无绝缘轨道电路
- 格式:doc
- 大小:891.50 KB
- 文档页数:44
ZPW-2000A型无绝缘轨道电路摘要:ZPW - 2000A 型无绝缘轨道电路是铁路信号的一个重要的组成部分。
该系统保持UM71无绝缘轨道电路整体结构上的优势,解决调谐区内断轨的检查,且减少调谐区的分路死区长度,并在系统中发送器采用“N + 1”冗余,接收器采用成对双机并联运用,提高系统可靠性。
本文将主要讲述一下ZPW - 2000A 型无绝缘轨道电路的技术特点,相关原理及一些常见故障的现象及处理。
关键词:ZPW - 2000A;型无绝缘轨道电路;故障一、ZPW-2000A型无绝缘轨道电路系统特征1. ZPW-2000A型无绝缘轨道电路主要技术特点ZPW-2000A型无绝缘轨道电路系统,采用1700Hz-2600Hz载频段、FSK制式轨道电路传输特性、主要参数及计算机技术,满足机车信号为主体信号的自动闭塞及列车超速防护系统要求。
其主要技术特点是:充分肯定、保持UM71无绝缘轨道电路的技术特点和优势;解决调谐区断轨检查,实现轨道电路全程电气折断检查;减少调谐区分路死区;实现对调谐单元断线故障的检查;实现对拍频干扰的防护;通过系统参数优化,提高轨道电路传输长度;提高机械绝缘节轨道电路传输长度;实现与电气绝缘节轨道电路等长传输;轨道电路调整按固定轨道电路长度与允许最小道碴电阻方式进行提高一般轨道电路系统工作稳定性;采用国产信号数字电缆代替法国ZC03电缆,减小铜芯线经,减少备用芯组,加大传输距离,提高轨道电路系统技术性能价格比;采用长钢包铜引接线取代70mm2,铜引接线,利于防护和维修;发送、接收设备四种载频频率通用,减少电码化器材种类,减少运转备用数量,既有利于维护,又可降低工程造价;发送、接收设备有比较完善的检测功能,发送器可以实现“N+1”冗余,接收器可以实现双机互为冗余。
2. ZPW-2000A型无绝缘轨道电路系统构成ZPW-2000A型无绝缘轨道电路系统,采用电气绝缘节来实现相邻轨道电路区段的隔离。
Z PW-2000R型无绝缘移频自动闭塞系统说明第一章移频自动闭塞基本知识第一节自动闭塞概述一、自动闭塞的基本概念铁路信号的概念:铁路信号是在列车运行时及调车工作中对列车乘务人员及其它有关行车人员发出的命令,有关行车人中必须按信号指示办事,以保证行车安全并准确的组织列车运行及调车工作。
为发出这些命令,铁路信号又分为固定信号、移动信号、手信号、信号表示器、信号标志及听觉信号等。
它在铁路运输中对保证行车、提高运输效率和改善行车工作人员劳动条件等,均发挥着十分重要的作用。
目前,我们铁路采用的行车闭塞方法主要有半自动闭塞和自动闭塞两种。
闭塞的概念:为使列车安全运行,在一个区间,同一时间内,只允许一个列车运行,保证列车按这种空间间隔运行的技术方法称为闭塞。
区间的划分:为了保证列车运行的安全的提高运输效率,铁路线路以车间、线路所及自动闭塞的通过色灯信号机为分界点划分为若干区间。
区间分为三种:1、站间区间――车站与车站间构成的区间。
2、所间区间――两线中所间或线中所与车站间构成的区间。
3、闭塞分区――自动闭塞区间的两个同方向相邻的通过色灯信号机间或进站(站界标)信号机与通过信号机间。
自动闭塞的概念:是实现列车运行自动化的基础设备,它对保证列车行车安全、提高区间通过能力起着重要的作用。
所谓自动闭塞,就是办理闭塞的过程全部实现自动化而不需要人工操纵。
这种闭塞制式,是通过色灯信号机把区间分成若干个小区段,称为闭塞分区。
在每个闭塞分区内装设轨道电路,用于检查闭塞分区是否有车占用,这样色灯信号机可随着列车运行而改变显示,以指示追踪列车的运行。
根据列车运行及有关闭塞分区状态,自动变换通过信号机显示的闭塞方法称为自动闭塞。
自动闭塞的优点:自动闭塞不需要办理闭塞手续,并可开行追踪列车,既保证了行车安全,又提高了运输效率。
