各种因素对煤粉炉燃烧的影响.doc
- 格式:doc
- 大小:44.00 KB
- 文档页数:8
表3 不同脱硫剂的技术指标对比脱硫剂CaO CaC 2CaO +M gCaC 2+M g单耗/kg ・t 铁水812316317+013=41165+013=1195消耗量/kg ・罐-11635727740+60=800330+60=390脱硫剂价格/马克・罐-1327727508690渣量/t ・罐-151931431562145铁损/t ・罐-131********温降/℃35161812处理时间/min~35~16~18~126 结 语随着对钢铁产品质量的要求不断提高,生产纯净钢已越来越重要了,我国近年来Mg 系脱硫剂发展较快,现在已经在宝钢、鞍钢、武钢、马钢投入生产使用,这也是当今铁水脱硫剂的一种发展趋势。
按照“十五”计划,在“十五”期间铁水处理应达到60%,任务艰巨,铁水预处理将会上一个新台阶。
因此,铁水预处理脱硫剂的选择就显得十分关键和重要。
收稿日期:2001205220信息报导影响高炉中煤粉燃烧的因素 据《AISE Steel T echnology 》近期报道,高炉风口回旋区内煤粉的燃烧程度直接关系到高炉上部未燃尽残炭的逸出量,也和未燃煤粉在中心焦柱即死料柱外表面的沉积量有关。
这不仅对煤焦置换比、而且对高炉炉况稳定性和炉缸状况都有重要影响。
影响高炉风口前煤粉燃烧率的因素有许多,已知的影响较大的有以下几种:(1)煤粉的粒度。
随煤粉粒度减小,燃烧率提高。
但细粒度煤粉增加,会使磨煤机能耗加大,并增加设备损耗,故在生产实践中仍受到限制。
(2)富氧率。
提高富氧率可以缩短煤粉在风口内的着火延迟时间,从而提高燃烧率。
(3)煤粉的挥发份。
使用高挥发份的煤粉,有利于煤的爆裂提高燃烧效率,但降低煤焦置换比。
原煤贮运和制粉系统一般按使用最高挥发份为35%的烟煤设计。
如使用挥发份更高的煤,则要求制煤系统另外配置保安设备,制定更严格的安全措施。
(4)使用氧煤喷枪。
在高炉风口使用同轴氧煤枪或单独的氧、煤枪,可促进煤粉和局部高浓度氧气的良好接触。
火上风对400t h煤粉锅炉内燃烧影响的数值模拟摘要:建立了数学物理模型,对400 t/h全尺寸四角切圆煤粉锅炉内燃烧过程进行三维数值模拟。
分析结果表明:火上风的喷入可以大幅度降低NOx排放值,当火上风风率达到20%时,NOx可减排21%,并且燃烧效率较高;对于NOx减排火上风喷口高度h最佳值为2 m。
计算分析结果对火电厂、大型钢铁联合企业自备电厂等实际锅炉的燃烧调整具有较重要的指导意义。
关键词:火上风全尺寸锅炉数值模拟NOx排放CFD是控制与分析燃煤锅炉有效而经济的工具[1~4]。
煤粉在炉膛内的燃烧是一个复杂的过程,涉及气相流动和湍流燃烧、颗粒运动、挥发分析出、焦炭燃烧和辐射换热[5]等,数值模拟可以得出不同操作工况下炉膛内的温度和组分浓度分布,进而研究燃烧机理,优化燃烧过程,得到低污染、高效率的燃烧参数。
本文利用CFD工具研究了火上风(OFA)对400 t/h煤粉锅炉内燃烧和污染物(NOx,soot等)排放的影响。
