Eviews8章时间序列模型
- 格式:ppt
- 大小:313.00 KB
- 文档页数:26
eviews时间序列模型原理EViews(Econometric Views)是一种强大的经济计量分析软件,广泛应用于经济学和金融学领域。
它提供了一套完整的时间序列模型分析工具,以帮助研究人员对时间序列数据进行建模和预测。
时间序列模型是一种通过分析和建模过去的数据来预测未来的方法。
它基于一个基本假设,即未来的数据将与过去的数据存在某种关系。
时间序列模型的目标是找到这种关系,并利用它来预测未来的数据。
EViews提供了多种时间序列模型,包括自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)、广义自回归条件异方差模型(GARCH)等。
这些模型通过对数据的统计特征进行分析,提取出数据中的模式和规律,并用数学模型来描述这些规律。
在EViews中,建立时间序列模型的第一步是对数据进行可视化和描述性统计分析。
通过绘制时间序列图,可以观察数据的趋势、季节性和周期性等特征。
同时,还可以计算数据的均值、方差和自相关性等统计指标,以进一步了解数据的性质。
接下来,可以使用EViews中的模型估计工具来拟合时间序列模型。
以ARMA模型为例,ARMA模型是一种基于过去数据的自回归和移动平均过程的组合。
在EViews中,可以通过指定AR和MA的阶数来构建ARMA模型,并利用最大似然估计法来估计模型参数。
在建立模型之后,可以使用EViews中的模型诊断工具来评估模型的拟合效果。
通过观察残差序列的自相关性和偏自相关性,可以判断模型是否存在遗漏变量或过度拟合的问题。
同时,还可以通过对模型残差进行统计检验,判断模型是否符合数据的假设前提。
可以使用建立好的时间序列模型进行预测和模拟分析。
在EViews 中,可以使用模型预测工具来生成未来一段时间内的预测值。
同时,还可以通过模型模拟工具来生成符合模型假设的随机序列,以进行风险评估和策略优化。
EViews的时间序列模型提供了一种强大的工具,用于对经济和金融数据进行建模和预测。
成都空气污染指数API的建模与预测20085728 刘童超【目录】1..数据来源与数据预处理 (2)1.1数据来源 (2)1.2离群点和缺失值的检验................................................................... 错误!未定义书签。
2.直观分析和相关分析 (4)2.1直观分析和特征分析 (4)2.2相关分析 (6)2.3平稳性检验 (7)3.liu(t)序列的零均值处理 (8)3.1数据的零均值化 (8)3.2零均值过程的检验 (8)4.模型的识别和初步定阶 (9)5.模型的参数估计 (11)6.模型的检验 (11)6.1参数的显著性检验 (11)6.2模型的适用性检验 (12)7.模型的预测 (14)7.1对序列liu1(t)的预测 (14)7.2对序列liu(t)的预测 (14)【附录及参考文献】 (15)附录1.零均值化处理后的数据 (15)参考文献: (16)1..数据来源与数据预处理1.1数据来源原始数据见附件,我们需要的数据见下表:表1-1模型所需的数据时间160 159 158 157 156 155 154 153 152 151 API 68 60 84 76 71 81 55 45 36 35 时间150 149 148 147 146 145 144 143 142 141 API 53 87 88 97 113 99 82 100 95 83 时间140 139 138 137 136 135 134 133 132 131 API 78 73 63 44 44 63 116 72 69 62 时间130 129 128 127 126 125 124 123 122 121 API 89 85 67 37 42 51 45 56 48 53 时间120 119 118 117 116 115 114 113 112 111 API 46 54 45 34 76 96 85 64 65 96 时间110 109 108 107 106 105 104 103 102 101 API 94 86 97 63 99 62 47 64 62 48 时间100 99 98 97 96 95 94 93 92 91 API 44 87 63 68 55 65 75 85 66 59 时间90 89 88 87 86 85 84 83 82 81 API 48 35 44 50 60 54 43 45 54 85 时间80 79 78 77 76 75 74 73 72 71 API 72 49 40 60 60 83 83 91 75 66 时间70 69 68 67 66 65 64 63 62 61 API 74 73 55 71 81 56 67 87 90 81 时间60 59 58 57 56 55 54 53 52 51 API 76 58 28 45 52 83 93 69 60 81 时间50 49 48 47 46 45 44 43 42 41 API 46 52 57 81 76 62 58 65 48 72 时间40 39 38 37 36 35 34 33 32 31 API 64 63 80 62 64 65 55 79 77 56 时间30 29 28 27 26 25 24 23 22 21 API 30 42 74 66 62 64 81 100 58 63 时间20 19 18 17 16 15 14 13 12 11 API 94 86 83 83 63 43 43 46 55 61 时间10 9 8 7 6 5 4 3 2 1 API 65 50 61 59 79 62 40 28 65 92此处一共160个数据,其中1~150用来建立模型,我们称为样本,151~160用来检验预测值与真实值的误差,我们成为检验值。
