双草酸硼酸锂LiBOB电解质性能研究.
- 格式:ppt
- 大小:777.00 KB
- 文档页数:30
多氟多双草酸硼酸锂(简称"bob")是一种新型的锂电池正极材料,具有高能量密度和长循环寿命的特点。
随着新能源汽车和储能市场的快速发展,对锂电池正极材料的需求量不断增加,而多氟多双草酸硼酸锂作为一种性能优越的正极材料,其产能也备受关注。
1. 产能需求背景新能源汽车的普及和发展,驱动了锂电池产业的快速增长。
储能领域的需求也在不断增加。
而多氟多双草酸硼酸锂作为锂电池正极材料,具有高能量密度、长循环寿命等优点,成为了备受青睐的产品。
由于需求量大,生产商需要提高产能,以满足市场需求。
2. 产能扩建措施针对多氟多双草酸硼酸锂的产能扩建,主要有以下几个方面的措施:(1)技术创新:通过技术创新,提高生产工艺的效率,降低生产成本,从而提高产能。
(2)设备更新:引进先进的生产设备和生产线,提高生产效率,减少能耗,增加产能。
(3)规模扩大:通过扩大生产规模,增加生产线数量,扩大生产基地,来提高产能。
(4)人力资源投入:加大对人力资源的投入,培训专业技术人员,提高生产效率,从而增加产能。
3. 产能扩建效果产能扩建的效果主要体现在以下几个方面:(1)提高产量:产能扩建后,企业的产量得到了大幅度的提高,可以更好地满足市场需求。
(2)降低成本:产能扩建后,生产效率得到了提高,生产成本得到了一定程度的降低,提高了企业的竞争力。
(3)增加收入:产能扩建后,企业的产值得到了大幅度的增加,为企业带来了更多的收入。
4. 未来发展趋势多氟多双草酸硼酸锂作为锂电池正极材料,具有广阔的市场前景。
未来,随着新能源汽车和储能市场的不断扩大,对多氟多双草酸硼酸锂的需求将会不断增加。
产能扩建将是企业的长期发展战略,提高产能,满足市场需求,实现自身的可持续发展。
多氟多双草酸硼酸锂的产能扩建是锂电池产业发展的必然趋势,企业需要密切关注市场需求,不断提高产能,以适应新的市场形势。
产能扩建也需要企业了解市场动态,把握市场需求,制定合理的发展战略,做好产能规划,实现企业的可持续发展。
Vol.41No.1·136·化 工 新 型 材 料NEW CHEMICAL MATERIALS第41卷第1期2013年1月基金项目:甘肃省科技计划(1107RJYA056),国家自然科学基金(20961004,21001111)作者简介:崔孝玲(1980-),女,工程师,主要从事锂离子电池电解液研究。
联系人:李世友(1980-),男,副教授,主要从事锂离子电池电解液研究。
锂离子电池电解质用含硼锂盐研究进展崔孝玲1 李世友1* 毛丽萍1 李法强2(1.兰州理工大学石油化工学院,兰州730050;2.中国科学院青海盐湖研究所,西宁810008)摘 要 电解质材料是锂离子电池的关键材料之一。
LiBF4、双草酸硼酸锂(LiBOB)及草酸二氟硼酸锂(LiODFB)是极具应用前景的3种含硼锂盐。
介绍了3种锂盐各自的优缺点及研究近况,重点综述了它们的离子传导特性及与电极材料的相容性能。
关键词 LiBF4,双乙二酸硼酸锂,草酸二氟硼酸锂,电解液Research progress of boron-based lithium salts for lithium ion batteriesCui Xiaoling1 Li Shiyou1 Mao Liping1 Li Faqiang2(1.College of Petrochemical Technology,Lanzhou University of Technology,Lanzhou 730050;2.Qinghai Institute of Salt Lakes,Chinese Academy of Sciences,Xining 810008)Abstract Electrolyte is considered as one of the key materials to decide the performance of lithium ion batteries.LiBF4,lithium bis(oxalato)borate(LiBOB)and lithium oxalyldifluroborate(LiODFB)were promising boron-based lithiumsalts for lithium ion batteries.Advantages,disadvantages