运筹学—排队论
- 格式:ppt
- 大小:2.89 MB
- 文档页数:28
排队论习题答案排队论习题答案排队论是运筹学中的一个重要分支,研究的是排队系统中的等待时间、服务时间以及系统的稳定性等问题。
在实际生活中,我们经常会遇到排队的情况,比如超市、银行、医院等地方。
那么,如何有效地解决排队问题,减少等待时间呢?下面我将通过几个习题来探讨排队论的解题方法。
习题一:某银行有两个窗口,分别为A窗口和B窗口,顾客到达的时间间隔服从指数分布,平均每10分钟到达一人。
A窗口的服务时间服从均值为5分钟的指数分布,B窗口的服务时间服从均值为7分钟的指数分布。
求顾客平均等待时间和平均逗留时间。
解答一:首先,我们需要计算平均到达率λ和平均服务率μ。
根据题目给出的信息,平均到达率λ=1/10=0.1人/分钟,平均服务率μA=1/5=0.2人/分钟,平均服务率μB=1/7≈0.1429人/分钟。
根据排队论的基本原理,当λ<μ时,系统稳定,顾客平均等待时间为0。
当λ>μ时,系统不稳定,顾客平均等待时间为ρ/(μ-λ),其中ρ为系统繁忙率。
由于该题目中有两个窗口,所以我们需要计算两个窗口的繁忙率ρA和ρB。
ρA=λ/μA=0.1/0.2=0.5,ρB=λ/μB=0.1/0.1429≈0.7。
由于两个窗口的繁忙率不相等,我们需要使用排队网络的方法来求解。
根据排队网络的基本原理,顾客平均逗留时间等于顾客在每个窗口的平均逗留时间之和。
根据排队网络的公式,顾客在A窗口的平均逗留时间为1/(μA-λ)≈5分钟,顾客在B窗口的平均逗留时间为1/(μB-λ)≈7.5分钟。
所以,顾客平均逗留时间为5+7.5=12.5分钟。
习题二:某医院门诊部有一个窗口,顾客到达的时间间隔服从泊松分布,平均每10分钟到达一人。
窗口的服务时间服从均值为8分钟的指数分布。
求顾客平均等待时间和平均逗留时间。
解答二:同样地,我们需要计算平均到达率λ和平均服务率μ。
根据题目给出的信息,平均到达率λ=1/10=0.1人/分钟,平均服务率μ=1/8=0.125人/分钟。
运筹学排队论1. 简介排队论是运筹学中重要的一个分支,它研究了在人员、物品或信息流动过程中产生的排队现象,并通过建立数学模型和分析这些模型来探讨和优化系统中的排队行为。
排队论在各个领域都有广泛的应用,如交通运输、电信网络、生产制造等。
2. 排队模型排队论中常用的模型包括M/M/1模型、M/M/s模型、M/G/1模型等。
其中,M表示到达过程的分布,而G表示服务时间的分布。
而数字1或s则表示系统中的服务通道数。
2.1 M/M/1模型M/M/1模型是排队论中最简单的一个模型,它假设到达过程和服务时间都服从指数分布。
该模型中只有一个服务通道。
2.2 M/M/s模型M/M/s模型是M/M/1模型的扩展,它假设到达过程和服务时间仍然服从指数分布,但有s个服务通道。
M/M/s模型适用于有多个并行服务通道的排队系统。
2.3 M/G/1模型M/G/1模型假设到达过程服从泊松分布,而服务时间服从一般分布。
该模型在实际应用中更为常见,因为服务时间往往不服从指数分布。
3. 排队论的性能度量排队论的性能度量是对排队模型进行定量分析和评估的重要手段,常见的性能度量指标包括平均等待时间、平均逗留时间、系统繁忙率等。
3.1 平均等待时间平均等待时间是指在排队系统中,每个顾客平均等待的时间长度。
通过对排队模型的分析和计算,可以得到平均等待时间的具体数值。
3.2 平均逗留时间平均逗留时间是指每个顾客在排队系统中逗留的平均时间长度。
它等于平均等待时间加上服务时间。
3.3 系统繁忙率系统繁忙率是指服务通道在单位时间内处于工作状态的比例。
