2015年全国高中数学联赛试题及答案解析
- 格式:pdf
- 大小:370.19 KB
- 文档页数:8
20XX 年全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1.已知点P (4,1)在函数f (x )=log a (x -b ) (b >0)的图象上,则ab 的最大值是.解:由题意知,log a (4-b )=1,即a +b =4,且a >0,a ≠1,b >0,从而ab ≤(a +b )24=4,当a =b =2时,ab 的最大值是4.2.函数f (x )=3sin(2x -π4)在x =43π24处的值是.解:2x -π4=43π12-π4=40π12=10π3=2π+4π3,所以f (43π24)=3sin 4π3=-32.3.若不等式|ax +1|≤3的解集为{x |-2≤x ≤1},则实数a 的值是. 解:设函数f (x )=|ax +1|,则f (-2)= f (1)=3,故a =2.4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是.解:有两类情况:同为白球的概率是3×1025×25=30625,同为红球的概率是7×625×25=42625,所求的概率是72625.5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆x 2a 2+y 2b 2=1(a >b >0)与椭圆x 2b 2+y 2c 2=1有相同的离心率e ,则e 的值是.解:若c >b ,则c 2a 2=c 2-b 2c 2,得a =b ,矛盾,因此c <b ,且有c 2a 2=b 2-c2b 2,解得e =-1+52.6.如图,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于E 点.记四棱锥E -ABCD 的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V 1V 2的值是.(第6题图) A 1解:记四棱锥B 1-ABCD 的体积为V .如图,DE =23DB 1,从而V 1=23V .又V =13V 2,所以V 1V 2=29.7.若实数集合A ={31x ,65y }与B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素之积的值是.解:因为31x ×65y =5xy ×403=2015xy .若xy ≠0,则集合A 和集合B 中有一组相等,则另一组也必然相等,这不合题意.所以xy =0,从而A ∪B 中所有元素之积的值为0. 8.设向量a =(cos α,sin α),b =(-sin α,cos α).向量x 1,x 2,…,x 7中有3个为a ,其余为b ;向量y 1,y 2,…,y 7中有2个为a ,其余为b .则7∑i =1x i y i 的可能取值中最小的为.解:因为a ·a =b ·b =1,a ·b =0,所以7∑i =1x i y i 的最小值为2.9.在3×3的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等.如图,三个方格中的数分别为1,2,2015,则幻方中其余6个数之和为. 解:如图,设幻方正中间的数为x ,则由题意知a =-2012,从而对角线上三个数的和为x -2011.因此b =x -2014,c =-4026,d =-2013,e =x +2014. 由b +e +x =x -2011,解得x =-20112.这9个数的和为3×(-20112-2011)=-180992,所以幻方中其余6个数之和为-180992-2018=-221352.10.在平面直角坐标系xOy 中,设D 是满足x ≥0,y ≥0,x +y +[x ]+[y ]≤19的点(x ,y )形成的区域(其中[x ]是不超过x 的最大整数).则区域D 中整点的个数为. 解:区域D 中整点的个数为1+2+3+…+10=55.(第9题图) 12 2015(第9题图)e c d ab1 2 2015x (第6题图)A 1二、解答题(本大题共4小题,每小题20分,共80分)11.在等比数列{a n }中,a 2=2,q 是公比.记S n 为{a n }的前n 项和,T n 为数列{a 2n }的前n 项和.若S 2n =2T n ,求q 的值.解:若q =1,则a n =a 2=2,a 2n =4,则S 2n =4n ,T n =4n ,S 2n ≠2T n .若q =-1,则a n =2×(-1)n ,a 2n =4,则S 2n =0,T n =4n ,S 2n ≠2T n .……………………………… 5分若q ≠±1,则a n =2q n -2,a 2n =4q 2n -4,从而S 2n =2q ×(1-q 2n )1-q ,T n =4q 2×(1-q 2n)1-q 2. ……………………………… 15分由S 2n =2T n ,则4q (1+q )=1,q 2+q -4=0,解得q =-1±172.综上,q 的值为-1+172和-1-172. ……………………………… 20分12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD =CE .