and recent developments of each lithium salt were introduced re-spectively.In addition,ionic conductivities and compatibilities with electrode materials were emphatically reviewed.Key words LiBF4,lithium bis(oxalate)borate(LiBOB),lithium oxalyldifluroborate(LiDFOB),electrolyte 相对于正极材料和负极材料,电解液材料长期一直未得到广大科研工作者的重视,已成为限制锂离子电池进一步发展的瓶颈[1-2]。
合成并提纯有机硼酸酯锂盐二草酸硼酸锂| 244761-29-3 |的工艺简述—亚科解密摘要:LiBOB作为一种新型电解质锂盐,其热稳定性及化学稳定性都较好,且具有较高电导率及较宽的电化学窗口,即使在纯的PC溶液中,仍能在负极表面形成稳定的SEI膜;其对锰及铁系的正极材料几乎无溶解侵蚀;另外,它不含卤素,为环境友好型锂盐。
目前,合成二草酸硼酸锂的工艺主要有(1) 液相合成法和(2) 非液相合成法。
但产品纯度不高,所以本文还介绍了二草酸硼酸锂的提纯方法,主要为重结晶法和溶剂热法。
关键词:二草酸硼酸锂,有机硼酸酯锂盐,合成工艺,提纯前言新型锂离子电解质盐双草酸硼酸锂(UBOB)与商用锂离子电解质盐六氟磷酸锂(LiPF6)相比,具有稳定性好、分解产物对环境污染小、分解电势高、能够更好地保护铝集流体和参与SEI 膜形成等优点,成为最有可能取代LiPF6而商业化应用于锂离子电池中的锂盐。
但是目前对其合成与提纯方法还不是很完善,因此改进双草酸硼酸锂的合成与提纯方法具有重要的实际意义[1]。
二草酸硼酸锂的合成工艺如何制备高纯度、性能优异的双草酸硼酸锂是目前困扰研究者和生产者的难题。
与六氟磷酸锂一样,双草酸硼酸锂的制备同样需要两个阶段,即合成和提纯。
合成即先制取粗产物,而提纯是制备出纯度高、性能优异的LiBOB 的关键,也是目前研究领域的难点。
1.双草酸硼酸锂的合成目前LiBOB 的合成方法有许多种,根据反应介质的不同可将其分为液相合成法和非液相合成法。
(1) 液相合成法所谓液相合成,即以有机溶剂或水为反应介质合成LiBOB,其中有旋转蒸发法和水相合成法。
Lischka[2]在专利中首次报道了双草酸硼酸锂的合成方法。
该专利采用氢氧化锂或碳酸锂、草酸、硼酸或氧化硼做原料,以水、甲苯或四氢呋喃为反应介质采用6种不同的路线合成LiBOB。
6中不同的工艺路线中,最经济、环保的是以水为反应介质。
其反应式为:上述方法采用有机溶剂为反应介质,成本较高;采用水为介质则反应过程中水的存在严重威胁LiBOB 的稳定存在,欲得到电池级产品,其提纯过程相对比较繁琐。
作者简介:宁英坤(1981-),女,辽宁人,北京科技大学材料科学与工程学院硕士生,研究方向:锂离子电池电解质,本文联系人;余碧涛(1977-),女,湖北人,北京科技大学材料科学与工程学院博士生,研究方向:锂离子电池电解质;李福焱木(1940-),男,广东人,北京科技大学材料科学与工程学院教授,博士生导师,研究方向:电化学;仇卫华(1950-),女,北京人,北京科技大学材料科学与工程学院副研究员,硕士生导师,研究方向:锂离子电池材料。
基金项目:国家自然科学基金资助项目(50472093)#科研论文#LiBOB/PC 电解液的性能研究宁英坤,余碧涛,李福焱木,仇卫华(北京科技大学材料科学与工程学院,北京 100083)摘要:合成了双草酸硼酸锂(LiBOB),采用核磁共振波谱和元素分析法对其进行分析;将L iBO B 与PC+DEC 配制成一系列电解液,比较了各种电解液的电导率随温度及浓度变化的规律;用充放电方法研究了几种电解液与石墨负极的相容性。
结果表明:采用015mo l/L LiBOB/PC+DEC(体积比3B 7)电解液的Li/ARG 电池循环性能最好,首次循环效率为7910%。
关键词:锂离子电池; LiBOB; PC; DEC中图分类号:T M 91219 文献标识码:A 文章编号:1001-1579(2006)02-0084-03Study on the performance of LiBOB/PC electrolytesNING Ying -kun,YU B-i tao,LI Fu -shen,QIU We-i hua(School of M ater ials Science and Engineering ,Univer sity of Science and T echnology Beij ing,Beij ing 100083,China)Abstract:Bisox alatoborate (LiBOB)was synthesized 1N M R and elemental analysis methods were used to analyze the property oft he L iBOB,electr olytes of L iBOB w ith PC and DEC were prepared 1T he change r egulation of conductiv ity of the electrolytes with temperatur e and concentration was compared 1T he charg e -discharg e test w as used to examine the co mpatibility of the electrolytes w ith ARG anode 1T he r esults showed that the Li/ARG battery with t he electr olyte of 015mol/L L iBO B/P C+DEC(3B 7,vol)had t he best cycling stability and its init ial cy cling efficiency was 7910%1Key words:L-i ion battery; LiBOB; PC; DEC阻止碳酸丙烯酯(PC)共嵌入石墨,使其能够在石墨负极中应用,是锂离子电池中急需解决的问题之一[1-2]。
电解液中添加LiBOB改善LiMn2O4的高温性能宋晓娜;王锦富【摘要】Adding lithium bisoxalatoborate( LiBOB) into electrolyte could improve high temperature performance of lithium manganese oxide( LiMn2O4) by the research of galvanostatic charge-discharge and electrochemical impedance spectroscopy. When charged-discharged with 0.5 C in 3.0 ~ 4.2 V,the capacity retention rate was improved from 82.6% to 90.5% after 300 cycles at 45℃,improved from 73.0% to 88.6% after 400 cycles,improved from 76.5% to 87.0% after 300 cycles at 60℃.The solid electrolyte interface(SEI)film formation voltage was lowered to 2.0 V.%由恒流充放电和电化学阻抗等研究发现,向电解液中添加双草酸硼酸锂(LiBOB)能改善锰酸锂(LiMn2O4)的高温性能.以0.5 C在3.0~4.2V充放电,在45℃循环300次,容量保持率从82.6%提高到90.5%,循环400次,从73.0%提高到88.6%;在60℃循环300次,从76.5%提高到87.0%.固体电解质相界面(SEI)膜的初始形成电位降至2.0V.【期刊名称】《电池》【年(卷),期】2012(042)001【总页数】2页(P28-29)【关键词】双草酸硼酸锂(LiBOB);锰酸锂(LiMn2O4);固体电解质相界面(SEI)膜【作者】宋晓娜;王锦富【作者单位】浙江天虹能源科技有限公司,浙江湖州 313100;杭州金色能源科技有限公司,浙江杭州 311400【正文语种】中文【中图分类】TM912.9尖晶石LiMn2O4存在比容量低,容量衰减较快,尤其是高温循环性能差等缺点[1]。
