2024多波束介绍
- 格式:ppt
- 大小:36.05 MB
- 文档页数:40
RTK在R2Sonic 2024多波束系统中应用探讨摘要:本文详细分析了水域测量所用GPS差分改正信号的种类及精度,分解了R2Sonic 2024多波束系统测量过程中定位信号处理过程,探讨了RTK在多波束测量中应用的可行性。
关键词:RTK 多波束系统GPS差分改正1前言目前在水域测量的定位设备中,选择信标较多,选择RTK较少。
信标一般可选择Beacon、SBAS、StarFire等系统的GPS差分定位信号,测量过程中一般需要验潮。
在近海或者内陆的水域测量中,单波束已经实现了无验潮模式的RTK测量,测量精度和效率大幅提高。
在多波束系统中,GPS差分信号一般选择Beacon或SBAS,较少选择有偿使用的StarFire。
本文以R2Sonic 2024多波束系统为例,分解多波束测量过程中差分信号处理过程,探讨了常规RTK应用于多波束的可行性。
2水域测量三种典型GPS差分信号分析Beacon海岸信标站台网,在我国是由交通部设立在我国沿海的20个站台组成。
信标站台以约300kHz的频率播发RTCM格式的GPS 差分信号,信号覆盖海岸线约100km,沿海用户可根据该信号计算位置坐标。
由于信标站台自身差分改正信号精度有限,台站间距离从几十公里至几百公里不等,故用户所能得到的平面定位精度非常有限,从1m~5m不等,观测过程中需验潮。
Beacon海岸信标站台网播发的广域差分定位信号免费,目前国内95%海洋测量用户使用该信号。
SBAS即Satellite Based Augmentation Systems,是利用地球静止轨道卫星建立的地区性广域差分增强系统。
目前全球发展的SBAS系统有:欧空局接收卫星导航系统(EGNOS),覆盖欧洲大陆;美国的DGPS(Differential GPS),美国雷声公司的广域增强系统(W AAS),覆盖美洲大陆;日本的多功能卫星增强系统(MSAS),覆盖亚洲大陆;等等。
SBAS通过地球静止卫星(GEO)发布包括GPS卫星星历误差改正、卫星钟差改正和电离层改的信息,通过GEO卫星发播GPS和GEO卫星完整的数据,通过GEO卫星的导航载荷发射GPS L1测距信号。
多波束原理多波束原理是一种用于雷达系统的技术,它可以提高雷达系统的性能和效率。
多波束雷达是一种能够同时发送和接收多个波束的雷达系统,通过这种方式可以实现更广泛的目标覆盖和更高的分辨率。
在本文中,我们将介绍多波束原理的基本概念、工作原理和应用。
多波束雷达系统利用阵列天线来实现多波束发射和接收。
阵列天线由许多天线单元组成,它们可以独立地控制发射和接收的方向。
通过合理地控制这些天线单元的相位和幅度,可以形成多个波束,每个波束可以独立地指向不同的方向。
这样一来,多波束雷达系统就可以同时监测多个目标,或者对同一个目标进行多方位的观测,从而提高了雷达系统的灵敏度和分辨率。
多波束原理的工作原理可以简单地描述为,首先,雷达系统通过控制阵列天线的相位和幅度来形成多个波束;然后,这些波束分别发射或接收雷达信号;最后,通过对这些波束的信号进行合成和处理,就可以得到多个方向上的目标信息。
这样一来,多波束雷达系统就可以实现对多个目标的同时监测和跟踪,或者对单个目标进行多方位的高分辨率观测。
多波束原理在雷达系统中有着广泛的应用。
首先,它可以大幅提高雷达系统的搜索和跟踪性能,特别是在复杂环境下,比如高杂波、多目标和干扰环境下。
其次,多波束雷达系统可以实现对大范围空域的全方位监测,这对于军事和民用领域都具有重要意义。
此外,多波束原理还可以用于雷达成像和目标识别,通过对目标的多方位观测可以得到更加精确的目标特征和运动信息。
总的来说,多波束原理是一种能够显著提高雷达系统性能和效率的技术。
通过合理地控制阵列天线的相位和幅度,多波束雷达系统可以实现对多个目标的同时监测和跟踪,或者对单个目标进行多方位的高分辨率观测。
这使得多波束雷达系统在军事和民用领域都有着广泛的应用前景。
希望本文对多波束原理有所帮助,谢谢阅读。
