七主梁截面承载力与应力验算
- 格式:doc
- 大小:380.50 KB
- 文档页数:19
采用MIDAS软件分析碳纤维加固钢筋混凝土梁?采用MIDAS软件分析碳纤维加固钢筋混凝土梁奉江,肖光辉(四川南充水利电力建筑勘察设计研究院,四川南充637000)【摘要】结合”5?12”兰成渝输油管道龙潭河桥的震后的检测与加固工程,应用桥梁结构有限元分析软件MIDAS,建立有限元分析模型,对该桥进行了粘贴碳纤维布加固设计模拟分析,从而提出了加固设计方案.为今后类似桥梁加固的研究与设计提供了有益经验.【关键词】桥梁加固;碳纤维布;抗弯极限承载力;有限元【中图分类号】TU746.3我国自20世纪80年代起开始,公路建设事业步入了高速发展时期,建设了大量各类桥梁,目前公路桥梁总数已突破57×10座,成为仅次于美国的世界第二桥梁大国.在我国目前的众多桥梁中,因构件老化,实际荷载提高,环境腐蚀及洪水,地震等各种原因,结构构件出现损伤,承载能力降低的旧危桥占相当比例.这些桥梁迫切需要进行桥梁检测,维修加固,才能够适应最新荷载,继续提供通行能力¨J.按旧标准设计建造的桥梁,设计荷载标准偏低,桥面宽度狭窄.随着服役时间推移和交通运输事业的持续蓬勃发展,面临的桥梁养护管理工作任务也日趋艰巨,客观上对桥梁检测,评价,维修加固和养护管理等技术提出了更高的要求.近年来,桥梁加固越来越受到全球的高度重视,被提到刻不容缓的议事日程上来.桥梁建设的重点已经从新桥建设转移到旧桥的加固和改造方面.根据旧危桥的结构体系,病害状况,桥梁环境等综合条件的不同,桥梁的加固方法有多种选择.和配筋加固法,体外预应力加固法,粘贴钢板(筋)按结构和施工方法的不同, 目前国内外主要采用的加固方法有7种:桥面补强层加固法,增大截面加固法,改变结构受力体系加固法,锚喷混凝土加固法,增设构件加固法,增加辅助横梁加固法,粘贴碳纤维布(板)加固法.对于一座旧危桥梁的加固设计应经过系统,反复的设计方案比选来选取在经济,效果,工期,美观等综合指标较高的加固设计.在各加固方法中,碳纤维材料由于其良好的物理,化学性质和工程应用性能,具有巨大的应用前景.1龙潭河桥震害表现龙潭河桥位于甘肃省康县阳坝镇附近,竣工于2000年,是一座3×20m钢筋混凝土简支T梁桥,桥宽8.5m,桥面连续,桥梁全长75m.T梁梁高1.3m,单跨共5片.下部为钢筋混凝土双圆柱式墩,扩大式桥墩基础,重力式U型台.设计荷载为汽一2O,挂一100.桥位处于地震基本烈度Ⅶ度区, 桥头,桥位分别指向广坪,阳坝.桥型图见图1,桥面横向布置图见图2.2008年”5?12”汶川大地震中,龙潭河桥受到严重损【文献标识码】B伤,震后第一时间对其进行了检测与评估.检测工作内容主要包括:超声回弹法综合法探测构件混凝土强度,裂缝检测,桥梁各部位几何测量,构件及联结部位损伤等….检测与评估综合结论:受地震作用影响,桥跨结构梁体出现开裂和裂缝发展,对桥梁承载力产生不利影响;经分析计算,梁体实际极限抗弯承载力为2033kN?m,而在原设计荷载汽一20,挂一100作用下,梁体需达到的极限抗弯承载力为2240kN?m,即该桥已不能满足原设计承载要求.图1龙潭河桥桥型图图2龙潭河桥桥面横向布置图(单位:em)2粘贴碳纤维布加固估算2.1桥梁荷栽标准该桥设计,建造于2000年前,原设计”汽一20,挂一t00”桥梁荷载现已废止,荷载标准可相当于《公路桥涵通用设计规范》(JTGD60—2004)中的公路一Ⅱ级[23,由《公路桥涵通[定稿日期]2011—03—25[作者简介]奉江(1970~),男,工程师,长期从事工业与民用建筑建筑,结构设计工作.