锂电池电解液二草酸硼酸锂|244761-29-3|的结构及基本性能研究摘要:尽管LiPF6电解质体系具有较好的电导率以及能形成稳定SEI 膜等优点,是当前锂离子电池电解质领域的主要产品,但是这种电解质对水分过于敏感,热稳定性差。
随着锂离子电池在高温等诸多领域的应用拓展,尽快研究具有发展前景并可逐步取代LiPF6的新型电解质锂盐,是当前重大的科研需求。
LiBOB 具有良好的热稳定性和电化学稳定性,为此,本文对其的结构进行了研究,并阐述了它的基本性能。
关键词:二草酸硼酸锂, 锂电池电解液, 结构,基本性能前言二草酸硼酸锂(LiBOB),分子式为LiB(C2O4)2,分子量为193.79,白色粉末,CAS号: 244761-29-3,[1]是目前研究开发的新型锂盐中有可能替代LiPF6广泛应用于商品化锂离子电池的锂盐。
它也是目前锂盐研究中的热点之一。
二草酸硼酸锂的结构简述LiBOB 为配位螯合物,是正交晶体,空间点群属Pnma。
其结构式和晶体结构分别如图所示。
LiBOB 各键键长为:O(2)-C(1):1.200Å;O(1)-B:1.478Å;C(1)-C(1):1.550Å;C(1)-O(1):1.330Å。
LiBOB 晶体由镜面对称的链状结构单元堆积成三维框架,如图1-2(b)示。
Li+与草酸根中的两个氧原子螯合,另一部分氧原子与Li+形成-O-Li-O-键,将单元链连接起来,Li-O 键键角接近90°。
Li+的配位多面体是四角锥形,Li+位于底面内,这种五重配位导致LiBOB 很容易与水发生反应而形成更稳定的六重配位Li[B(C2O4)2]·H2O,同时,Li+的五重配位结构导致难以实现在溶液中以化学方法制备无溶剂化的LiBOB。
LiBOB 中不含-F、SO3-、-CH 等基团,从而使其具有优于其它锂盐的热稳定性。
硼原子与草酸根中的氧原子相连,这些氧原子具有强烈的吸电子能力,使得LiBOB 本身电荷分布比LiBOB的合成及性能研究6较分散。
论文题目:锂离子电池新型电解质的研究作者简介:余碧涛,女,1977年6月出生,2003年9月师从于北京科技大学李福燊教授,于2007年3月获博士学位。
中文摘要随着人们环境保护意识的日渐增强,对绿色能源的渴求越来越迫切。
锂离子电池以其工作电压高,体积小、质量轻、比能量高、无记忆效应、无污染、自放电小,循环寿命长等优点,成为目前所有电池产品中最有前途的体系之一。
目前商品锂离子电池所用的锂盐为LiPF6。
LiPF6易水解且热稳定性不好,与大气的水分或溶剂的残余水接触时,会立即形成氢氟酸HF,对电池的性能有不利的影响;而且,LiPF6通常与碳酸乙烯酯(EC)合用配成电解液才能在负极形成有效SEI膜,但是EC的熔点较高(37℃),这限制了电池的低温使用性能。
双草酸硼酸锂(LiBOB)是一种新型的锂盐,具有很好的成膜性能和热稳定性,是一种很有潜力替代现有商品化锂盐LiPF6的物质。
本文创造性地采用固相反应法合成了LiBOB,并对反应过程进行了动力学和热力学分析;研究了所得LiBOB的基本性质,将其配制成电解液,研究了LiBOB在各种正极材料和石墨负极材料中的应用情况;考察了LiBOB的独特成膜性能,研究LiBOB-PC基电解液体系在锂离子电池中的应用性能;测定了不同LiBOB电解液的电导率,并引入了质量三角形模型对LiBOB电解液的电导率进行预报计算;采用密度泛函理论分析了LiBOB的分子结构与其物理化学性能之间的关系。
此外,还研究了亚硫酸酯类物质在锂离子电池中的应用。
已有的LiBOB合成方法都是在溶液体系中制备,其中采用草酸、氢氧化锂和硼酸在水相中制备LiBOB较具优势,但是,此种合成方式比较复杂,反应过程不好控制。
在此基础上,本研究提出了一种崭新的LiBOB合成方法 固相反应法,TG/DTA曲线表明固相反应合成LiBOB经历五个不同的温度段,结合原料草酸、氢氧化锂和硼酸的热重曲线和XRD分析,推测了各温度段发生的化学反应。
收稿:2006年1月,收修改稿:2006年3月 3通讯联系人 e 2mail :puwh @锂离子电池LiBOB 电解质盐研究蒲薇华3 何向明 王 莉 万春荣 姜长印(清华大学核能与新能源技术研究院 北京100084)摘 要 本文介绍了可用于锂离子电池的新型锂盐———双乙二酸硼酸锂(LiBOB )的基本性质,包括结构组成、合成方法、物理化学性能及其与结构的关系。
综述了近年来在LiBOB 新型电解质锂盐研究与探索方面的新成果,重点评价了BOB 2阴离子对于石墨负极和金属氧化物正极材料表面的电化学性能。