研究表明[6,7],有效降低NOx的排放,可以通过对煤粉锅炉炉内的空气进行合理分布,把空气进行分级,火上风技术可以有效这一点,使炉内空气分级,从而降低NOx的排放,由于火上风对炉内燃烧有很大的影响,不同的参数会影响NOx的排放,要想得到最优的燃烧参数,必须对其进行全面而深入的研究,达到最好的效果。
1 研究对象以一台容量为400 t/h的四角切圆煤粉锅炉为研究对象,炉宽9600 mm,炉深8375 mm,炉高为31800 mm,结构示意图见图1(a)。
燃烧设备采用四角切向燃烧布置,1#、3#和2#、4#假想切圆直径分别为Φ800 mm 和Φ200 mm,见图1(b)。
燃烧器喷嘴为8层布置,具体布置结构见图1(c)所示。
燃料特性见表1。
在本文的研究工况中,一次风速度、温度以及二次风温度不变,火上风风量由二次风风量中分出,火上风喷口高度h如图1(c)所示。
2 数值模拟方法数值模拟采用三维稳态计算,微分方程的离散采用有限容积法,使用二阶迎风格式,压力速度耦合采用SIMPLE算法。
锅炉制粉系统及燃烧基础知识一、燃料基础知识1.煤的元素分析成分即煤的化学组成成分。
经过分析,煤的成分包括碳(C)、氢(H)、氧(O)、氮(N)、硫(S)五种主要元素以及水分(M)和灰分(A)。
2.煤的工业分析成分,工业分析主要测定煤中的水分、挥发分、固定碳和灰分含量,用以表明煤的某些燃烧特性。
二、影响煤粉气流着火的因素1.燃料的性质燃料性质对着火过程影响最大的是挥发分含量V daf,煤粉的着火温度随V daf的变化规律如图示。
挥发分V daf降低时,煤粉气流的着火温度显著提高,着火热也随之增大,就是说,必须将煤粉气流加热到更高的温度才能着火。
因此,低挥发分的煤着火更困难些,着火所需的时间更长一些,而着火点离开燃烧器的喷口的距离自然也增大了。
原煤水分增大时,着火热也随之增大,同时水分的加热、汽化、过热都要吸收炉内的热量,致使炉内的温度水平降低,从而使煤粉气流卷吸的烟气温度以及火焰对煤粉气流的辐射热也相应降低,这对着火显然是更加不利的。
原煤灰分在燃烧过程中不但不能放热,而且还要吸热。
特别是当燃用高灰分的劣质煤时,由于燃料本身的发热量低,燃料的消耗量增大,大量的灰分在着火和燃烧过程中要吸收更多的热量,因而使得炉内烟气温度降低,同样使煤粉气流的着火推迟,而且也影响了着火的稳定性。
煤粉气流的着火温度也随煤粉的细度而变化,煤粉愈细,着火愈容易。
这是因为在同样的煤粉浓度下,煤粉愈细,进行燃烧反应的表面积就会越大,而煤粉本身的热阻却减少,因而在加热时,细煤粉的温升速度要比粗煤粉的快。
这样,就可以加快化学反应的速度,更快地达到着火。
所以在燃烧时总是细煤粉首先着火燃烧。
由此可见,对于难着火的低挥发分煤,将煤粉磨得更加细一些,无疑会加速它的着火过程。
2.炉内散热条件从煤粉气流着火的热力条件可知,减少炉内散热,有利于着火。
因此,在实践中为了加快和稳定低挥发分煤的着火,常在燃烧器区域用铬矿砂等耐火材料将部分水冷壁遮盖起来,构成所谓燃烧带。
浅谈煤的成分及特性对锅炉燃烧的影响摘要:随着煤炭价格的一路上涨,火电厂的发电成本日益增高,很多发电企业甚至都面临着亏损,煤质的好坏对火力发电企业的影响越来越重要。