∠BAC 的外角平分线与△ADE 的外接圆交于A 、P 两点.求证:A 、P 、B 、C 四点共圆.证明:如图,连结PD ,PE ,PC .因为四边形APDE 是圆内接四边形, 所以∠P AD =∠PED ,∠P AF =∠PDE . 又因为AP 是∠BAC 的外角平分线, 所以∠P AD =∠P AF , 从而∠PED =∠PDE ,故PD =PE . ……………………………… 10分 又∠ADP =∠AEP , 所以∠BDP =∠CEP .又因为BD =CE ,所以△BDP ≌△CEP ,从而∠PBD =∠PCE ,即∠PBA =∠PCA ,ABCDP(第12题图)EA BC DP (第12题图)EF所以A 、P 、B 、C 四点共圆. ……………………………… 10分13.如图,在平面直角坐标系xOy 中,圆O 1、圆O 2都与直线l :y =kx 及x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P (2,2),求直线l 的方程. 解:由题意,圆心O 1,O 2都在x 轴与直线l若直线l 的斜率k =tanα, 设t =tan α2,则k =2t1-t 2.圆心O 1,O 2在直线y =tx 上, 可设O 1(m ,mt ),O 2(n ,nt ).交点P (2,2)在第一象限,m ,n ,t >0.……………………………… 4分 所以⊙O 1:(x -m )2+(y -mt )2=(mt )2,⊙O 1:(x -n )2+(y -nt )2=(nt )2,所以⎩⎨⎧(2-m )2+(2-mt )2=(mt )2,(2-n )2+(2-nt )2=(nt )2,即⎩⎨⎧m 2-(4+4t )m +8=0,n 2-(4+4t )n +8=0,……………… 8分 所以 m ,n 是方程X 2-(4+4t )X +8=0的两根,mn =8.由半径的积(mt )(nt )=2,得t 2=14,故t =12.……………………………… 16分所以 k =2t 1-t2=11-14=43,直线l :y =43x .……………………………… 20分 14.将正十一边形的k 个顶点染红色,其余顶点染蓝色. (1)当k =2时,求顶点均为蓝色的等腰三角形的个数;(2)k 取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由. 解:(1)设正十一边形的顶点A 1,A 2,A 3,…,A 11,则易知其中任意三点为顶点的三角形都不是正三角形.以这些点为顶点的等腰三角形个数可以如此计算:以A i (i =1,2,3,…,11)为顶角顶点的等腰三角形有11-12=5个,这些三角形均不是等边三角形,即当j ≠i 时,以A j 为顶角顶点的等腰三角形都不是上述等腰三角形.故所有的等腰三角形共有5×11=55个. …………………… 5分当k =2时,设其中A m ,A n 染成红色,其余染成蓝色.以A m 为顶角顶点的等腰三角形有5个,以A m 为底角顶点的等腰三角形有10个;同时以A m ,A n 为顶点的等腰三角形有3个,这些等腰三角形的顶点不同色,且共有(5+10)×2-3=27个.注意到仅有这些等腰三角形的三个顶点不同蓝色,故所求三个顶点同为蓝色的等腰三角形有55-27=28个. ………………………… 10分(2)若11个顶点中k 个染红色,其余11-k 个染蓝色.则这些顶点间连线段(边或对角线)中,两端点染红色的有k (k -1)2条,两端点染蓝色的有(11-k )(10-k )2条,两端点染一红一蓝的有k (11-k )条.并且每条连线段必属于且仅属于3个等腰三角形.把等腰三角形分4类:设其中三个顶点均为红色的等腰三角形有x 1个,三个顶点均为蓝色的等腰三角形有x 2个,两个顶点为红色一个顶点为蓝色的等腰三角形有x 3个,两个顶点为蓝色一个顶点为红色的等腰三角形有x 4个,则按顶点颜色计算连线段,3x 1+x 3=3×k (k -1)2,①3x 2+x 4=3×(11-k )(10-k )2, ②2x 3+2x 4=3×k (11-k ), ③由①+②得3(x 1+x 2)+x 3+x 4=32[k (k -1)+(11-k )(10-k )],用③代入得x 1+x 2=12[k (k -1)+(11-k )(10-k )-k (11-k )]=12(3k 2-33k +110).当k =5或6时,(x 1+x 2)min =12(5×4+6×5-5×6)=10.即顶点同色的等腰三角形最少有10个,此时k =5或6.………… 20分。
2015年全国高中数学联合竞赛一试试题(A 卷)一、填空题:本大题共8小题,每小题8分,满分64分1.设,a b 为不相等的实数,若二次函数2()f x x ax b =++满足()()f a f b =,则(2)f 的值为2.若实数α满足cos tan αα=,则41cos sin αα+的值为 3.已知复数数列{}n z 满足111,1(1,2,3,)n n z z z ni n +==++=,其中i 为虚数单位,n z 表示n z 的共轭复数,则2015z 的值为4.在矩形ABCD 中,2,1AB AD ==,边DC (包含点,D C )上的动点P 与CB 延长线上(包含点B )的动点Q 满足DP BQ =,则向量PA 与向量PQ 的数量积PA PQ ