos2α-sin2α=0;cos 2α=0⇔cos α=±sin α sin α=cos α,故选A. 答案 A10.(2015·湖南,3)设x ∈R ,则“x >1”是“x 3>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10.解析 由x >1知,x 3>1;由x 3>1可推出x >1.故选C. 答案 C11.(2015·浙江,3)设a ,b 是实数,则“a +b >0”是“ab >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件11.解析 当a =3,b =-1时,a +b >0,但ab <0,故充分性不成立; 当a =-1,b =-2时,ab >0,而a +b <0.故必要性不成立.故选D. 答案 D12.(2014·陕西,8)原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( ) A .真,真,真 B .假,假,真 C .真,真,假D .假,假,假12.解析 从原命题的真假入手,由于a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列,即原命题和逆命题均为真命题,又原命题与逆否命题同真同假,逆命题与否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选A. 答案 A13.(2014·新课标全国Ⅱ,3)函数f (x )在x =x 0处导数存在.若p :f ′(0x )=0;q :x =0x 是f (x )的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件13.解析 设f (x )=x 3,f ′(0)=0,但是f (x )是单调增函数,在x =0处不存在极值, 故若p 则q 是一个假命题,由极值的定义可得若q 则p 是一个真命题.故选C. 答案 C14.(2014·北京,5)设a ,b 是实数,则“a >b ”是“a 2>b 2”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件14.解析 可采用特殊值法进行判断,令a =1,b =-1,满足a >b ,但不满足a 2>b 2, 即条件“a >b ”不能推出结论“a 2>b 2”;再令a =-1,b =0,满足a 2>b 2,但不满足a >b , 即结论“a 2>b 2”不能推出条件“a >b ”.故选D. 答案 D15.(2014·广东,7)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a≤b”是 “sin A≤sin B”的( ) A .充分必要条件 B .充分非必要条件 C .必要非充分条件 D .非充分非必要条件15.解析 由正弦定理,得a sin A =bsin B,故a≤b ⇔sin A≤sin B,选A. 答案 A16.(2015·四川,15)已知函数f (x )=2x,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设 m =()()2121x x x f x f --,n =()()2121x x x g x g --, 现有如下命题:①对于任意不相等的实数1x ,2x ,都有m >0;②对于任意的a 及任意不相等的实数1x ,2x ,都有n >0; ③对于任意的a ,存在不相等的实数1x ,2x ,使得m =n ; ④对于任意的a ,存在不相等的实数1x ,2x ,使得m =-n . 其中真命题有________(写出所有真命题的序号).16.解析 设A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 1,g (x 1)),D (x 2,g (x 2)), 对于①:从y =2x的图象可看出,m =k AB >0恒成立,故正确; 对于②:直线CD 的斜率可为负,即n <0,故不正确; 对于③:由m =n 得f (x 1)-f (x 2)=g (x 1)-g (x 2), 即f (x 1)-g (x 1)=f (x 2)-g (x 2), 令h (x )=f (x )-g (x )=2x-x 2-ax ,则h ′(x )=2x·ln 2-2x -a ,由h ′(x )=0,∴2x·ln 2=2x +a ,(*)结合图象知,当a 很小时,方程(*)无解,∴函数h (x )不一定有极值点,就不一定存在x 1,x 2使f (x 1)-g (x 1)=f (x 2)-g (x 2),不一定存在x 1,x 2使得m =n ;对于④:由m =-n ,得f (x 1)-f (x 2)=g (x 2)-g (x 1), 即f (x 1)+g (x 1)=f (x 2)+g (x 2),令F (x )=f (x )+g (x )=2x+x 2+ax ,则F ′(x )=2xln 2+2x +a ,由F ′(x )=0,得2xln 2=-2x -a ,结合如图所示图象可知,该方程有解, 即F (x )必有极值点,∴存在x 1,x 2使F (x 1)=F (x 2),得m =-n . 故①④正确. 答案 ①④考点3 简单的逻辑联结词、全称量词与存在量词1.(2015·湖北,3)命题“∃0x ∈(0,+∞),0ln x =-1”的否定是( ) A .∀x ∈(0,+∞),x ln ≠x-1 B .∀x ∉(0,+∞),x ln =x -1 C .∃x 0∈(0,+∞),0ln x ≠0x -1 D .∃x 0∉(0,+∞),0ln x =0x -11.解析 特称性命题的否定是全称性命题,且注意否定结论,故原命题的否定是:“∀x ∈(0,+∞),x ln ≠x-1”.故选A. 答案 A2.