讨论了这种盐在锂离子系统中杂质和安全性等问题,归纳了其优缺点,指出今后电解质锂盐的研究发展方向。
关键词 双乙二酸硼酸锂 电解质 锂离子电池中图分类号:T M911;T M912;O614.11 文献标识码:A 文章编号:10052281X (2006)1221703207LiBOB 2B ased E lectrolyte for Lithium B atteriesPu Weihua3 He Xiangming Wang Li Wan Chunrong Jiang Changyin(Institute of Nuclear Energy &New Energy T echnology ,Tsinghua University ,Beijing 100084,China )Abstract A new salt LiBOB (lithium bis (oxalato )borate )as the electrolyte s olute for lithium ion battery and its con figuration ,preparation ,physical and chemical properties ,especially electrochemical properties are introduced in this paper.The preliminary results and recent finding on LiBOB 2based electrolyte are summarized.Em phasis is placed on the electrochemistry of the BOB 2anion on both graphite anode and metal 2oxide 2based cathode surfaces.Certain issues ass ociated with the im purity and safety of the salt in lithium ion systems are als o discussed.The advantages and disadvantages of LiBOB are generalized.Finally ,the em phases and strategies for R&D of electrolyte of im proved performance in future are indicated.K ey w ords lithium bis (oxalato )borate ;electrolyte ;lithium ion batteries1 引言 锂离子电池自从1990年代问世以来就成为最重要的可充电电池系统之一。
电解质锂盐LiBOB的固相法合成及分析张丽娟;李法强【摘要】将Li2CO3、H3BO3混匀后4分批加入H2C2O4,再在80~120 ℃下真空干燥20~25 h,得到双草酸硼酸锂(LiBOB)粗产品.含量测定和FT-IR、TG-DTG、XRD、SEM分析的结果表明,经乙腈提纯后的样品不带结晶水,纯度高于99.9%.【期刊名称】《电池》【年(卷),期】2010(040)004【总页数】4页(P194-197)【关键词】锂离子电池;双草酸硼酸锂(LiBOB);电解质;固相法【作者】张丽娟;李法强【作者单位】青海民族大学化学与生命科学学院,青海,西宁,810007;中国科学院青海盐湖研究所,青海,西宁,810008【正文语种】中文【中图分类】TM912.9双草酸硼酸锂(LiBOB)可稳定石墨负极,与许多过渡金属正极材料的相容性良好,且热稳定性比 LiPF6、LiBF4等锂盐高[1-2]。
目前,合成LiBOB的方法可分为液相法和固相法两类;液相法又可分为水溶液和有机溶液两种。
水溶液法简单、无污染,但产物含结晶水,制备高纯无水的产物相对困难[3];有机溶液合成法制备的LiBOB不含结晶水,但原料昂贵,对环境有污染[4]。
B.T.Yu等[5]将 LiOH、H2C2O4◦2H2O及H3BO3混合后,在氮气、氩气或真空环境中加热,通过固相反应制备LiBOB。