和半自动闭塞相比,自动闭塞有以下优点:(1)由于两站间的区间允许列车追踪运行,就大幅度地提高了行车密度,显著地提高区间通过能力。
ZPW—2000A型无绝缘轨道电路故障现象分析及处理ZPW-2000A型无绝缘轨道电路是在法国UM71无绝缘轨道电路技术基础上改进而来,广泛的应用于我国的铁路闭塞系统,其正常工作是列车安全、高效运行的保证。
本文以现场实践为基础,对ZPW-2000A型无绝缘轨道电路在现场使用过程中的常见故障现象及处理方法进行总结,并对故障处理流程进行分析,总结其操作过程中需要注意的几点。
关键字:轨道电路调谐单元补偿电容故障处理ZPW-2000A型无绝缘轨道电路是在法国UM71无绝缘轨道电路技术基础上进行改进[1],在保证系统安全性、传输稳定性和可靠性的前提下,较大程度的提高其抗干扰能力,以适应我国复杂的气候环境。
ZPW-2000A型无绝缘轨道电路提高技术性能、降低工程造价,能够满足主体化机车信号和列车超速防护系统对轨道电路安全性和可靠性的要求,广泛的应用于我国的铁路闭塞系统。
在铁路系统中,轨道电路系统一直是铁路线路灾害防治和设备安全风险管理的重点。
根据近几年各铁路局信号设备故障统计数据,可发现轨道电路故障发生最为频繁,在采用约占信号故障总量的36%[2]。
1 ZPW2000A型轨道电路结构组成ZPW2000A型轨道电路,如图1所示,由主轨道电路和调谐区小轨道电路两部分组成,其中调谐区小队到電路可视为列车运行前方主轨道电路所属的延伸段。
电气绝缘节是轨道电路实现与相邻轨道电路间电气分隔的部件,包括两个调谐单元(BA1/BA2)、一个空心线圈(SA V)和29m的钢轨组成,在主轨道区段设置补偿电容C。
轨道电路工作时,发送端产生信号经由发送端设备传输至发送端轨面,然后分别向主轨道电路方向和小轨道电路方向传输,主轨道电路接受处理来自主轨道电路的信号,小轨道电路信号由运行前方相邻轨道电路接收器处理,并将小轨道电路继电器执行条件传输至本轨道电路接收器,作为轨道继电器励磁的必要检查条件。
2 ZPW-2000A型无绝缘轨道电路的室外故障现象及处理ZPW-2000A型轨道电路包括主轨道区段和小轨道区段,为了实现钢轨的无缝连接,取消了传统用于轨道电路绝缘的机械绝缘节,采用具有电气绝缘特性的电气绝缘节,ZPW-2000A型轨道电路电气绝缘节设计长度为29m,为了实现列车在该区域的占用检查,将去其构成一段小轨道电路,通过相邻区段轨道电路接收设备来检查该区段的占用与空闲。
铁路ZPW—2000A无绝缘移频轨道电路若干问题的思考摘要:ZPW—2000A型无绝缘移频轨道电路的应用,让铁路运输进入全新的阶段,和国际水平接轨,但也存在一些故障问题。
本文通过对ZPW—2000A的发展现状中存在的无法解决的问题进行简单的分析,对于轨道电路可能出现故障的检测方法进行了深入研究,给相关人员在处理电路故障时提供参考依据,促进ZPW—2000A型轨道电路得到更好的发展。
关键词:轨道电路;故障诊断;诊断算法引言随着我国铁路技术的不断发展,不断开发出多种新型轨道电路进行铁路运行,其中ZPW—2000A作为最符合国家国情的无绝缘移频轨道电路,电路自身的无绝缘、双方向、自动闭塞技术等性能,从根本上提高了轨道电路的灵敏传输性能,提高了轨道的抗干扰能力,但是ZPW—2000A型轨道电路还存在很多问题,因为各种原因,对于解决措施的研究不够深入,设备出现故障问题较多。
一、ZPW—2000A无绝缘移频轨道电路存在的问题(一)无法彻底消除轨道电路的死区段因为ZPW—2000A无绝缘移频自动闭塞系统自身接收端的阻抗较低,为了保证电路工作的稳定运行,在电路中制造出一段“死区”,而“死区”的长度由不同接收端对电压值的设定所决定,且死区长度和工作电压的贮备系数值形成正比,电压值越大,死区越长,当工作贮备系数低于40%的时候,分路死区的长度小于5米,低于30%时,分路死区大约为3米,从理论上可知,分路死区是可以实现完全消除的,但从实际应用上看,国家的轨道电路硬件无法做到对死区段的彻底消除。
(二)机车信号多次接收问题无法解决轨道电路在0.15Ω分路是会产生提前分路,间接导致轨道接收端的信号会逐渐下降。
甚至0.15Ω会出现距离下一个相邻主点2-3米时,就出现提前分路的情况。
因为在逐渐接近相邻主点的过程中,接收端的总阻抗会有相应的降低,知道继电器失去磁力吸引而下落。
价值补偿电容对二次接收信号的弱化,机车主题的稳定运行也受到了影响。
UM71无绝缘轨道电路第一节:UM71无绝缘轨道电路一、U-T系统1、什么叫U-T系统U-T系统是由UM71轨道电路、TVM300机车信号和超速防护装置组成。
即地面设备和车上设备2、地面设备地面设备主要由UM71轨道电路和点式设备组成3、车上设备车上设备主要由TVM300机车信号和超速防护装置组成二、无绝缘轨道电路1、什么叫做无绝缘轨道电路(UM71轨道电路)利用电子元件实现轨道电路电气隔离的轨道电路2、UM71自动闭塞区间轨道电路采用UM71轨道电路的自动闭塞(1)信号显示方式UM71自动闭塞一般采用四显示,京广线南段采用了四显示和三显示两种三显示:采用单机构,灯位由上至下U、L、H排列,有黄灯、绿灯、红灯三种显示。
四显示:采用单机构,灯位由上至下L、H 、U排列,有黄灯、绿灯、绿黄灯、红灯四种显示,比较三显示,增加了绿黄灯显示,其显示的意义介乎于绿灯和黄灯之间。
(2)三显示和四显示的比较三显示:只可以预告两个闭塞分区空闲,列车运行速度较慢。
有一、二接近和一、二离去区段四显示:可以预告三个闭塞分区空闲,列车运行速度较快。
有一、二、三接近和一、二、三离去区段三、UM71轨道电路采用的载频和低频1、采用四种载频:1700HZ、2000HZ、2300HZ、2600HZ。
2、载频的使用:1700HZ、2300HZ用在下行线,2000HZ、2600HZ用在上行线,两种频率间隔交替使用。
一般情况下,下行三接近区段A11G(三显示区段为二接近)固定为2300HZ,上行三接近区段C11G(三显示区段为二接近)固定为2600HZ。
3、低频信息:一共有18种低频信息,频率由10.3HZ至29HZ,每种频率相隔1.1HZ,我国采用了18种,京广南段采用了7种频率。
4、京广南段使用的频率:(1)G码:反方向运行时使用,频率为27.9HZ,但反方向运行时的三接近(二接近)的频率不采用27.9HZ,而是根据反方向进站信号机的不同显示发送不同的频率。
UM71无绝缘轨道电路第一节:UM71无绝缘轨道电路一、U-T系统1、什么叫U-T系统U-T系统是由UM71轨道电路、TVM300机车信号和超速防护装置组成。
即地面设备和车上设备2、地面设备地面设备主要由UM71轨道电路和点式设备组成3、车上设备车上设备主要由TVM300机车信号和超速防护装置组成二、无绝缘轨道电路1、什么叫做无绝缘轨道电路(UM71轨道电路)利用电子元件实现轨道电路电气隔离的轨道电路2、UM71自动闭塞区间轨道电路采用UM71轨道电路的自动闭塞(1)信号显示方式UM71自动闭塞一般采用四显示,京广线南段采用了四显示和三显示两种三显示:采用单机构,灯位由上至下U、L、H排列,有黄灯、绿灯、红灯三种显示。
四显示:采用单机构,灯位由上至下L、H 、U排列,有黄灯、绿灯、绿黄灯、红灯四种显示,比较三显示,增加了绿黄灯显示,其显示的意义介乎于绿灯和黄灯之间。
(2)三显示和四显示的比较三显示:只可以预告两个闭塞分区空闲,列车运行速度较慢。
有一、二接近和一、二离去区段四显示:可以预告三个闭塞分区空闲,列车运行速度较快。
有一、二、三接近和一、二、三离去区段三、UM71轨道电路采用的载频和低频1、采用四种载频:1700HZ、2000HZ、2300HZ、2600HZ。
2、载频的使用:1700HZ、2300HZ用在下行线,2000HZ、2600HZ用在上行线,两种频率间隔交替使用。