(2014·湖南,1)设命题p :∀x ∈R ,12+x >0,则⌝p 为( ) A .∃0x ∈R ,0x +1>0 B .∃0x ∈R ,x +1≤0C .∃x ∈R ,x +1<0D .∀x ∈R ,x +1≤02.解析 全称命题的否定,要对结论进行否定,同时要把全称量词换成存在量词,故命题p 的否定为“∃0x ∈R ,0x +1≤0”,故选B. 答案 B3.(2014·安徽,2)命题“∀x ∈R ,|x|+2x ≥0”的否定是( ) A .∀x ∈R ,|x|+2x <0 B .∀x ∈R ,|x|+2x ≤0 C .∃0x ∈R ,|0x |+0x <0 D .∃0x ∈R ,|0x |+0x ≥03.解析 命题的否定是否定结论,同时把量词作对应改变,故命题“∀x ∈R ,|x|+x 2≥0”的否定为“∃x 0∈R ,|x 0|+x 0<0”,故选C. 答案 C4.(2014·湖北,3)命题“∀x ∈R ,2x ≠x”的否定是( )A .∀x ∉R ,2x ≠xB .∀x ∈R ,2x =xC .∃x ∉R ,2x ≠xD .∃x ∈R ,2x =x 4. 全称命题的否定是特称命题:∃x ∈R ,x 2=x ,故选D. 答案 D5.(2014·福建,5)命题“∀x ∈[0,+∞),3x +x≥0”的否定是( ) A .∀x ∈(-∞,0),3x +x <0 B .∀x ∈(-∞,0),3x +x≥0 C .∃x 0∈[0,+∞),x 0+x0<0 D .∃x 0∈[0,+∞),x 0+x 0≥05.解析 把全称量词“∀”改为存在量词“∃”,并把结论加以否定,故选C. 答案 C6.(2014·天津,3)已知命题p :∀x >0,总有(x +1)e x>1,则⌝p 为( )A .∃x0 ≤0,使得(x0+1)0e x ≤1 B .∃x0 >0,使得(x0+1)0e x ≤1C .∀x >0,总有(x +1)ex≤1D .∀x≤0,总有(x +1)ex≤1文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.6.解析全称命题的否定是特称命题,所以命题p:∀x>0,总有(x+1)e x>1的否定是綈p:∃x0>0,使得(x0+1)e x0≤1.答案 B7.(2014·重庆,6)已知命题p:对任意x∈R,总有|x|≥0;命题q:x=1是方程x+2=0的根.则下列命题为真命题的是( )A.p∧⌝q B.⌝p∧q C.⌝p∧⌝q D.p∧q7.解析命题p为真命题,命题q为假命题,所以命题⌝q为真命题,所以p∧⌝q为真命题,选A.答案 A8.(2014·辽宁,5)设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是( )A.p∨q B.p∧q C.(⌝p)∧(⌝q) D.p∨(⌝q)8.解析对于命题p:因为a·b=0,b·c=0,所以a,b与b,c的夹角都为90°,但a,c的夹角可以为0°或180°,故a·c≠0,所以命题p是假命题;对于命题q:a∥b,b∥c 说明a,b与b,c都共线,可以得到a,c的方向相同或相反,故a∥c,所以命题q是真命题.选项A中,p∨q是真命题,故A正确;选项B中,p∧q是假命题,故B错误;选项C中,⌝p是真命题,⌝q是假命题,所以(⌝p)∧(⌝q)是假命题,所以C错误;选项D中,p∨(⌝q)是假命题,所以D错误.故选A.答案 A11文档收集于互联网,已整理,word版本可编辑.。
2019-2020年高三第一轮高考复习阶段性过关测试(三)数学(理)试卷含答案一、选择题(每小题5分,共60分)1.设集合A={x||x-1|<2},B={y|y=2x,x∈},则A∩B=( )A.B.(1,3) C.,都有f(x1)≥g(x2)成立,则实数a的取值范围为________.武威六中第一轮高考复习阶段性过关测试卷(三)数学(理)答题卡一.选择题:(本大题共12小题,每小题5分,共60分。
每题只有一个正确答案,将正确答案的序号涂在答题卡上.)二、填空题:(本大题共4小题,每小题5分,共20分) 13. 14. 15. 16. 三、 解答题(共70分)17.(本小题满分10分)已知命题p :1<2x <8;命题q :不等式x 2-mx +4≥0恒成立,若¬p 是¬q 的必要条件,求实数m 的取值范围.18.(本小题满分12分)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B .(1)求a 的值;(2)求sin ⎝ ⎛⎭⎪⎫A +π4的值.19.(本小题满分12分)知函数2))(1()(xa x x x f ++=为偶函数. (Ⅰ)求实数a 的值;(Ⅱ)记集合{(),{1,1,2}}E y y f x x ==∈-,21lg 2lg 2lg5lg54λ=++-,判断λ与E 的关系; (Ⅲ)当x ∈]1,1[nm ()0,0>>n m 时,若函数()f x 的值域为]32,32[n m --,求n m ,的值.20.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围.21.(本小题满分12分)已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图像过点⎝ ⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图像向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图像,若y =g (x )图像上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.22.(本小题满分12分)设函数f (x )=ln x +m x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值范围.。