它可以用来评估系统是否能够满足顾客的需求。
4. 排队论的应用4.1 交通运输排队论在交通运输领域的应用非常广泛。
例如,交通信号灯的控制就可以通过排队论进行优化,以减少车辆的等待时间和交通拥堵。
4.2 电信网络在电信网络中,排队论被用于研究数据包的传输和路由机制。
通过对排队论模型的分析,可以提高网络的传输效率和质量。
《运筹学》第六章排队论习题及答案《运筹学》第六章排队论习题1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念;(5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。
2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来⾃两个⽅⾯,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,⼜将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布;(4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流;(5)在排队系统中,⼀般假定对顾客服务时间的分布为负指数分布,这是因为通过对⼤量实际系统的统计研究,这样的假定⽐较合理;(6)⼀个排队系统中,不管顾客到达和服务时间的情况如何,只要运⾏⾜够长的时间后,系统将进⼊稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长⽆限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的⽅差⼤⼩有关,当服务时间分布的⽅差越⼤时,顾客的平均等待时间就越长;(10)在机器发⽣故障的概率及⼯⼈修复⼀台机器的时间分布不变的条件下,由1名⼯⼈看管5台机器,或由3名⼯⼈联合看管15台机器时,机器因故障等待⼯⼈维修的平均时间不变。
3.某店有⼀个修理⼯⼈,顾客到达过程为Poisson 流,平均每⼩时3⼈,修理时间服从负指数分布,平均需19分钟,求:(1)店内空闲的时间;(2)有4个顾客的概率;(3)⾄少有⼀个顾客的概率;(4)店内顾客的平均数;(5)等待服务的顾客数;(6)平均等待修理的时间;(7)⼀个顾客在店内逗留时间超过15分钟的概率。
运筹学100排队论第10章排队论第⼀节排队服务系统的基本概念⼀、排队系统的特性排队问题的实例:超市付款,⾃动取款机取款,医院门诊,乘公交车,设备修理。
排队服务系统的要素:顾客源,等待队列,服务机构。
要素的特性:1. 顾客源顾客到达的间隔时间:确定、随机(分布类型);⼀次到达⼈数:单个到达,成批到达;顾客源:数量⽆限,数量有限。
2. 等待队列等待规则:损失制,等待制,混合制;接受服务顺序:先到先服务,后到先服务,按优先权服务,随机服务。
3. 服务机构服务台数量:单个,多个;排列⽅式:串联、并联、混合排列。
服务时间:固定,随机(分布类型);⼀次服务⼈数:单⼈,成批。
三、排队服务系统的分类按上⾯所讨论的排队系统各项的特性,可对排队系统作出分类。
通常按如下6⽅⾯的特性对排队系统进⾏分类: (a /b /c ) : (d /e /f )每个字母代表⼀个特征,它们分别是:a :顾客到达间隔的分布,有:M ──负指数分布;D ──确定型;E k ──k 阶爱尔郎分布;GI ──⼀般相互独⽴的分布。