应用时间序列分析实验手册目录目录 (2)第二章时间序列的预处理 (3)一、平稳性检验 (3)二、纯随机性检验 (11)第三章平稳时间序列建模实验教程 (12)一、模型识别 (12)二、模型参数估计(如何判断拟合的模型以及结果写法) (17)三、模型的显著性检验 (21)四、模型优化 (22)第四章非平稳时间序列的确定性分析 (24)一、趋势分析 (24)二、季节效应分析 (42)三、综合分析 (48)第五章非平稳序列的随机分析 (54)一、差分法提取确定性信息 (54)二、ARIMA模型 (69)三、季节模型 (75)第二章时间序列的预处理一、平稳性检验时序图检验和自相关图检验(一)时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征例2.1检验1964年——1999年中国纱年产量序列的平稳性1.在Eviews软件中打开案例数据图1:打开外来数据图2:打开数据文件夹中案例数据文件夹中数据文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入图3:打开过程中给序列命名图4:打开数据2.绘制时序图可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等图1:绘制散点图图2:年份和产出的散点图图3:年份和产出的散点图(二)自相关图检验例2.3导入数据,方式同上;在Quick菜单下选择自相关图,对Qiwen原列进行分析;可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。
图1:序列的相关分析图2:输入序列名称图2:选择相关分析的对象图3:序列的相关分析结果:1. 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值都>5%的显著性水平,所以接受原假设,即序列是纯随机序列,即白噪声序列(因为序列值之间彼此之间没有任何关联,所以说过去的行为对将来的发展没有丝毫影响,因此为纯随机序列,即白噪声序列.) 有的题目平稳性描述可以模仿书本33页最后一段.(三)平稳性检验还可以用:单位根检验:ADF,PP检验等;非参数检验:游程检验图1:序列的单位根检验表示不包含截距项图2:单位根检验的方法选择图3:ADF检验的结果:如图,单位根统计量ADF=-0.016384都大于EVIEWS给出的显著性水平1%-10%的ADF临界值,所以接受原假设,该序列是非平稳的。
时间序列计量经济学模型一.企业景气指数和企业家信心指数1.1建立工作文件并录入数据,如图1所示图1这是企业景气指数和企业家信心指数的原始数据,prosperity代表企业景气指数,confidence代表企业家信心指数。
1.2平稳性检验1.2.1平稳性的图示判断(图2)图2从图中可以看出企业景气指数和企业家信心指数这两序列都是非平稳的。
1.2.2样本自相关图判断点击主界面Quick\Series Statistics\Correlogram...,在弹出的对话框中输入prosperity,点击OK就会弹出Correlogram Specification对话框,选择Level,并输入要输出的阶数(一般默认为24),点击OK,即可得到prosperity的样本相关函数图,如图3所示。
图3从上述样本相关函数图,可以看到企业景气指数(prosperity)的样本相关函数是缓慢的递减趋于零的,但随着时间的推移,在0附近波动并呈发散趋势。
所以,通过企业景气指数(prosperity)的样本相关图,可初步判定该企业景气指数(prosperity)时间序列非平稳。
同理得:confidence的样本相关函数图,如图4所示图4从上述样本相关函数图,可以看到企业家信心指数(confidence)的样本相关函数是缓慢的递减趋于零的,但随着时间的推移,在0附近波动并呈发散趋势。
所以,通过企业家信心指数(confidence)的样本相关图,可初步判定该企业家信心指数(confidence)时间序列非平稳。
1.2.3单位跟检验单位跟检验((ADF检验检验))(1)企业景气指数(prosperity)采用ADF检验对prosperity序列进行平稳性的单位根检验。
点击主界面Quick\Series Statistics\Unit Root Test...,在弹出的Series对话框中输入prosperity,点击OK,就会出现UnitRoot Test对话框,如图5所示。