四JIl建筑第31卷5期2011.10l8l用设计规范》,本桥对应的荷载标准值为:q=7.875kN/m, Pk:240kN.2.2原桥主梁结构设计计算基本参数T梁梁肋宽度:b=180mm;T梁截面高度:h=1300mm;T梁截面如图3.2.3原设计材料参数受拉钢筋:8根,直径为32him,受拉筋抗拉强度设计值fd=280.00N/mm;受拉钢筋面积A=6432mln;受拉钢筋合力点至截面近边缘的距离n=114mm;受压钢筋面积为0;受压钢筋合力点至截面近边缘的距离.:取为4o.00ITlm.混凝土:强度等级为C30,轴心抗压强度设计值f=13.8N/ram;轴心抗拉强度标准值f【k=2.01N/mm;轴心抗拉强度设计值.:1.39N/ram.圈3龙潭河桥主梁几何尺寸2.4碳纤维材料及粘贴专用胶采用13本东丽碳素纤维制造公司生产的UT70—30型号碳纤维布的力学性能指标作为计算参考.设计厚度0.167 mill;弹性模量Ef≥2.01X10’MPa;极限抗拉强度ff≥3000.00MPa.按T梁腹板底粘贴2层进行试算J.2.5粘贴碳纤维加固面积估算梁底碳纤维片材的截面面积A=60.12mm;考虑二次受力,加固前计算截面上实际作用的初始弯矩M=852 kN?m.该弯矩由加固前桥跨结构本身恒载引起.加固前构件在初始弯矩作用下,截面受拉边缘混凝土的初始应变8:0.0002;考虑二次受力影响,混凝土小于C50,s=0.00033.求解得:8f=0.047,=68mm;≤o=8O Inn,加固后极限抗弯承载力M=2413kN-m,估算满足原设计要求.3龙谭河桥碳纤维抗弯加固的有限元模拟计算分析MIDAS是一种三维空间有限元分析软件,通过三维建模分析,可以不用像二维程序那样计算横向分布系数,建模及后处理更加直观.通过在有限元库中加入各种非线性因素, 结合施工阶段,时间依存性,集合非线性等结构分析理论,能够计算出准确和切合实际的分析结果.MIDAS与其他有限182元分析软件一样,主要包含前处理(PreprocessingMode),求解器(Solver)和后处理(Post—processingMode)三个基本模块.建模过程中的输入工作均在前处理模式完成,而荷载组合,反力,位移,构件内力,应力等分析结果的查看和整理工作则都在后处理模式中进行.后处理模式中对分析结果提供图形和文本两种形式,以便可以对所有结果进行分析和验算.在本文的碳纤维有限元模拟中,采用MIDAS提供的平面应力单元(PlaneStressElement)来模拟,碳纤维的力学特性参数如厚度,宽度,弹性模量,剪切模量,抗拉强度及泊松比等可以在”材料”及”单元建立”选项中自行设置J.本文中选取4节点单元进行模拟.单元的自由度是以单元直角坐标系为依据,每个节点只具有x.y方向的线位移自由度.3.1T梁建模本桥为简支桥梁体系,采用T梁格法建立整桥单跨主梁分析模型.该方法的基本原理:用等效梁格代替桥梁上部结构,将分散在T梁每一区段内的弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格构件内,横向刚度集中于横向梁格内.理想的刚度等效原则是:当原型实际结构和对应的等效梁格承受相同的荷载时, 两者的挠曲将是恒等的,并且每一梁格内的弯矩,剪力和扭矩等于该梁格所代表的实际结构部分的内力.由于实际结构和梁格体系在结构特性上的差异,这种等效只是近似的,但对一般的设计,粱格法的计算精度是足够的J.整桥单跨主粱T梁格法模型如图4.因模型在三维空间中建立,不需像二维模型那样计算横向分布系数.图4龙潭河桥单跨主粱MIDAS模型3.2碳纤维的模拟用平面应力单元单元来模拟T梁底粘贴的碳纤维布,通过自定义材料及截面功能输人加固设计所采用的碳纤维布的材料性能参数.