b :服务时间的分布有:M 、D 、E k 、Gc :系统中并联的服务台数,记为Sd :系统中最多可容纳的顾客数,∞~1e :顾客源总数,为∞~1f :排队服务规则FCFS ──先到先服务LCFS ──后到先服务⽤这6个参数我们可以表⽰出某种类型的排队系统,如:M /M /1/10/∞/FCFS其中后三项可以省略,这时表⽰的是:a /b /c /∞/∞/FCFS三、排队系统的状态及参数系统状态N (t )——排队系统中的顾客数,包括等待的和正在被服务的。
其与系统运⾏的时刻t 相关,且是⼀个随机变量。
稳定状态——当系统状态与时刻t ⽆关时,称系统处于稳定状态。
在系统开始运⾏的⼀段时间内,系统状态随时间⽽变化,在运⾏⼀段时间之后,系统的状态将不随时间变化,此时系统即进⼊稳定状态。
排队论主要研究系统处于稳定状态的⼯作情况,以下参数也都针对于稳定状态进⾏定义。
运筹学中的排队论分析与应用运筹学是一门研究如何最优化决策的学科。
在现代社会中,许多场景下都存在排队现象,例如银行、超市、机场等场所。
排队论作为运筹学的一个重要分支,专门研究如何通过合理的排队策略来优化服务效率与用户体验。
本文将介绍排队论的基本原理、应用场景以及如何利用排队论进行实际问题的分析与解决。
一、排队论的基本原理排队论是研究排队系统的理论与方法,其基本原理包括排队模型、排队规则以及排队指标。
1. 排队模型排队模型是对排队系统进行抽象和建模的过程,常用的排队模型有M/M/1、M/M/c、M/G/1等。
其中,M表示顾客到达过程符合泊松分布,而服务过程符合指数分布;1表示一个服务台,c表示多个服务台;G表示总体服从一般分布。
2. 排队规则排队规则是指在排队系统中,顾客到达和离开的规则。
常用的排队规则有先到先服务(First-Come-First-Serve,简称FCFS)、最短作业优先(Shortest Job First,简称SJF)、优先级法则等。
3. 排队指标排队指标是对排队系统性能的度量,常用的排队指标包括平均等待时间、平均逗留时间、系统繁忙度等。
这些指标可以帮助我们评估排队系统的效率,并进行比较和优化。
二、排队论的应用场景排队论的应用场景非常广泛,几乎可以涵盖各个行业。
下面以几个典型的应用场景为例,介绍排队论在其中的分析与应用。
1. 银行排队银行是排队论的典型应用场景之一。
通过排队论的分析,银行可以确定合理的柜台数量和工作人员配置,以减少客户的等待时间和提高服务效率。
此外,银行还可以考虑引入预约系统、自助服务等方式,进一步优化排队系统。
2. 售票窗口排队售票窗口也是一个常见的排队场景,如电影院、火车站等。
利用排队论,可以根据顾客到达的速率和服务时间的分布,预测等待时间,并提前安排足够的窗口进行服务,以提高售票效率和用户体验。
3. 交通信号灯优化交通信号灯的优化也可以借助排队论的方法。
通过对道路上车辆到达和通过的流量进行统计和分析,可以调整信号灯的信号周期和配时方案,以减少交通拥堵和减少等待时间。
排队论模型1. 引言排队论是运筹学中的一个重要分支,研究的是排队系统中顾客的到达、等待和服务过程。
在现实生活中,我们经常会遇到排队的场景,如银行、超市、医院等。
通过排队论模型的分析,可以帮助我们优化服务过程,提高效率和顾客满意度。
本文将介绍排队论模型的基本概念和常用模型。
2. 基本概念2.1 排队系统排队系统是指顾客到达一个系统,并等待被服务的过程。
一个排队系统通常包含以下几个要素:•到达过程:顾客到达系统的时间间隔可以是随机的,也可以是确定的。
•排队规则:系统中的顾客通常按照先来先服务原则排队。
•服务过程:系统中的服务员或服务设备为顾客提供服务,服务时间也可以是随机的或确定的。
•系统容量:排队系统中通常有一定的容量限制,即同时能够容纳的顾客数量。
2.2 基本符号在排队论中,通常使用以下符号来表示不同的概念:•λ:到达率,表示单位时间内系统的平均到达顾客数量。
•μ:服务率,表示单位时间内系统的平均服务顾客数量。
•ρ:系统利用率,表示系统的繁忙程度,计算公式为ρ = λ / μ。
•L:系统中平均顾客数,包括正在排队等待服务的顾客和正在接受服务的顾客。
•Lq:系统中平均等待队列长度,即正在排队等待服务的顾客数。
•W:系统中平均顾客逗留时间,包括等待时间和服务时间。
•Wq:系统中平均顾客等待时间,即顾客在排队等待服务的平均时间。
3. 常用模型3.1 M/M/1模型M/M/1模型是排队论中最简单的模型之一,其中M表示指数分布。
M/M/1模型满足以下几个假设:•顾客到达率λ满足均值为λ的指数分布。
•服务率μ满足均值为μ的指数分布。
M/M/1模型的特点是顾客到达率和服务率是独立的,且符合指数分布。
根据排队论的理论分析,可以计算出系统的性能指标,如系统利用率、平均顾客数、平均等待队列长度等。
3.2 M/M/c模型M/M/c模型是M/M/1模型的扩展,其中c表示服务员的数量。
M/M/c模型满足以下假设:•顾客到达率λ满足均值为λ的指数分布。
运筹学排队论引言排队论是运筹学中的一个重要分支,它研究的是如何优化排队系统的设计和管理。
排队论广泛应用于各个领域,如交通流量控制、银行业务流程优化、生产线调度等,对于提高效率和降低成本具有重要意义。
本文将介绍排队论的基本概念、排队模型以及应用案例,帮助读者了解运筹学中排队论的基本原理和应用方法。
什么是排队论排队论是一门研究排队现象的数学理论,它通过定义排队系统的各个要素,如顾客到达率、服务率、队列容量等,建立数学模型分析和优化排队系统的性能指标。
排队论主要研究以下几个方面:•排队系统的模型:包括单服务器排队系统、多服务器排队系统、顾客数量有限的排队系统等。
•排队系统的性能指标:包括平均等待时间、系统繁忙率、系统容量利用率等。
•排队系统的优化方法:包括服务策略优化、系统容量规划等。
排队论的基本概念到达过程排队论中的到达过程是指顾客到达排队系统的时间间隔的随机过程。
常用的到达过程有泊松过程、指数分布等。
到达过程的特征决定了顾客到达的规律。
服务过程排队论中的服务过程是指服务器对顾客进行服务的时间间隔的随机过程。
常用的服务过程有指数分布、正态分布等。
服务过程的特征决定了服务的速度和效率。
排队模型排队模型是排队论中的数学模型,用于描述排队系统的性能和行为。
常用的排队模型有M/M/1模型、M/M/s模型等。
这些模型分别表示单服务器排队系统和多服务器排队系统。
性能指标排队系统的性能指标用于评估系统的性能,常见的性能指标有平均等待时间、系统繁忙率、系统容量利用率等。
这些指标可以帮助决策者优化排队系统的设计和管理。
排队模型与分析M/M/1模型M/M/1模型是排队理论中最简单的排队系统模型,它是一个单服务器、顾客到达过程和服务过程均为指数分布的排队系统。
M/M/1模型的性能指标可以通过排队论的公式计算得出。
M/M/s模型M/M/s模型是排队理论中的多服务器排队模型,它是一个多个服务器、顾客到达过程和服务过程均为指数分布的排队系统。
运筹学中的排队论分析方法运筹学是应用数学的一个分支,被广泛应用于优化、决策、规划等实践问题中。
排队论是运筹学的一个重要分支,它研究客户与服务设施之间的运作规律,以及对这些规律进行优化。
排队论可以应用于许多领域,例如生产线、银行、医院、交通、电信等。
排队模型从大量的数据中挑选出有用的信息,解释客户等待时间、服务设施利用率、系统吞吐量等指标。
运营商们也通过排队论找到了减少服务时间,减少成本和增加收益的方法。
排队论模型通常包括五个元素:客户、服务设施、等待行列、受服务的规则,以及长度测量方法。