此外,面对严峻复杂的内外部形势,做好能源保供工作尤为重要,为了确保发电机组的安全稳定运行,就必须探讨煤中不同的成分及煤的特性对锅炉燃烧的影响,让运行人员根据煤质的不同及时进行调整,为保供工作筑牢安全基础。
已经发现,煤中的某些典型成分对锅炉正常工作有负面影响,同时,研究煤中不同的成分及煤的特性对燃烧设备的影响还能延长设备使用寿命,保证发电机组的稳定经济运行。
关键词:煤的成分;燃烧设备;硫分;灰分1硫分对锅炉燃烧的影响煤中硫包括可燃硫和不燃硫,两者之和称为全硫。
煤中的硫燃烧产生二氧化硫和三氧化硫,它们与水蒸气化合生成亚硫酸和硫酸蒸汽,如果硫酸蒸汽在锅炉的低温烟道内,受到低温壁面的影响,使硫酸蒸汽降低到酸露点温度以下,此时,硫酸蒸汽就会凝结,硫酸液体就会对金属受热面产生腐蚀,这个过程就是低温腐蚀。
此外,硫分还会导致锅炉的高温腐蚀,煤在还原性气氛中(即煤的燃烧环境氧量不充分),硫将转变成硫化氢,硫化氢如果与金属表面接触,将会产生高温腐蚀。
煤中硫可以硫化铁即黄铁矿的形式存在,由于黄铁矿的莫氏硬度仅次于石英,为6至6.5,若黄铁矿的含量很高,就会导致煤质坚硬,煤质坚硬的煤进入制粉系统,就会导致制粉系统的电耗提升,坚硬的煤粉进入锅炉还会对锅炉的受热面产生磨损,同时也一定会导致磨煤设备的磨损。
此外,煤燃烧生成的二氧化硫和三氧化硫排出大气,在环境中进一步的转变成亚硫酸和硫酸,那么就会产生酸雨,会对环境造成污染,煤中硫每增加1%,燃用1t煤就多排放约20kg的二氧化硫气体。
烟气中的二氧化硫和三氧化硫含量升高,还会增加火力发电厂脱硫系统的运行费用,同时,对于变质程度较浅的煤,若含有较多的黄铁矿,就会由于黄铁矿受氧化放热而加剧煤的氧化自燃,不利于煤的存放。
2灰分对锅炉燃烧的影响灰分是煤在一定温度下,可燃物完全燃烧,矿物质发生一系列的分解、化合反应后的残留物。
各种因素对煤粉炉燃烧的影响现在煤粉锅炉在热力发电厂中应用广泛,而影响煤粉炉燃烧的原因多种多样,下面就从燃料、燃烧器、炉膛、锅炉运行各方面浅谈一下。
一、燃料:(一)燃料品质:1、挥发分:挥发分是煤粉在加热过程中有机质分解而析出的气体物质。
煤中挥发分含量对煤粉气流着火过程影响很大,煤粉气流着火温度比对应的煤的高。
干燥无灰基挥发分越高的煤,着火温度越低,火焰传播速度也越快。
因此挥发分含量高的煤不仅容易着火,而且着火稳定性也越好。
煤中除了挥发分和水分剩余的部分就是焦炭,包括固碳和灰分。
煤粉燃烧的过程为:水分先析出,绝大部分挥发分析出,挥发分着火,引燃焦炭和剩余的挥发份。
所以挥发分的燃烧对焦炭起加热作用,从而为焦炭的燃烧创造有利条件,一般而言,挥发分越高的煤越容易燃尽,q4(固体未完全燃烧热损失)少。
随着煤的碳化程度不同,挥发分的析出温度也不同,挥发分的成分及含量也不同。
挥发分的着火点低,容易燃烧。
挥发分高的煤火焰传播速度也越快,火焰也越长,因此一般情况气体燃料和液体燃料比固体燃料的火焰传播速度大。
大部分挥发分的着火以及燃尽时间很短,约占整个燃烧时间的百分之十。
对于多相燃烧,反应速度取决于燃料附近氧化剂的浓度和固相物质的表面积。
2、水分:煤粉在加热的过程中首先析出的是水分,水分分为外部水分和内部水分。
水分的增加会影响发热量,从而使炉内温度降低影响燃料着火,增加排烟热损失,加剧尾部受热面的腐蚀和堵灰。
水分的增加影响着火热。
水分多时加热煤粉气流的一部分热用于水分的蒸发和过热,使着火热增加,推迟着火。
但是煤粉内的水分蒸发后可使煤粉颗粒的表面积增大,从而提高着火能力和燃烧速度。
火电厂中大容量锅炉为防止尾部受热面低温腐蚀,尾部烟气的温度都很高,烟气中的水蒸气常压下不会凝结,汽化潜热未能被利用,使锅炉效率有所降低。
水分还会影响火焰的传播速度,水分含量大时,火焰的传播速度变低。
3、灰分:焦炭中不能燃烧的部分就是灰分。
它可以使单位燃料的发热量降低,还影响燃料的着火和燃尽,也会造成锅炉受热面积灰,结渣,磨损。
灰分含量增大时,没分的发热量就会降低,燃煤量增加,灰分覆盖在可燃物上减少与氧气的接触面积使着火比较困难,着火稳定性差,着火温度高,影响火焰传播速度。
还会是燃烧不完全,增加固体未完全燃烧热损失。
灰分还会形成灰渣附着在水冷壁面,过热器,再热器,省煤器,空气预热器上,增大热阻减少传热,浪费能量。
4、发热量:煤的发热量是指单位质量的煤完全燃烧时放出的全部热量。
分为高位发热量和低位发热量。
当发热量中包括煤燃烧后所产生的水蒸气凝结发出的汽化潜热时,称为高位发热量。
当不包括水蒸气凝结产生的汽化潜热时,称为低位发热量。
现在大型锅炉的尾气温度一般大于120度,尾气中的水蒸气不会凝结,因此我国采用低位发热量。
高位发热量可由氧弹式热量计测量。
发热量大可以使煤的分解速度加快,迅速释放出挥发分,有利于达到着火热迅速达到着火温度,并且稳定的燃烧。
5、焦炭:煤失去水分和挥发分后剩余的就是焦炭,焦炭燃烧后的温度高,可以迅速提高炉膛温度。
6、煤粉细度煤粉越细,其中的挥发分容易析出出来,可以迅速燃烧,也容易着尽,减少固体未完全燃烧损失,还会提高火焰传播速度。
7、煤粉分布:在炉膛内煤粉分布越均匀越容易燃烧。
(二)燃料种类:根据干燥无灰基中挥发分的不同,把煤分为褐煤、烟煤、贫煤、无烟煤。
1、褐煤:挥发分含量高一般大于37,容易着火,但是他的灰分和水分也较高,发热量较低,灰熔点较低,容易自燃。
2、烟煤:具有中等的煤化程度,挥发分也较高,水分和灰分较低,容易着火和着尽,发热量较高。
3、贫煤:挥发分高于无烟煤,着火燃尽特性也高于无烟煤,但燃烧特性较差。
4、无烟煤:含碳量高,杂质少发热量高,挥发份含量较低,难以点燃,燃烧特性差,火焰短,难燃尽。
5、混煤:混煤是指的两种或多种不同种类的煤混合在一起。
它的着火温度不是取决于平均挥发份的含量,而是偏高于相同挥发分的单一煤种。
当混煤中的低热值或低反映能力的煤含量大时会造成频繁灭火。
当燃烧性能相差很大的煤混合时,不但对燃烧性能影响很大,而且会影响燃烧效率。
二、燃烧器:(一)一次风:将煤粉送入炉膛,并供给煤粉燃烧阶段挥发分燃烧所需的空气。
1、一次风量:当煤质一定时,一次风量影响煤粉气流的着火速度和稳定性,一次风量越大,煤粉气流被加热到着火所需的热量就越多,着火速度越慢,着火推迟导致火焰在炉膛内的总行程缩短,使得有效燃烧时间缩短,导致燃烧不完全,效率低。