该方法不需要引入其他反应介质,简单易行,避免了上述合成方法的问题,但缺点是:①要求3种原料的物理尺寸尽可能小,且固相混合要很均匀,否则反应不能完全进行,由于原料同时有酸和碱,混合后即发生中和反应,生成的水使反应物潮湿,加大了混样的难度;②对合成环境的要求苛刻,不但要绝对无水,还要将反应生成的水及时移除。
这些缺点增加了生产成本,制约了产品纯度的提高。
本文作者采用改进的固相法合成LiBOB,并对样品进行了纯度测定,以及傅立叶变换红外(FT-IR)、热重(TGDTG)、XRD和SEM分析,并与购买的样品进行了对比。
两步法合成锂离子电池用双草酸硼酸锂陈姚;杨倩韵;于欣伟;陈胜洲【摘要】以草酸、硼酸和氢氧化锂为原料,采用两步法合成锂离子电池用电解质锂盐双草酸硼酸锂(LiBOB).通过正交实验确定双草酸硼酸酯(HBOB)的最佳合成条件为:n(草酸)∶n(硼酸)=2.2∶1.0,反应温度90℃,反应时间4h.由单因素实验确定合成LiBOB的最佳工艺条件为:n(HBOB)∶ n(LiOH)=1.0∶0.6、中和反应温度100℃,中和反应时间4h.在此条件下,LiBOB的转化率为83.61%.用XRD、红外光谱(FT-IR)、核磁共振碳谱(NMR)13 C-NMR、1 H-NMR和热重(TG-DTG)测试等对合成样品进行分析.合成的LiBOB纯度较高,且热稳定性较好.在50℃下,使用LiPF6+ LiBOB混合电解液的052545型软包装电池以1C在3.00~4.35 V循环50次,容量衰减率为7.6%,低于使用纯LiPF6电解液的电池.【期刊名称】《电池》【年(卷),期】2016(046)005【总页数】4页(P251-254)【关键词】锂离子电池;合成;两步法;电解质;双草酸硼酸锂【作者】陈姚;杨倩韵;于欣伟;陈胜洲【作者单位】广州大学化学化工学院,广东广州510006;广州大学化学化工学院,广东广州510006;广州大学化学化工学院,广东广州510006;广州大学化学化工学院,广东广州510006【正文语种】中文【中图分类】TM912.9双草酸硼酸锂(LiBOB)具有四面体结构,可形成独特的大π共轭体系,为稳定的配位螯合物,同时,硼原子与草酸根中的氧原子相连,使LiBOB中的氧原子具有强烈的吸电子能力,电荷分布较分散,阴阳离子之间的相互作用较弱,因此具有高的溶解度、电导率、热稳定性和电化学稳定性[1]。
研究开发LiBOB,对于满足当前锂离子电池高安全性、高功率和特定应用环境需求,并延长使用寿命,有重要的意义[2]。
锂离子电池电解液功能添加剂的研究进展电解液是锂离子电池的关键材料之一,它能影响电池的功率输出、内阻、循环等性能。
本文对近年来研究较多的成膜添加剂、低温添加剂、高电压添加剂以及安全添加剂的研究进展进行综述,并对锂离子电池电解液添加剂未来的研究方向进行展望。
标签:锂离子电池;电解液;功能添加剂锂离子电池因其具有高电压、高容量、长寿命等显著特点,已经应用于消费类电子产品、新能源汽车、航空航天及军事装备等领域,成为应用领域最广泛的化学电源。
电解液是电池中离子传输的载体,对电池的功率、内阻、循环等性能有非常重要的影响[1-4]。
随着锂离子电池技术的不断发展,高电压体系和高能量密度电池技术对电解液提出更高的要求,电解液及其添加剂的研究成为锂离子电池研究领域的重点。
锂离子电池一般由正极、负极、隔膜、电解液和外壳组成。
作为锂离子电池的核心材料,电解液一般由锂盐和有机溶剂组成,目前商业化的锂盐主要是LiPF6,有机溶剂通常是碳酸酯类溶剂,常见的有:碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)等。
通过添加剂提升电解液的功能性,进而提升电池性能,是目前电解液研究的重要方向。
1 成膜添加剂在新能源车应用领域,电池的长寿命和存储性能是非常重要的竞争点,众所周知,在锂离子电池首次充放电过程中会在电极材料与电解液的固液相界面生成一层被称为“固体电解质相界面膜”,简称SEI膜,致密稳定的SEI膜有助于锂离子动力电池获得较长的使用寿命、良好的存储性能及更宽的环境适应性,成膜添加剂在SEI膜的形成过程中起到了很好的促进作用。
成膜添加剂是研究较早也较多的添加剂:按化合物的种类可分为有机成膜添加剂和无机成膜添加剂;按物理形态,分为气体、液体和固体成膜添加剂;按添加剂的分子结构分为环状和链状;按照成膜机理又可以分为还原型、反应型及修饰型。
双草酸硼酸锂(LiBOB)是近年来研究的热点材料之一,用作锂盐可以使电解液具有更好的热稳定性,能有效提高锂离子电池的使用安全性。