Linux进程间通信程序设计
- 格式:doc
- 大小:39.42 KB
- 文档页数:3
实验六:进程间通信实验目的:学会进程间通信方式:无名管道,有名管道,信号,消息队列,实验要求:(一)在父进程中创建一无名管道,并创建子进程来读该管道,父进程来写该管道(二)在进程中为SIGBUS注册处理函数,并向该进程发送SIGBUS信号(三)创建一消息队列,实现向队列中存放数据和读取数据实验器材:软件:安装了Linux的vmware虚拟机硬件:PC机一台实验步骤:(一)无名管道的使用1、编写实验代码pipe_rw.c#include <unistd.h>#include <sys/types.h>#include <errno.h>#include <stdio.h>#include <string.h>#include <stdlib.h>int main(){int pipe_fd[2];//管道返回读写文件描述符pid_t pid;char buf_r[100];char* p_wbuf;int r_num;memset(buf_r,0,sizeof(buf_r));//将buf_r初始化char str1[]=”parent write1 “holle””;char str2[]=”parent write2 “pipe”\n”;r_num=30;/*创建管道*/if(pipe(pipe_fd)<0){printf("pipe create error\n");return -1;}/*创建子进程*/if((pid=fork())==0) //子进程执行代码{//1、子进程先关闭了管道的写端close(pipe_fd[1]);//2、让父进程先运行,这样父进程先写子进程才有内容读sleep(2);//3、读取管道的读端,并输出数据if(read(pipe_fd[0],buf_r, r_num)<0){printf(“read error!”);exit(-1);}printf(“%s\n”,buf_r);//4、关闭管道的读端,并退出close(pipe_fd[1]);}else if(pid>0) //父进程执行代码{//1、父进程先关闭了管道的读端close(pipe_fd[0]);//2、向管道写入字符串数据p_wbuf=&str1;write(pipe_fd[1],p_wbuf,sizof(p_wbuf));p_wbuf=&str2;write(pipe_fd[1],p_wbuf,sizof(p_wbuf));//3、关闭写端,并等待子进程结束后退出close(pipe_fd[1]);}return 0;}/***********************#include <unistd.h>#include <sys/types.h>#include <errno.h>#include <stdio.h>#include <string.h>#include <stdlib.h>int main(){int pipe_fd[2];//管道返回读写文件描述符pid_t pid;char buf_r[100];char* p_wbuf;int r_num;memset(buf_r,0,sizeof(buf_r));//将buf_r初始化char str1[]="holle";char str2[]="pipe";r_num=10;/*创建管道*/if(pipe(pipe_fd)<0){printf("pipe create error\n");return -1;}/*创建子进程*/if((pid=fork())==0) //子进程执行代码{close(pipe_fd[1]);//1、子进程先关闭了管道的写端//2、让父进程先运行,这样父进程先写子进程才有内容读//3、读取管道的读端,并输出数据if(read(pipe_fd[0],buf_r, r_num)<0){printf("read1 error!");exit(-1);}printf("\nparent write1 %s!",buf_r);sleep(1);if(read(pipe_fd[0],buf_r, r_num)<0){printf("read2 error!");exit(-1);}printf("\nparent write2 %s!",buf_r);close(pipe_fd[1]);//4、关闭管道的读端,并退出exit(1);//printf("child error!");}else