一次风要保证挥发分燃烧所需的氧量,又要满足输送煤粉的需要。
一次风量占总风量的比值称为一次风率。
随着煤粉中挥发分含量的增加,一次风率也增加。
2、一次风速:一次风速不但决定着燃烧的稳定性,还影响着一次风的刚度。
一次风速过高会推迟着火,引起燃烧不稳定。
当一次风速大于火焰传播速度时,会吹灭火焰或者引起“脱火”。
一次风速过小时,会影响燃烧的稳定性,还会容易结渣。
3、一次风温:提高一次风温可以降低着火热,是着火位置前提,还能使煤再低负荷的情况下稳定燃烧。
提高一次风温也是提高煤粉着火速度和着火稳定性的措施。
可以提高燃烧效率,节省能源。
一次风温过低会导致炉膛出口温度过高引起过热器再热器温度太高。
但是也不是一次风温越高越好,因为当输送挥发分高的煤粉时,一次风温过高容易在输送管道中引起自然或爆炸。
(二)二次风:二次风实在煤粉气流燃烧后混入,供给煤中焦炭和剩余挥发分燃烧所需的氧量。
1、二次风量:二次风量过多会降低炉膛火焰的温度;二次风量过少则会是燃烧不完全,固体不完全燃烧损失增多,浪费能源。
2、二次风速:二次风必须有穿透火焰的能力,因为高温火焰的粘度很大,因此二次风速应该很大,一般为一次风速的二倍多,以增强与焦炭粒子的充分混合。
3、二次风温:二次风温越高越能强化燃烧,增强燃烧的稳定性,但是二次风温受到尾部空气预热器面积的限制,传热面积越大金属消耗越多,投资越多,而且不便布置。
(三)三次风:在中间仓储式制粉系统中,细分分离器将细煤粉与输送煤粉的空气分离后形成乏汽。
乏汽中带有部分煤粉,送入炉膛形成三次风。
三次风风温低,水分大,煤粉细。
三次风对燃烧有明显的不利影响,(1)使火焰温度降低,燃烧不稳定;(2)火焰拖长,炉膛出口烟温升高,使过热器再热器温度升高,气温调节幅度增大;(3)三次风高速射入,使火焰残余旋转增大,同时飞灰可燃物增加;(4)三次风量较大时,风速也增大,扰乱炉内正常的空气流动,引起火焰贴墙结渣。
(四)周界风:分布在一次风喷口外缘,有以下作用(1)冷却一次风喷口,防止喷口变形;(2)直流煤粉着火是从外缘开始,火焰外缘容易缺氧,起到补氧的作用,周界风量少时有利于稳定燃烧,周界风量大时相当于二次风过早的混入,不利于燃烧;(3)周界风的速度比煤粉气流的速度高,能增加一次风的刚度,防止气流偏斜,有利于煤粉完全燃烧;(4)周界风有利于卷吸高温烟气,有利于一次风二次风的混合,对于煤质差的煤应该减少周界风。
(五)夹心风:(1)补充火焰中心的氧气,降低着火区的温度;(2)高速的夹心风增强一次风的强度,防止气流偏斜,有利于燃烧充分;(3)使煤粉气流扩散减少,对防止结渣有一定的作用;(4)可以作为变煤种,变负荷燃烧的调节手段之一。
(六)配风方式:配风方式影响燃烧的稳定性和燃烧效率,还关系到结渣,火焰中心高度的变化,出口温度的控制。
主要有均等配风和一次风集中布置的分级燃烧。
均等配风适用于含挥发分高容易燃烧的煤,一次风二次风喷口交叉排列,间距较小,一次风中煤粉燃烧后,能够及时充分均匀的和二次风混合,不会使火焰根部因为缺乏空气而燃烧不完全,或导致燃烧速度降低。