通过设置节点间的边界条件来模拟碳纤维布与主梁钢筋混凝土的粘接.选用弹性连接选项中的刚性连接方式,将相应位置的碳纤维布单元节点与T梁节点相连接,来达到协调变形与位移,防止粘接失效与滑移破坏,如图5所示.图5碳纤维布单元节点与主梁节点连接3.3模型计算结果分析四川建筑第31卷5期2011.10结构边界条件,静力荷载与移动荷载,施工阶段定义等相应步骤完成后,即完成软件前处理阶段,可进行求解,进入后处理阶段查看分析结果.主要考察梁体挠度,截面弯矩及正截面抗弯,截面应力及梁体裂缝宽度等方面指标是否符合要求.(1)结构反力:支座最大反力为517.2kN.(2)挠度验算验算得跨中挠度值最大,为0.020m,符合规范中要求,~<//600=0.033m.梁体挠度结果输出如表1.表1截面最大挠度表节点荷载Dx(m)Dz(m)RY([rad])2cLCB2(最大)0.0()ooo0.0oOooO.0o68352cLCB2(最大)一0.00127—0.019800.oo04553cLCB2(最大)一O.oo129—0.01981O.Ooo3754cLCB2(最大)一O.oo130—0.01981O.OO02955cLCB2(最大)一O.o0135—0.01978O.O0o10102cLCB2(最大)一0.oo2610.O0o00一O.0o312最小挠度值出现在端支点截面,为0;最大挠度出现在跨中截面,为1.98em.(3)正截面抗弯验算该桥在公路一Ⅱ级荷载作用下主梁各截面产生的最大及最小弯矩如图6,跨中截面弯矩峰值为2286.3kN?m. Moment,CBCalhcLCB2/Mv4710131619222528,1∞4,%49525558616770737682g58891l∞1m n0de图6荷栽作用下主梁截面弯矩粘贴碳纤维布对龙潭河桥进行加固后,公路一Ⅱ级换算荷载效应下最大弯矩值为2285.8kN?m,而相应截面结构抗力弯矩值为2464.5kN?m,满足设计要求,加固提高幅度为21.2%.(4)截面应力验算荷载作用下主梁各截面最大应力如图7所示,其数值满足各材料容许应力要求.图7荷载作用下主梁各截面最大应力值4整桥加固设计方案在T梁腹板底粘贴2层碳纤维布,并沿腹板两侧向上翻折20em.因梁端至1/4跨径段梁体抗弯能力尚满足要求,故可不予加固,粘贴范围可选取1/5—4/5跨径段.针对此桥抗剪承载能力不足,采用在梁腹板粘贴碳纤维布u型箍方法加固,并在腹板两侧中部,上部水平粘贴压条以达到U型箍锚固效果.碳纤维布U型箍采用单层布,宽度20em,在梁两端至I/4跨径段,剪力效应较大,U型箍净距设置为20em;在1/4跨径至3/4跨径段,u型箍净距设为60 cm.碳纤维布压条宽度10em.用混凝土结构裂缝修补材料处理结构裂缝.其中对于梁体的裂缝处理,须在粘贴碳纤维布加固’前进行.处理措施:对于宽度小于0.15mm的裂缝,采用表面封闭法,用改性环氧胶泥适当加压刮抹以封闭裂缝,防止渗漏和避免钢筋锈蚀;对于宽度大于0.15mm的裂缝,采用自动低压渗注法,以恒定低压持续将裂缝灌注修补胶渗注入裂缝内.对于主梁局部混凝土蜂窝,麻面,凿除病害混凝土;对已锈蚀的钢筋除锈,用喷涂型阻绣剂防护,然后用具微膨胀性的环氧砂浆修补.将桥墩裂缝封闭处理后,在裂缝位置粘贴一层单位克重为1500g/m的碳纤维板;将接头断裂的横隔板凿出适当尺寸的矩形孔洞,侧面植筋后重新浇筑混凝土;拆除下沉,散裂的桥台锥坡,将坡底夯实处理后重新按原设计图施工;更换伸缩缝内变形,隆起的橡胶条.5结论本文在总结已有的粘贴碳纤维复合材料对桥梁进行加固的研究与应用的基础上,以”5?12”汶川地震后兰成渝成品油管线龙潭河桥的检测,评估与加固为工程实例,应用桥梁结构有限元分析软件MIDAS,建立有限元分析模型,对该桥进行了粘贴碳纤维布加固设计模拟分析,从而提出了加固设计方案.