一般情况下,下行三接近区段A11G(三显示区段为二接近)固定为2300HZ,上行三接近区段C11G(三显示区段为二接近)固定为2600HZ。
3、低频信息:一共有18种低频信息,频率由10.3HZ至29HZ,每种频率相隔1.1HZ,我国采用了18种,京广南段采用了7种频率。
4、京广南段使用的频率:(1)G码:反方向运行时使用,频率为27.9HZ,但反方向运行时的三接近(二接近)的频率不采用27.9HZ,而是根据反方向进站信号机的不同显示发送不同的频率。
ZPA-2000A型无绝缘轨道电路的应用一.轨道电路(1)轨道电路发展:铁路最初的雏形是没有轨道电路的,但随着列车对数的增加和运行速度的提高,火车事故率开始飞速增加,不能明确反映列车空闲与占用轨道是导致火车事故频发的主要因素,为了检查列车占用钢轨线路状态,美国人鲁宾逊1870年发明了开路式轨道电路,1872年研制成功了闭路式轨道电路,于1873年首先在宾西法尼亚铁路试用,从此诞生了铁路自动信号。
我国铁路在建国前采用的轨道电路传输信息少,分布也极不平衡,建国后从50年代中期开始,轨道电路技术在我国有了长足的发展,不仅传输的信息量增加而且它的使用已遍及全国铁路各线,构成了我国铁路信号技术发展的基础。
1924年,我国首先在大连——金州间,沈阳——苏家屯间建成自动闭塞,采用了交流50Hz二元三位式相敏轨道电路,这是我国最早采用的轨道电路。
我国的轨道电路发展分为直流轨道电路、交流连续式轨道电路和交流计数电码、移频、高频轨道电路(包括计轴设备)、无绝缘轨道电路等几种。
1.1直流轨道电路直流轨道电路又分为:普通直流轨道电路和直流脉冲轨道电路1.11、普通直流轨道电路京奉(现沈阳)铁路在联锁闭塞设备中自动控制出站信号机恢复定位,最早用的水银轨道接触器。
1925年首先在秦皇岛及南大寺两站装设了直流闭路式轨道电路,取代了水银轨道接触器,这是我国最早使用的一种直流轨道电路,轨道电路器材用的是英国麦堪和荷兰德两家公司的产品。
1942年,在济南站中修建了进路操纵手柄式继电电气集中联锁,轨道电路是直流闭路式的,器材为日本产品。
1952年,衡阳站建成进路操纵继电式电气集中联锁。
轨道电路也是直流闭路式的,器材是上海华通、新安电机厂新成电器厂的仿美制品。
在50年代初,从苏联引进了HP-2型直流轨道电路,曾用在蒸汽牵引区段的小站联锁设备中。
由于它抗干扰性能差,继电器不能集中管理,所以使用较少,已逐步被交直流轨道电路所取代。
直流轨道电路没有绝缘破损防护功能,抗干扰性能差,受直流电气牵引电流的干扰,不能正常工作。
原理说明1.系统原理ZPW-2000A型无绝缘移频轨道电路系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。
电气绝缘节长度改进为29m,由空心线圈、29m长钢轨和调谐单元构成。
调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收;对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止了越区传输,这样便实现了相邻区段信号的电气绝缘。
同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。
ZPW-2000A型无绝缘移频轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两个部分,并将短小轨道电路视为列车运行前方主轨道电路的所属“延续段”。
主轨道电路的发送器由编码条件控制产生表示不同含义的低频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向小轨道传送。
主轨道信号经钢轨送到轨道电路受电端,然后经调谐单元、匹配变压器、电缆通道,将信号传至本区段接收器。
调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件通过(XG、XGH)送至本轨道电路接收器,做为轨道继电器(GJ)励磁的必要检查条件之一。
本区段接收器同时接收到主轨道移频信号及小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲与占用情况。
主轨道和调谐区小轨道检查原理示意图见图2-1。
该系统“电气—电气”和“电气—机械”两种绝缘节结构电气性能相同。
2.电路工作原理及冗余设计2.1 发送器2.1.1 用途ZPW-2000A型无绝缘移频轨道电路发送器在区间适用于非电码化和电码化区段18信息无绝缘移频自动闭塞,供自动闭塞、机车信号和超速防护使用。
在车站可适用于非电码化和电码化区段站内移频电码化发送,并可作站内移频轨道电路使用。
2.1.2 原理框图及电路原理简要说明同一载频编码条件,低频编码条件源,以反码形式分别送入两套微处理器CPU中,其中CPU1产生包括低频控制信号Fc的移频信号。
Z PW-2000R型无绝缘移频自动闭塞系统说明第一章移频自动闭塞基本知识第一节自动闭塞概述一、自动闭塞的基本概念铁路信号的概念:铁路信号是在列车运行时及调车工作中对列车乘务人员及其它有关行车人员发出的命令,有关行车人中必须按信号指示办事,以保证行车安全并准确的组织列车运行及调车工作。
为发出这些命令,铁路信号又分为固定信号、移动信号、手信号、信号表示器、信号标志及听觉信号等。
它在铁路运输中对保证行车、提高运输效率和改善行车工作人员劳动条件等,均发挥着十分重要的作用。
目前,我们铁路采用的行车闭塞方法主要有半自动闭塞和自动闭塞两种。
闭塞的概念:为使列车安全运行,在一个区间,同一时间内,只允许一个列车运行,保证列车按这种空间间隔运行的技术方法称为闭塞。
区间的划分:为了保证列车运行的安全的提高运输效率,铁路线路以车间、线路所及自动闭塞的通过色灯信号机为分界点划分为若干区间。
区间分为三种:1、]2、站间区间――车站与车站间构成的区间。
3、所间区间――两线中所间或线中所与车站间构成的区间。
4、闭塞分区――自动闭塞区间的两个同方向相邻的通过色灯信号机间或进站(站界标)信号机与通过信号机间。
自动闭塞的概念:是实现列车运行自动化的基础设备,它对保证列车行车安全、提高区间通过能力起着重要的作用。
所谓自动闭塞,就是办理闭塞的过程全部实现自动化而不需要人工操纵。
这种闭塞制式,是通过色灯信号机把区间分成若干个小区段,称为闭塞分区。
在每个闭塞分区内装设轨道电路,用于检查闭塞分区是否有车占用,这样色灯信号机可随着列车运行而改变显示,以指示追踪列车的运行。
根据列车运行及有关闭塞分区状态,自动变换通过信号机显示的闭塞方法称为自动闭塞。
自动闭塞的优点:自动闭塞不需要办理闭塞手续,并可开行追踪列车,既保证了行车安全,又提高了运输效率。
和半自动闭塞相比,自动闭塞有以下优点:(1)由于两站间的区间允许列车追踪运行,就大幅度地提高了行车密度,显著地提高区间通过能力。
(2)由于不需要办理闭塞手续,简化了办理接发列车的程序,因此既提高了通过能力,又大大减轻了车站值班员的劳动强度。
(3)由于通过信号机的显示能直接反映运行前方列车所在位置在以及线路的状态,因而确保了列车在区间运行的安全。
(4)自动闭塞还能为列车运行超速防护提供连续的速度信息,构成更高层次的列车运行控制系统,保证列车高速运行的安全。
二、单向和双向自动闭塞:按照行车组织方法,自动闭塞可分为单向自动闭塞和双向自动闭塞。
在复线上是采用单方向列车运行的,即一条线路只允许上行列车运行,而另一条线路只允许下行列车运行。
为此,对于每一条线路仅在一侧装设通过色灯信号机,这样的自动闭塞叫做单向自动闭塞,如图1-1所示。