一次风集中布置的燃烧器适用于挥发分含量低不容易燃烧的煤。
几个一次风口集中布置,远离二次风口,先让煤粉着火,待着火稳定后再与二次风混合,保证燃烧的稳定性。
一次风集中布置保持比较高的煤粉浓度,减少着火热,燃烧放热比较集中,使着火区保持较高的温度,有利于燃烧。
煤粉气流刚度增强,不偏斜贴墙,不易结渣煤粉卷吸能力增强。
但是一次风喷嘴附近形成高温区,喷嘴易变性,使喷嘴附近气流速度分布不均匀,容易出现煤粉与空气的分层。
此时为了冷却一次风喷嘴,可以加装周界风或夹心风。
(七)燃烧器的结构形式:分为直流式和旋流式。
1、四角切圆直流式燃烧器,四个燃烧器对称的分布在炉膛同一个平面的四个角上,它们射出的气流相切同一个或者两个圆,增加扰动,增强燃烧。
由于卷吸作用高温烟气中的热量源源不断的传给煤粉气流,使之燃烧,首先从气流的外缘开始着火,然后火焰迅速的向气流的内部传播,并达到稳定的状态。
四股气流具有“自点燃”的作用,即煤粉气流向火的一侧受到上流火焰的直接撞击而被点燃,背火的一侧也卷吸炉墙处的烟气。
四角切圆燃烧器容易引起气流偏斜,使火焰贴墙,容易结渣,还造成燃烧的不稳定。
引起切圆的因素有:(1)邻角气流的撞击;(2)受到两侧补气的影响,形成气压差,向火的一侧补气充足,背火的一侧补气不足,迫使火焰向背火侧偏斜,贴墙结渣;(3)燃烧器高宽比对弯曲变形影响较大;(4)当燃烧器多层布置时,受到其它层的影响。
切圆直径:切圆直径过大上游火焰向下游的火焰根部靠近,着火条件较好,炉内气流旋转强烈,有利于燃尽,但是火焰贴墙容易结渣,火焰靠近喷口容易烧坏喷嘴,引起较大热偏差,使炉膛出口温度增大。
切圆直径过小会引起对角对角气流的撞击,火焰推迟,“自点燃”作用减弱,燃烧不稳定不充分,调节困难,炉膛出口烟温过高。
2、旋流燃烧器:旋流燃烧器由圆形喷口组成,燃烧器中装有各种形式的旋流发生器,煤粉通过旋流器时,发生旋转从喷口喷出形成旋转射流,能够形成有利于着火的高温烟气回流区,有利于着火。
旋转气流有轴向速度和切向速度,旋转气流的强度主要表现在旋转强度。
旋流燃烧器一般布置在炉膛的后墙上,有的采用大风箱供风,有的采用分割风箱供风。
煤粉气流经过旋流器后形成旋转气流,射出喷口后在气流中心形成回流区,叫做内回流区,卷吸炉内高温烟气加热煤粉,并燃烧,火焰由内边缘向外传播,在旋转气流的外边缘形成外回流区,也卷吸高温空气和烟气。
着火气流与外围送入的二次风也形成旋转气流,混合强烈。
按照旋流器的结构可分为蜗壳式,可动叶轮式,可动叶片式。
(八)单只燃烧器的功率:目前锅炉趋向于采用多只小功率燃烧器共同组合。
因为这样可以提高调解的灵活性,避免水冷壁及燃烧器喷口结渣。
采用大功率燃烧器有以下缺点:(1)炉膛受热面局部温度过高,易于结渣;(2)易于引起水冷壁传热恶化和直流锅炉的水动力多值性;(3)切换或启停燃烧器对炉内火焰的稳定性影响太大;(4)一二次风气流太厚,不利于风粉混合;(5)燃烧调节不灵敏;(6)切换或启停燃烧器对炉膛出口烟温影响较大,影响过热器的安全性和汽温调节。
三、炉膛:炉膛截面热负荷Q A:单位时间内单位炉膛截面上燃料燃烧放出的热量。