通过结合实际震后桥梁的检测与粘贴碳纤维加固工程研究,综合考虑其加固机理,材料特性,计算结果及施工特点等指标,可见在地震造成破坏这种特殊病害环境下, 粘贴碳纤维布对于钢筋混凝土桥梁进行抗弯加固是快速,便捷和行之有效的.这对于震后及时修复桥梁,保障交通”生命线”具有重要意义,为今后类似桥梁加固的研究与设计提供了有益经验.参考文献[1]刘来君,赵小星.桥梁加固设计施工技术[M].北京:人民交通出版社,2004[2]JTG1360—2004公路桥涵设计通用规范[s][3]吕伟荣.粘贴加固受弯构件正截面承载力性能研究[D].湖南大学,20o3[4]MIDAS/CIVILAnalysisforCivilStructures(联机手册)[M].MI—DAS.IT(Beijing)Corporation.2006[5]MIDAS/CIVIL技术资料_T梁梁格分析[M].MIDAS.IT(Bei—jing)Corporation.2007四川建筑第31卷5期2011.1Ol83。
30m预应力混凝土简支箱型梁桥设计1.1上部结构计算设计资料及构造布置1.1.1 设计资料1.桥梁跨径及桥宽标准跨径:30m;主梁全长:29.96m;计算跨径:28.66m;桥面净宽:净—9+2×1.5m。
2.设计荷载车道荷载:公路—I级;人群荷载:3kN/㎡;每侧人行道栏杆的作用力:1.52kN/㎡;每侧人行道重:3.75kN/㎡。
3.桥梁处河道防洪标准为20年一遇设计,50年一遇校核,桥下通过流量1000/s时,落差不超过0.1m。
4.桥下净空取50年一遇洪水位以上0.3m。
5.材料及工艺混凝土:主梁采用C50混凝土;钢绞线:预应力钢束采用Φ15.2钢绞线,每束6根,全梁配5束;钢筋:直径大于等于12mm的采用HRB335钢筋,直径小于12mm的采用R235钢筋。
采用后张法施工工艺制作主梁。
预制时,预留孔道采用内径70mm、外径77mm的预埋金属波纹管成型,钢绞线采用T双作用千斤顶两端同时张拉,锚具采用夹片式群锚。
主梁安装就位后现浇600mm宽的湿接缝,最后施工混凝土桥面铺装层。
6.基本计算数据基本计算数据见表5-1〖注〗本例考虑混凝土强度达到C45时开始张拉预应力钢束。
f'ck和f'tk分别表示钢束张拉时混凝土的抗压、抗拉标准强度,则:f'ck = 29.6MPa,f'tk = 2.51MPa。
1.1.2 方案拟定及桥型选择1.桥型选取的基本原则(1) 在符合线路基本走向的同时,力求接线顺畅、路线短捷、桥梁较短、尽量降低工程造价(2)在满足使用功能的前提下,力求桥型结构安全、适用、经济、美观。
同时要根据桥位区的地形、地貌、气象、水文、地质、地震等条件,结合当地施工条件,选用技术先进可靠、施工工艺成熟、便于后期养护的桥型方案。
(3)尽量降低主桥梁体高度,缩短桥长。
2.桥型方案比选根据桥位的通航要求,结合桥位处的地形地貌、地质等条件,我们对简支梁桥、悬臂梁桥、T型刚构桥三种方案进行比选(1)简支梁桥方案采用预应力混凝土箱形截面形式,此结构为静定结构,结构内力不受地基变形及温度变化等的影响,因此对基础的适应性好。
底层梁左端截面设计=========================================================== 1 已知条件及计算要求:(1)已知条件:矩形梁b=300mm,h=600mm。
砼强度等级 C25,fc=11.90N/mm2,纵筋级别 HRB335,fy=300N/mm2,箍筋级别 HPB235,fy=210N/mm2。