if(pid>0) //父进程执行代码{close(pipe_fd[0]);//1、父进程先关闭了管道的读端p_wbuf=str1;//2、向管道写入字符串数据write(pipe_fd[1],p_wbuf,sizeof(str1));sleep(1);p_wbuf=str2;write(pipe_fd[1],p_wbuf,sizeof(str2));close(pipe_fd[1]);//3、关闭写端,并等待子进程结束后退出exit(1);//printf("father error!");}return 0;}**************************/2、编译应用程序pipe_rw.c3、运行应用程序子进程先睡两秒让父进程先运行,父进程分两次写入“hello”和“pipe”,然后阻塞等待子进程退出,子进程醒来后读出管道里的内容并打印到屏幕上再退出,父进程捕获到子进程退出后也退出4、由于fork函数让子进程完整地拷贝了父进程的整个地址空间,所以父子进程都有管道的读端和写端。
《Linux操作系统设计实践》实验二:进程通信实验目的:进一步了解和熟悉 Linux 支持的多种 IPC 机制,包括信号,管道,消息队列,信号量,共享内存。
实验环境: redhat实验内容:(1)进程间命名管道通信机制的使用:使用命名管道机制编写程序实现两个进程间的发送接收信息。
(2)进程间消息队列通信机制的使用:使用消息队列机制自行编制有一定长度的消息(1k 左右)的发送和接收程序。
(3)进程间共享存储区通信机制的使用:使用共享内存机制编制一个与上述(2)功能相同的程序。
并比较分析与其运行的快慢。
实验代码验证:(1).使用命名管道机制编写程序实现两个进程间的发送接收信息。
#include <stdio.h>#include <stdlib.h>#define FIFO_FILE "MYFIFO"int main(int argc, char *argv[]){FILE *fp;int i;if (argc<=1){printf("usage: %s <pathname>\n",argv[0]); exit(1);}if ((fp = fopen(FIFO_FILE, "w")) == NULL) {printf("open fifo failed. \n");exit(1);}for (i = 1; i < argc; i++){if (fputs(argv[i],fp) == EOF){printf("write fifo error. \n");。
linux课程设计进程间通信一、教学目标本节课的教学目标是让学生了解和掌握Linux进程间通信的基本概念和常用方法。
知识目标包括:掌握进程间通信的定义、作用和分类;理解Linux系统中进程间通信的机制和原理。
技能目标包括:学会使用Linux系统中的管道、信号和共享内存等通信方法;能够编写简单的Linux进程间通信程序。
情感态度价值观目标包括:培养学生对Linux系统的兴趣和好奇心,提高学生对计算机操作系统的基本认识;培养学生团队合作精神和自主学习能力。
二、教学内容本节课的教学内容主要包括Linux进程间通信的概念、分类和机制,以及常用的进程间通信方法。
首先,介绍进程间通信的定义和作用,让学生了解进程间通信的重要性。
然后,讲解Linux系统中进程间通信的机制和原理,包括管道、信号和共享内存等方法。
接下来,通过实例演示和编程实践,让学生掌握这些通信方法的用法和特点。
最后,结合实际应用场景,讨论进程间通信在操作系统中的应用和意义。
三、教学方法为了达到本节课的教学目标,采用多种教学方法相结合的方式进行教学。
首先,采用讲授法,向学生讲解进程间通信的基本概念和原理。
其次,通过案例分析法,分析实际应用场景中的进程间通信问题,引导学生学会运用所学知识解决实际问题。
然后,利用实验法,让学生动手实践,编写进程间通信程序,加深对通信方法的理解和记忆。
最后,采用讨论法,鼓励学生积极参与课堂讨论,培养团队合作精神和批判性思维。
四、教学资源为了支持本节课的教学内容和教学方法的实施,准备以下教学资源。
首先,教材《Linux操作系统原理与应用》,作为学生学习的基础资料。
其次,参考书《Linux进程间通信》,为学生提供更深入的理论学习资料。
再次,多媒体教学课件,用于直观展示进程间通信的原理和实例。
最后,实验室设备,包括计算机和网络设备,用于学生进行进程间通信实验。
通过这些教学资源,丰富学生的学习体验,提高学习效果。
五、教学评估本节课的教学评估将采用多种方式,以全面、客观地评价学生的学习成果。
进程间通信Linux 课程设计一、教学目标本课程的教学目标是使学生掌握进程间通信在Linux环境下的基本原理和实现方法。
具体目标如下:1.知识目标:–了解Linux操作系统的基本概念和架构;–理解进程间通信的概念、作用和分类;–掌握Linux下进程间通信的主要方法,如管道、消息队列、共享内存和信号等;–掌握同步机制,如互斥锁、条件变量和信号量等。