在单线区段上,因为线路需要双方向行车,为了调整双方向列车运行,而在线路两侧都装设色灯通过信号机,这样的自动闭塞叫双向自动闭塞,如图1-2所示。
对于双向自动闭塞,为了防护列车的头部,平时规定一个方向的色灯通过信号机亮灯,另一方向信号机则全部灭灯。
需要改变运行方向时,必须在区间空闲条件下,车站值班员才能办理改变运行方向手续。
图1-2 单线双向自动闭塞三、四显示各种灯光的用途:…在四显示制度中,信号机显示除了红、黄、绿三种灯光外,增加绿黄灯光,信号能预告列车前方三个闭塞分区的状态。
信号机的显示关系比较复杂一些,它要取决于前方三个轨道电路的状态。
绿灯:表示前方至少有三个闭塞分区空闲,准许列车按规定速度运行。
绿黄灯:表示前方至少有二个闭塞分区空闲,它对不同列车有着不同的意义。
对于重量大、速度高的列车则要求在通过该信号机后开始减速并进行制动,以便在显示红灯的色灯信号机前停车;对于重量小、速度低的列车则可按规定速度运行。
这样既可保证高速列车的运行安全,又不影响低速列车的行车密度。
黄灯:表示前方有一个闭塞分区空闲,要求列车注意并减速运行。
红灯表示该通过色灯信号机所防护的闭塞分区有车占用或设备发生故障,要求列车停车。
四、轨道电路轨道电路是以铁路的两条钢轨作为传输导体,两端设有绝缘节,一端设有送电设备,一端设有受电设备所构成的电气回路。
轨道电路应该完成以下两项基本任务:1、当轨道电路上没有机车车辆占用时,应该发出轨道电路空闲信息。
2、当轨道电路上有机车车辆占用,钢轨绝缘破损或轨道电路中元件发生故障时,应该发出轨道电路占用的信息。
根据上述要求,在设计、计算及研究轨道电路时,应满足轨道电路调整状态、分路状态、断轨状态的要求。
同时,由于轨道电路既要承担轨道区段占用检查功能,又要完成向机车信号机发送信号状态信息的功能,因此,还应满足机车信号接收状态的要求。
铁路的两条钢轨作为信号的传输媒介,其信号传输特性与长线传输特性是相同的,因此,钢轨线路的电气性能是由它的一次参数,道床漏泄电阻及钢轨阻抗决定的。
对于钢轨线路和传输信号确定的情况下,钢轨阻抗是相对固定的,因此,导致信号传输性能变化的因素是道床漏泄电阻。
)轨道电路传输的工作信号类型、信息调制方式、信息量是衡量轨道电路性能的重要条件。
我国曾经用于自动闭塞的轨道电路有交流计数、极频和移频轨道电路。
交流计数轨道电路采用50Hz交流信号作为工作信号,以不同的时间间隔周期性输出交流信号代表不同的信息。
极频轨道电路采用极性脉冲作为工作信号,不同的极性和频率代表不同的信息。
由于交流计数和极频轨道电路的存在信息量少、应变时间长、抗干扰能力较低、不能满足电化区段运用要求等缺点,已经不再推广运用。
移频轨道电路采用移频信号作为工作信号,移频信号的调制低频代表不同的信息。
移频信号信息量大、抗干扰能力较强,能够适应电化区段运用的要求,因此,移频轨道电路在自动闭塞系统中被广泛采用。
五、机车信号在自动闭塞区段,可以在机车上装设机车信号机。
通过机车感应器接收在钢轨上传输的轨道电路信息,机车信号机可以复示运行列车前方地面信号的显示状态。
同时,为了保证行车安全,在机车上还可以装设列车超速防护系统。
列车超速防护系统,可以根据机车信号显示、线路数据、机车工况等对列车实施监督和控制。
轨道电路要满足机车信号接收状态的要求,必须符合轨道电路分路电流大于机车信号接收灵敏度值条件。
六、自动闭塞系统的组成自动闭塞系统由轨道电路设备和结合电路两部分组成。
轨道电路设备一般采用电子技术实现,主要完成轨道区段占用检查、钢轨断轨检查、设备状态检查和机车信号信息发送等功能。
结合电路一般采用安全型继电器电路实现,主要完成信号点灯、方向转换和轨道电路编码等功能。
自动闭塞系统结构框图见图1-4。
|'图1-4 自动闭塞系统结构框图区间轨道电路 区间色灯信号······第二节 ZPW-2000R型无绝缘移频轨道电路性能和特点ZPW-2000R型无绝缘移频轨道电路是在消化吸收法国UM71系统的基础上,通过技术创新,进行完善提高的新型无绝缘移频自动闭塞系统。