弯矩设计值 M=272.85kN.m,剪力设计值 V=101.10kN,扭矩设计值 T=0.00kN.m。
(2)计算要求:1.正截面受弯承载力计算2.斜截面受剪承载力计算3.受扭承载力计算4.裂缝宽度计算。
----------------------------------------------------------- 2 截面验算:(1)截面验算:V=101.10kN < 0.250βc fcbh=504.26kN 截面满足截面配筋按纯剪计算。
----------------------------------------------------------- 3 正截面受弯承载力计算:(1)按单筋计算:as下=35mm,相对受压区高度ξ=x/h=0.278 < ξb=0.550(2)上部纵筋:按构造配筋As=360mm2,配筋率ρ=0.20%(3)下部纵筋:As=ξa1fcbh/fy=1870mm2ρmin=0.20% < ρ=1.04% < ρmax=2.18%----------------------------------------------------------- 4 斜截面受剪承载力计算:(1)受剪箍筋计算:Asv/s=-334.33mm2/m ρsv =-0.11% < ρsvmin=0.15% 按构造配筋Av/s=435mm2/m----------------------------------------------------------- 5 配置钢筋:(1)上部纵筋:计算As=360mm2,实配2D12+1D14(380mm2ρ=0.21%),配筋满足(2)腰筋:计算构造As=b*hw*0.2%=339mm2,实配4D12(452mm2ρ=0.25%),配筋满足(3)下部纵筋:计算As=1870mm2,实配5D22(1901mm2ρ=1.06%),配筋满足(4)箍筋:计算Av/s=435mm2/m,实配d8@300三肢(503mm2/m ρsv=0.17%),配筋满足-----------------------------------------------------------6 裂缝计算:(1)计算参数:Mk=42.86kN.m,最大裂缝宽度限值0.400mm。
混凝土承载力验算标准一、引言混凝土是一种常用的建筑材料,广泛应用于各种建筑工程中。
在混凝土结构设计中,承载力验算是非常关键的一项工作。
本文将详细介绍混凝土承载力验算标准。
二、混凝土承载力计算基本公式混凝土承载力计算的基本公式为:N = Aσ + βp其中,N为混凝土承载力,A为混凝土截面面积,σ为混凝土的抗拉强度,βp为混凝土的附加应力系数。
三、混凝土的抗拉强度混凝土的抗拉强度是指在拉伸作用下,混凝土所能承受的最大应力值。
混凝土的抗拉强度与其强度等级、水胶比、配合比等因素有关。
根据《混凝土结构设计规范》(GB50010-2010)的规定,混凝土的抗拉强度应符合以下要求:1. 普通混凝土的抗拉强度不应小于0.3fck。
2. 高强混凝土的抗拉强度应符合设计要求。
3. 预应力混凝土的抗拉强度应符合设计要求。
四、混凝土截面面积的计算混凝土截面面积的计算需考虑混凝土梁的几何形状和尺寸。
常见的混凝土截面形状有矩形、T形、L形、梯形等。
根据不同的混凝土截面形状,计算混凝土截面面积的公式也不同。
例如,对于矩形混凝土梁,其截面面积的计算公式为:A = bh其中,b为混凝土梁的宽度,h为混凝土梁的高度。
五、附加应力系数的计算附加应力系数是指混凝土在荷载作用下,由于外部约束而产生的附加应力。
根据《混凝土结构设计规范》(GB50010-2010)的规定,混凝土的附加应力系数应符合以下要求:1. 普通混凝土的附加应力系数为0.6。