2.技能目标:–能够在Linux环境下编写简单的进程间通信程序;–能够分析并解决进程间通信过程中遇到的问题;–能够运用进程间通信的原理和技巧解决实际编程中的问题。
3.情感态度价值观目标:–培养学生的团队协作意识和沟通能力;–培养学生的创新精神和自主学习能力;–培养学生对操作系统和进程间通信领域的兴趣和热情。
二、教学内容本课程的教学内容主要包括以下几个部分:1.Linux操作系统基本概念和架构;2.进程间通信的概念、作用和分类;3.Linux下进程间通信的主要方法:–消息队列;–共享内存;4.同步机制:–条件变量;5.进程间通信实例分析。
三、教学方法为了达到本课程的教学目标,将采用以下教学方法:1.讲授法:用于讲解基本概念、原理和方法;2.案例分析法:通过分析实际案例,使学生更好地理解进程间通信的原理和应用;3.实验法:让学生动手实践,培养实际编程能力;4.讨论法:鼓励学生积极参与课堂讨论,培养团队协作和沟通能力。
四、教学资源为了支持本课程的教学内容和教学方法,将准备以下教学资源:1.教材:《Linux进程间通信》;2.参考书:相关领域的经典著作和学术论文;3.多媒体资料:教学PPT、视频讲座等;4.实验设备:计算机、网络设备等。
五、教学评估为了全面、客观地评估学生的学习成果,本课程将采用以下评估方式:1.平时表现:通过课堂参与、提问、讨论等方式评估学生的积极性、主动性和团队协作能力;2.作业:布置相关的编程练习和研究报告,评估学生的理解和应用能力;3.考试:包括期中和期末考试,以闭卷形式进行,评估学生对进程间通信知识的掌握程度和实际应用能力;4.实验报告:评估学生在实验过程中的动手能力和问题解决能力。
linux进程间通信课程设计一、课程目标知识目标:1. 理解Linux操作系统中进程间通信的基本概念与原理;2. 掌握进程间通信的几种主要机制,如管道、消息队列、共享内存和信号量;3. 学会使用相关API进行进程间数据传输和控制流程;4. 了解进程间同步和互斥的概念,并掌握相关实现方法。
技能目标:1. 能够编写简单的Linux进程间通信程序;2. 能够分析进程间通信程序的执行流程,并解决通信过程中可能出现的常见问题;3. 能够运用所学知识解决实际场景中的进程间通信问题。
情感态度价值观目标:1. 培养学生对操作系统和底层编程的兴趣,激发学生探究新技术的好奇心;2. 培养学生的团队协作精神,提高学生在团队项目中的沟通与协作能力;3. 培养学生严谨、认真的学习态度,使学生认识到编程过程中细节的重要性。
本课程针对高年级计算机专业学生,结合课程性质、学生特点和教学要求,将课程目标分解为具体的学习成果。
通过本课程的学习,学生将掌握Linux进程间通信的基本知识和技能,培养实际编程能力和团队协作精神,为后续学习操作系统及相关领域知识打下坚实基础。
二、教学内容1. 进程间通信概述- 了解进程与线程的概念及区别;- 掌握Linux操作系统中进程间通信的基本需求及分类。
2. 管道通信- 学习管道的基本原理和使用方法;- 掌握无名管道和命名管道(FIFO)的创建、读写操作及注意事项。
3. 消息队列- 了解消息队列的基本概念和原理;- 掌握消息队列的创建、发送、接收和删除操作。
4. 共享内存- 学习共享内存的基本原理和用途;- 掌握共享内存的创建、映射和解除映射操作,以及同步机制。
5. 信号量- 了解信号量的基本概念和用途;- 掌握信号量的创建、P操作和V操作,以及应用场景。
6. 信号- 学习信号的基本概念、分类和作用;- 掌握信号的发送、捕捉和处理方法。
教学内容根据课程目标进行选择和组织,保证科学性和系统性。
本教学内容涵盖教材中关于Linux进程间通信的相关章节,按照教学进度安排,逐一向学生传授各通信机制的基本原理和实际应用。
实验6 Linux进程通信-消息传递一、实验目的:1)掌握操作系统的进程通信原理。
2)熟悉linux的进程通信方式。
3)设计程序,实现消息传递通信。
二、实验原理:1、函数ftok头文件:#include <sys/types.h>#include <sys/ipc.h>原型:key_t ftok(char *fname,int id)说明:系统建立IPC(进程间通信)时必须指定一个ID值,通常情况下该ID值通过ftok 函数得到。
ftok函数把一个已存在的路径名和一个整数标识符转换成一个key_t值,fname 是一个存在的可访问的路径或文件,id必须不能为0。
2、函数msgget头文件:#include <sys/types.h>#include <sys/ipc.h>#include <sys/msg.h>原型:int msgget(key_t key,int msgflg);说明:获取与某个键关联的消息队列标识,用来创建新的消息队列或获取已有的消息队列。