多波束形成方法及其实现多波束形成(Multi-beamforming)是一种通过使用多个天线元素来形成多个波束(beam)的技术,以增强无线通信系统的信号质量和容量。
多波束形成可应用于各种无线通信系统,包括无线局域网(WLAN)、移动通信系统(如LTE和5G)以及卫星通信系统等。
本文将介绍多波束形成的基本原理、方法及其实现。
多波束形成的基本原理是通过利用多个天线元素的互相合作来形成多个波束,以提高系统的整体性能。
传统的单波束系统只能向特定方向发送和接收信号,而多波束形成系统可以同时向多个方向发送和接收信号,从而实现更高的信号覆盖范围和通信容量。
1.天线阵列设计:多波束形成需要使用多个天线元素来形成多个波束。
因此,首先需要设计一个合适的天线阵列结构,以满足系统对多个波束的要求。
常见的天线阵列结构有线阵、面阵和体阵等,可以根据具体的应用场景选择合适的结构。
2.信号采集:多波束形成需要对接收到的信号进行采集和处理。
首先,系统需要对每个天线元素接收到的信号进行采集,并将其转换成数字信号。
随后,通过使用AD转换器将模拟信号转换成数字信号,并进行滤波等前处理操作。
4.数据处理:多波束形成系统需要对合成的波束进行数据处理。
首先,系统需要对接收到的信号进行解调和解码,提取出有效的数据信息。
随后,可以对提取出的数据进行误码纠正和信号增强等处理操作,以提高系统的性能。
5. 多用户接入:多波束形成系统通常需要同时支持多个用户的接入。
为了实现多用户接入,系统需要采用多用户的接入技术,如时分多址(Time Division Multiple Access,TDMA)或正交分频多址(Orthogonal Frequency Division Multiple Access,OFDMA)等。
通过使用这些技术,系统可以在同一时间和频率资源上同时支持多个用户的通信。
需要注意的是,多波束形成系统的实现需要考虑到系统复杂性和成本等因素。
Sonic 2024多波束水下地形扫测应用实例作者:李玉海陈兰伟韩明钦来源:《科技创新与应用》2015年第14期摘要:文章主要介绍了多波束系统的仪器性能指标、多波束系统的安装与校准和后处理的流程,并通过实例叙述了Sonic 2024多波束系统在水下地形扫测中的应用,有效地说明了多波束测量在水下地形测量中的优势。
关键词:Sonic 2024;多波束;水下地形扫测1 概述多波束测深系统将传统的测深技术从原来的点、线扩展到面,能够对所测水域进行全覆盖、高精度测量[1,2,3]。
Sonic 2024多波束测深系统是目前市场上主流的测深设备,较其他类型多波束优势在于超高分辨率和准确度,且波束具有导向性[5]。
文章结合实际工作中航道扫测的项目,详述了多波束系统中各传感器的性能指标、多波束系统的安装与校准以及多波束数据后处理的基本流程,最后通过CARIS HIPS生成水下地形的三维图像。
2 主要仪器性能指标2.1 多波束测深仪Sonic 2024是美国R2Sonic公司生产的基于第五代声呐结构的高精度多波束测深仪。
工作频率为200-400kHz(可调),波束宽度为1°×0.5°@400kHz,波束数目为256个,扇形条带开角为10°-160°,测深最大量程为500m,脉冲宽度为17μS-500μS,功率为191-2211dB,测深分辨率为1.25cm。
2.2 光纤罗经及姿态传感器设备法国iXSEA公司生产的OCTANS光纤罗经和运动传感器是世界上唯一经IMO认证的测量级罗经。
它内置有自适应升沉预测滤波器,在任何情况下,均能实时提供精确可靠的运动姿态数据。
OCTANS航向稳定时间小于5min,航向精度为0.1°×Secant纬度,Roll/Pitch动态精度为0.01°,Heave精度为5cm或5%。
2.3 定位设备Trimble SPS361型信标机是世界GPS知名公司Trimble的高精度的定位设备,支持接收MSK信标差分信号,可提供亚米级定位精度,广泛应用于海洋测量、港口工程等各个领域,水平定位精度优于1米。