2. 预应力混凝土的附加应力系数应符合设计要求。
六、混凝土承载力验算实例下面以矩形混凝土梁为例,介绍混凝土承载力验算的具体步骤。
假设有一根长为5m、宽为0.3m、高为0.5m的矩形混凝土梁,荷载作用为10kN。
已知混凝土的抗拉强度为3.5MPa,附加应力系数为0.6。
则混凝土承载力的计算如下:1. 计算混凝土截面面积:A = bh = 0.3 × 0.5 = 0.15m²2. 计算混凝土的抗拉强度:σ = 0.3fck = 0.3 × 20 = 6MPa3. 计算混凝土的附加应力系数:βp = 0.64. 计算混凝土承载力:N = Aσ + βp = 0.15 × 6 + 0.6 × 10 = 2.4 + 6 = 8.4kN因此,该矩形混凝土梁的承载力为8.4kN,符合设计要求。
10.主梁截面承载力与应力验算预应力混凝土梁从预加力开始到是受荷破坏,需经受预加应力、使用荷载作用,裂缝出现和破坏等四个受力阶段,为保证主梁受力可靠并予以控制。
应对控制截面进行各个阶段的验算。
在以下内容中,先进行持久状态承载能力极限状态承载力验算,再分别验算持久状态抗裂验算和应力验算,最后进行短暂状态构件的截面应力验算。
对于抗裂验算,《公预规》根据公路简支标准设计的经验,对于全预应力梁在使用阶段短期效应组合作用下,只要截面不出现拉应力就可满足。
10.1持久状况承载能力极限状态承载力验算在承载能力极限状态下,预应力混凝土梁沿正截面和斜截面都有可能破坏,下面验算这两类截面的承载力。
10.1.1正截面承载力验算 (1)确定混凝土受压区高度根据《公预规》5.2.3条规定,对于带承托翼缘板的T 形截面; 当''Pd P cd f f f A f b h ≤成立时,中性轴带翼缘板内,否则在腹板内。
左边=Pd P f A =1260×50.4×0.1=6350.4(kN) 右边=''cd f f f b h =22.4×220×15×0.1=7392(kN)''Pd P cd f f f A f b h ≤成立,即中性轴在翼板内。
设中性轴到截面上缘距离为x ,则: x=0'126050.412.89()0.4(200012.85)74.86()22.4220pd p b cd ff A cm h cm f b ξ⨯==<=⨯-=⨯式中:ξb ——预应力受压区高度界限系数,按《公预规》表5.2.1采用,对于C50混凝土和钢绞线,ξb =0.40; h 0——梁的有效高,0p h h a =-, 说明该截面破坏时属于塑性破坏状态。
(2)验算正截面承载力:由《公预规》5.2.5条,正截面承载力按下式计算:'000()2cd f x M f b x h γ≤-式中:γ0——桥梁结构的重要性系数,按《公预规》5.1.5条采用,本设计取1.0。
右边=30.128522.410 2.20.1289(20.1285)11478.732kN m ⨯⨯⨯⨯--=⋅ 08658.42(d M kN m >ϒ=⋅跨中)所以,主梁跨中正截面承载能力满足要求。
(3)验算最小配筋率由《公预规》9.1.12条,预应力混凝土受弯构件最小配筋率应满足下列条件:udcrM 1.0M ≥式中: M ud ——受弯构件正截面抗弯承载力设计植,由以上计算可知M ud =9734.58(kN ·m );Mcr ——受弯构件正截面开裂弯矩值,按下式计算:0()cr PC tk M f W σγ=+02oS W γ=PCp P nnxN M A W σ=+式中:S 0——全截面换算截面重心轴以上(或以下)部分截面对重心轴的面积矩,;W 0——换算截面抗裂边缘的弹性抵抗矩;σpc ——扣除预应力损失预应力筋在构件抗裂边缘产生的混凝土预压应力。
MPa W M A N nx pn ppc 27.21300079594819911.7458727.1081=+=+=σ022297327 1.533387732o S W γ⨯===m N W f M tk pc cr ⋅=⨯⨯⨯+=+=-k 20.982210387732)65.2533.127.21()(30γσudcrM 1.0M <,尚需配置普通钢筋来满足最小配筋率的要求。
①计算受压区高度x)2(00x h x b f M f cd d -'≤γ )28715.12.2(2.2104.2232.119043x x --⨯⨯=求解得0.134()0.7486()b o x m h m ξ=<⨯=②计算普通钢筋s A4222.4 2.20.134126050.4109.04()280cd pd ps sd f bx f A A m f --⨯⨯-⨯⨯===即在梁底部配置6根直径16mm 的HRB335钢筋,s A =12.062cm .以满足最小配筋率的要求。
10.1.2 斜截面承载力验算(1) 斜截面抗剪承载力验算:根据《公预规》5.2.6条,计算受弯构件斜截面抗剪承载力时,其计算位置应按下列规定采用:① 距离支座1/2 h 截面处; ② 受拉区弯起钢筋弯起点处截面;③ 锚于受拉区的纵向钢筋开始不受力处的截面; ④ 箍筋数量或间距改变处的截面; ⑤ 构件腹板宽度变化处的截面。
1) 复核主梁尺寸T 形截面梁当进行斜截面抗剪承载力计算时,其截面尺寸应符合《公预规》5.2.9条规定,即000.5110d V γ-≤⨯式中:d V ——经内力组合后支点截面的最大剪力(kN ),1号梁的d V 为1021.23kN ;b ——支点截面腹板厚度(mm ),即b=550mm ; h 0——支点截面的有效高度(mm),即h 0=h -a p =2000-786.6=11213.4(cm)f cu,k ——混凝土强度等级(MPa ) 上边右式=00.51105501213.42406.701021.23d kN V kN γ-⨯⨯=>=所以本设计主梁的T 形截面尺寸符合要求。
2)截面抗剪承载力验算:验算是否需进行斜截面抗剪承载力计算根据《公预规》5.2.10条规定,若符合下列公式要求时,则不需进行斜截面抗剪承载力计算。
γ0V d ≤0.50×10-3α2 td f bh 0式中:td f —混凝土抗拉强度设计值(MPa )α2—预应力提高系数,对预应力混凝土受压构件,取1.25。
上式右边=0.50×10-3×1.25×1.83×550×1328.5=835.709kN <γ0V d =968.32(kN) 因此该设计需进行斜截面抗剪承载力计算. ①选定斜截面顶端位置距支座h/2处截面的横坐标为x=33900/2-200/2=15950mm,正截面有效高度0h =1328.5mm 。
现取c ’≈ 0h =1328.5mm ,则得到选定的斜截面顶端位置,其横坐标为x=15950-1328.5=14621.5mm 则,,/2d,,/22214.622()157.97(1021.23157.97)902.66533.9d A d l o d l x V V V V L ⨯=+-==+-⨯=KN ②箍筋计算:根据《公预规》9.4.1条,腹板内箍筋直径不小于10mm ,且应采用带肋钢筋,间距不应大于250mm ,本设计选用φ10@200的双肢箍筋,则箍筋的总面积为:A sv =2×78.5=157(mm 2)箍筋间距S V =200mm,箍筋抗拉强度设计值f sv =280MPa,箍筋配筋率ρsv 为:1570.19%200405sv sv v A S b ρ===⨯ 式中:b ——斜截面受压端正截面处T 形截面腹板宽度,此处b=405mm 。