第一个参数是关键字值(通常是由ftok()返回的)。
然后此关键字值将会和其他已经存在于系统内核中的关键字值比较。
第二个参数为IPC_CREAT时,如果内核中没有此队列,则创建它,并且返回一个新创建的消息队列的标识符。
失败返回-1。
3、函数fgets头文件:#inclue <stdio.h>原型:char *fgets(char *s,int size,FILE *stream);说明:用来从参数stream所指的文件内读入字符并存到参数s所指的内存空间,直到出现换行字符,读到文件尾或是已读了size-1个字符为止,最后加上\0作为字符串结束。
第三个参数可以是文件流,也可以是输入流stdin。
4、比较字符串函数strncmp头文件:#include <string.h>原型:int strncmp(const char *s1,const char *s2,int n);说明:若参数s1和s2字符串相同则返回0,s1若大于s2则返回大于0的值,s1若小于s2则返回小于0的值。
计算机与信息技术学院设计性实验报告
一、实验目的
(1)理解进程概念;
(2)理解并掌握多进程开发模式;
(3)理解并掌握Linux平台进程间数据的传送方法。
二、总体设计
(1)实验内容:编写程序实现进程的管道通信。
用系统调用pipe( )建立一管道,创建两个二个子进程P1和P2分别向管道各写一句话:
Message from child P1!
Message from child P2!
父进程从管道中读出二个来自子进程的信息并显示。
(2)设计原理:
所谓管道,是指能够连接一个写进程和一个读进程、并允许它们进行通信的一个共享文件,又称为pipe文件。
由写进程从管道的写入端(句柄1)将数据写入管道,而读进程则从管道的读出端(句柄0)读出数据。
通过管道的信息流
三、实验步骤:
#include <unistd.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
# include <string.h>
#define BUFSIZE 100
int pid1,pid2;
int main()
{
int fd[2];
char buf_out [BUFSIZE], buf_in [BUFSIZE];
if (pipe(fd) < 0)
{ printf("pipe error\n"); exit(1); } /*创建一个管道*/
if ((pid1 = fork()) < 0) /*创建子进程1*/
{ printf("fork1 failure\n"); exit(1); }
else if (pid1 == 0)
{
lockf(fd[1],1,0);
strcpy(buf_out," Message from child P1!"); /*把串放入数组buf_out中*/
write(fd[1],buf_out,BUFSIZE); /*向管道写长为BUFSIZE字节的串*/ sleep(5); /*自我阻塞5秒*/
lockf(fd[1],0,0);
exit(0);
}
else
{
while((pid2=fork( ))==-1); /*创建子进程2*/
if(pid2==0)
{ lockf(fd[1],1,0); /*互斥*/
sprintf(buf_out,"Message from child %d!",getpid());
write(fd[1], buf_out,BUFSIZE);
sleep(5);
lockf(fd[1],0,0);
exit(0);
}
else
{ wait(0); /*同步*/
read(fd[0], buf_in,BUFSIZE); /*从管道中读长为BUFSIZE字节的串*/
printf("%s\n", buf_in);
wait(0);
read(fd[0], buf_in,BUFSIZE);
printf("%s\n", buf_in);
exit(0);
}
}
return 0;
}
四、结果分析与总结
延迟5秒后显示
Message from child P1!
再等待5秒显示
Message from child P2!
总结:本实验通过父进程用pipe( )建立一个无名管道,再用fork函数创建了两个子进程,父进程从管道中读出二个来自子进程的信息并显示,利用锁定与解锁实现了两个子进程向管道互斥通信。
通过本次实验了解到进程的概念,知道了什么是管道,并且熟悉了LINUX支持的管道通信方式,开始时对子进程P1和P2为什么能够对管道进行操作产生疑问,后来明白子进程P1和P2之所以能够对管道进行操作是其调用pipe()进程并识别该管道描述符,此次实验使我获益匪浅。
教师签名:
年月日。