一、多波束、劈裂天线3.1.应用场景3.1.1.密集城区场景密集城区优化问题一直是网络优化难点之一,密集城区建站难,深度覆盖不足,个人用户私装放大器,导致网络上行底噪不断抬升,通话质量不断下降。
密集城区场景主要存在以下特点:➢高话务压力:密集城区存在大量移动用户,话务量高,导致基站配置不断增加,网络干扰剧增➢深度覆盖不足:密集城区楼房建设密集,对无线信号的传播影响很大➢基站建设困难成本高:密集城区居民对移动基站比较敏感,建站选址困难。
密集城区楼房建设密集,信号传播损耗大,依靠宏站和分布系统覆盖成本高➢干扰严重:载频多,无线环境复杂,内部干扰严重,而且容易对周边基站造成影响➢针对不同场景问题应用多波束天线可以有效解决以上问题,以下将结合实际案例介绍多波束天线的应用。
通过多波束天线优秀的覆盖特性。
在覆盖上做到精细控制,减少过覆盖、多重信号重叠造成的各种优化困难。
在容量上,以需求为导向,提升网络容量,解决接入困难的问题。
从而提高GSM1800信号在城中村深度覆盖能力,从而实现双频网话务均衡的目标,降低城中村私装直放站对GSM900网络造成的影响,提升用户感知。
3.1.2.高话务场景高话务场景是指在某个网络中,用户比较集中、话务水平高于其他区域的场景,例如校园、车站、机场、广场等。
在这些场景中,由于用户数量庞大,周围的基站建设也比较集中。
无线网络呈现强信号、强干扰、高负荷、高需求的特点。
因为用户多而且相对集中,在很小的范围内需要较多的基站覆盖以保证容量,而过多的基站信号重叠会带来了干扰、频繁切换等问题,同时,控制覆盖的困难导致难以投入更多的载波资源,从而限制了网络容量,造成拥塞、接通问题。
高话务场景的优化一直是大中城市网络优化的难点,处于场景中的客户多数是网络敏感客户,对网络的轻微变化感知明显,容易造成网络投诉,这就要求高话务场景的优化要十分谨慎。
另外,对高话务场景的优化要考虑到频率、小区容量、基站选址等问题,实施扩容看似简单的手段,在这种场景下受到种种限制而难以实施,或实施后产生很大的负作用。
R2Sonic 20XX 多波束操作流程一、参照如下配置清单:1多波束水下地形测量系统SONIC 2024,包括收/发射换能器、15米数据电缆、声呐接口单元(SIM )2 Octans-IV 光纤罗经和姿态传感器3 AML Minos X 声速剖面仪4 Micro 表面声速探头,包括15米数据电缆5 GPS 信标接收机 Hemisphere R330 6QINSy 实时数据采集处理和显示软件 7Caris Hips & Sips 数据后处理软件二、连接示意图如下:1OCTANS 罗经和运动传感器接线盒网线GGA声速剖面仪GPSQinsy1PPS+ ZDA数据采集计算机表面声速探头2024 换能器三、操作流程1.前期准备了解测区概况,包括测区的水文、潮汐和地质情况,测区中央子午线、投影及坐标转换参数等内容。
2. 设备安装如上图所示,将多波束和表面声速探头安装到导流罩上,并通过安装杆固定到船上,要保证船在航行的过程中,多波束安装杆不能抖动,否则无法保证数据的准确性。
3. 系统接线安装GPS及光纤罗经Octans,按照连接示意图,完成多波束及辅助设备的连接。
4. 系统供电PC开机,GPS、Octans和SIM(多波束声纳接口单元)通电。
5. 声速剖面测量测量船开到测区,停船。
参照说明书《MinosX用户使用手册》,测量声速剖面。
6. 运行R2Sonic.exe多波束控制软件,参照说明书《Sonic 2024 使用指南》。
如果SIM盒上没有外接表面声速探头,则在Settings->Ocean settings…,勾选Sound velocity,输入探头所在深度的声速值,SVP的指示灯显示为黄色。
如果SIM盒上没有外接姿态数据(TSS1格式,100hz),且Settings->Sensor settings…,Motion的Interface选择Off,那么,MRU显示为灰色。
一定要保证GPS、PPS的指示灯为绿色,时间显示为格林威治时间,否则,表明时间没有同步,不能进行下一步操作。