客户需求量呈随机分布,服务设施数量有限且运营时间有限,等待时间呈指数分布。
排队论可以预测某个服务系统的运作状态以及在不同服务政策下的结果变化。
排队论中最著名的模型是M/M/1模型,其中M表示到达时间和服务时间都是随机的指数分布,1表示只有一个服务设施的存在。
此模型的解答涉及到稳态等长队和队列中的平均客户数和等待时间,以及服务器的平均利用率等基本指标。
除此之外,排队论中还有其他经典模型,例如M/M/c模型,其中c表示有多个服务器可供选择。
排队论也适用于某些特殊情况的研究。
例如,当服务时间为几何分布时,M/G/1模型就成为了一种理想的情况。
在这个模型中,客户需求量和服务时间具有不同的分布。
G表示这些服务时间的分布可以是任意的。
另外,排队论也可以应用于网络中的传输分配模型,以确定网络在任何负载下的可靠性和运作状态。
排队论模型可以被用于分析较小的网络,或者对于哪些带有网络化延迟的系统。
在实际应用中,排队论分析可以帮助我们寻找优化服务设备的方法。
通过排队论可以确定提高服务速度、增加系统容量或提高等待质量等措施,以提高客户的体验和收益。
在医院中,排队论可以帮助诊所和医院合理分配资源、优化服务流程,减少等待时间、减少节约成本、节约时间等指标。
总之,排队论是运筹学的重要分支,解决了客户与服务设施之间的运作规律和优化。
它在很多领域的帮助下,解决了大量的实践问题。
第八章 排队论排队是日常生活和经济管理经常遇到的问题,如医院等待看病的病人、加油站等待加油的汽车、工厂等待维修的机器、港口等待停泊的船只等。
在排队论中把服务系统中这些服务的客体称为顾客。
由于系统中顾客的到来以及顾客在系统中接受服务的时间等均是随机的,因此排队现象是不可避免的。
对于随机服务系统,若扩大系统设备,会提高服务质量,但会增加系统费用。
若减少系统设备,能节约系统费用,但可能使顾客在系统中等待的时间加长,从而降低了服务质量,甚至会失去顾客而增加机会成本。
因此,对于管理人员来说,解决排队系统中的问题是:在服务质量的提高和成本的降低之间取得平衡,找到最适当的解。
排队论是优化理论的重要分支。
排队论是1909年由丹麦工程师爱尔郎(A.K.Erlang )在研究电话系统时首先提出,之后被广泛应用于各种随机服务系统。
第一节 排队论的基本概念及所研究的问题一、基本概念(一)排队系统的组成一般的排队系统有三个基本组成部分:顾客的到达(输入过程)、排队规则和服务机构,如图8—1所示。
1.输入过程输入过程指顾客按什么样的规律到达。
包括如下三个方面的内容:(1)顾客总体(顾客源) 指可能到达服务机构的顾客总数。
顾客总体数可能是有限的,也可能是无限。
如工厂内出现故障而等待修理的机器数是有限的,而到达某储蓄所的顾客源相当多,可近似看成是无限的。
(2)顾客到达的类型 指顾客的到达是单个的还是成批的;(3)顾客相继到达的时间间隔分布 即该时间间隔分布是确定的(定期运行的班车、航班等)还是随机的,若是随机的,顾客相继到达的时间间隔服从什么分布(一般为负指数分布);2.排队规则排队规则指顾客接受服务的规则(先后次序),有以下几种情况。
(1)即时制(损失制) 当顾客来到时,服务台全被占用,顾客随即离去,不排队等候。
这种排队规则会损失许多顾客,因此又称为损失制。
(2)等待制 当顾客来到时,若服务台全被占用,则顾客排队等候服务。
在等待制中,又可按顾客顾客达到排队系统 图8—1服务的先后次序的规则分为:先到先服务(FCFS,如自由卖票窗口等待卖票的顾客)、先到后服务(FCLS,如仓库存放物品)、随机服务(SIRO,电话交换台服务对话务的接通处理)和优先权服务(PR,如加急信件的处理)。