满足《公预规》9.3.13条“箍筋配筋率ρsv ,HRB335钢筋不应小于0.12%”的要求。
同时,根据《公预规》9.4.1条,在距支点一倍梁高范围内,箍筋间距缩小至100mm 。
③抗剪承载力计算根据《公预规》5.2.7条规定,主梁斜截面抗剪承载力应按下式计算:γ0V d ≤V cs +V pb式中:V d ——斜截面受压端正截面内最大剪力组合设计值,为142.67kN;V cs ——斜截面内混凝土与箍筋共同的抗剪承载力 (kN) ,按下式计算:V cs = α1α2α30.45×10-3bh 0sv sv K cu f f P ρ,)6.02(+α1——异号弯矩影响系数,简支梁取1.0;α2——预应力提高系数,对预应力混凝土受弯构件,取1.25; α3——受压翼缘的影响系数,取1.1;b ——斜截面受压端正截面处,T 形截面腹板宽度,此处b=466mm; h 0——斜截面受压端正截面处梁的有效高度, h 0=1574cm ;P ——斜截面内纵向受拉钢筋的陪筋率,P=100ρ,ρ=(A p +A pb )/(bh 0),当P >2.5时,取P=2.5;k cu f ,——混凝土强度等级;sv ρ——斜截面内箍筋配筋率,sv ρ=A sv /(S v b);sv f ——箍筋抗拉设计强度;A sv ——斜截面内配置在同一截面的箍筋各肢总截面面积(mm 2); S v ——斜截面内箍筋间距(mm );pb V ——与斜截面相交的预应力弯起钢束的抗剪承载力(kN),按下式计算:30.7510sin pb pd pb p V f A θ-=⨯∑pb A ——斜截面内在同一弯起平面的预应力弯起钢筋的截面面积(mm 2);pd f ——预应力弯起钢束的抗拉设计强度(MPa ),该设计的—pd f =1260MPa; p θ——预应力弯起钢筋在斜截面受压端正截面处的切线与水平线的夹角,见表如下50.40.0079140.51574p pbA A bh ρ+===⨯1000.791P ρ==0.0019sv sv vAbS ρ==31.0 1.25 1.10.45104661501cs V -=⨯⨯⨯⨯⨯⨯1203.44kN =2sin 840[2(0.03267610.926845)0.1995264+0.2131218]557.23mm pb p A θ=⨯⨯++=∑V pb = 0.75×10-3×1260×557.23=526.58kNV cs +V pb =1203.44+526.58=1730.02kN >γ0V d = 902.665kN说明主梁距支座1/2 h 处斜截面抗剪承载力满足要求,同时也说明上述箍筋的配置是合理的(2)斜截面抗弯承载力验算由《公预规》5.2.12条进行斜截面抗弯强度计算,由于钢束都在梁端锚固,钢束根数沿梁跨几乎没有变化,并且钢束在梁中无截断,锚固长度均满足要求,可不必进行该项承载力验算,通过构造加以保证。
7.2持久状况正常使用极限状态抗裂验算长期以来,桥梁预应力构件的抗裂验算,都是以构件混凝土的拉应力是否超过规定的限值来表示,分为正截面抗裂和斜截面抗裂验算。
10.2.1正截面抗裂验算根据《公预规》6.3.1条,对预制的全预应力混凝土构件,在作用长期菏载效应组合下,应符合下列要求:085.0 -pc st ≤σσ式中:st σ——在作用短期效应组合下构件抗裂验算边缘混凝土的法向拉应力,按下式计算:ox p nx g st W M W M +=1σnxp np pc W M A N +=σ 下表示出了正截面抗裂验算的计算过程和结果,可见其结果符合规范要求。