该系统与UM71系统相比,系统性能和特点主要通过以下几方面体现。
一、系统的安全性通过对调谐区信号的接收和处理,缩短了调谐区的分路死区,实现了轨道全程断轨检查,从而提高了系统的安全性。
在实现方案上,独创性地提出调谐区五点布局的方案和调谐区检查采用浮动门限的方法。
提出调谐区五点布局的方案主要目的是提高调谐区信号的幅度,利于提高信号处理的可靠性。
^二、系统的可靠性和可用性由于发送器和接收器各种载频通用,并且具备自检测功能,因此可以实现发送设备“N+1”和“1+1”的冗余方式,提高了系统的可靠性和可用性。
三、系统的工作性能系统设备采用了数字信号处理技术实现信号的调制与解调,极大地提高了系统的抗电化干扰能力。
轨道信号传输采用精补偿方案,优化信号传输的网络匹配关系,从而增加了轨道电路极限长度。
第二章轨道电路工作第一节电气结构系统设备由室内设备和室外设备两大部分组成,系统电气结构图参见图2-1。
室内设备包括区间发送器、区间功放器、接收器、衰耗滤波器、电缆模拟单元和区间防雷单元、组合架、继电器、分线盘等。
室外设备包括轨道匹配单元、调谐单元、平衡线圈、补偿电容器、钢包铜引接线、轨端接续线、数字电缆、贯通地线等。
第二节工作原理-一、移频信号所谓移频,就是一种频率调制制式,它的载频信号的频率是随调制信号的脉冲和周期而改变的。
如图2-2所示。
当调制信号输出脉冲时,载频信号的频率为f1,当调制信号输出间隔时,载频信号的频率变为f2。
因此,移频信号是一种频率由f1和f2交替变换的周期波,其交替变换的速率即是调制信号的频率,习惯上称之为调制低频fc。
而对于f1和f2,我们称之为上边频和下边频。
从频谱上分析,f1和f2之间存在一个中心频率f0,f0与f1、f2的差即为频偏∆f。
本轨道电路的移频信号载频的中心频率f0有四个,分别为:1700Hz、2000Hz、2300Hz、2600Hz。
为了系统的安全性考虑,我们又将每个中心频率进行偏移处理,分别加上或减去一个很小的偏移量。
该偏移量的确定,要保证偏移后的中心频率在机车信号接收的带宽内。
经过处理后,每个中心频率演变为两个中心频率,共有八个中心频率,分别标称为:1700F1、1700F2、2000F1、2000F2、2300F1、2300F2、2600F1、2600F2。
但对于机车信号接收来说,仍然是四个中心频率。
频偏∆f为±11Hz,调制低频fc有18个,分别为:、、、、、、、、、、、、、、、。
图2-2 移频信号波形图?;图2-1 系统电气结构图二、信号传输流程发送器根据编码电路的接点条件产生相应的移频信号,该移频信号通过功放器进行功率放大后,经发送“N+1”转换电路、红灯转移电路、方向电路、电缆模拟单元、防雷单元、室外电缆及轨道匹配单元被送至轨道。
被送到轨道送端的移频信号在有补偿电容的道床上传输到轨道受端,经轨道匹配单元、室外电缆、防雷单元、电缆模拟单元、方向电路及衰耗滤波器被送到接收器。
三、电气绝缘节工作原理轨道电路信号在钢轨上传输,由于闭塞分区间没有机械绝缘节,为了实现电气隔离,采用电气绝缘节方式。
电气绝缘节用于实现两相邻轨道电路间的电气隔离,它由调谐单元、平衡线圈及30m钢轨组成。
两个调谐单元分别设于30m钢轨的两端,平衡线圈设于中点,如图2-3所示。
图2-3 电气绝缘节结构图-两个相邻轨道区段G1和G2的载频f1和f2是不相同的,而调谐单元由LC电路构成,它对不同的频率呈现不同的阻抗。
调谐单元BA1对于区段G1的载频f1呈现极阻抗,而对区段G2的载频f2呈现零阻抗,因此,区段G2的载频f2信号不能传到区段G1。
调谐单元BA2对于区段G2的载频f2呈现极阻抗,而对区段G1的载频f1呈现零阻抗,因此,区段G1的载频f1信号不能传到区段G2。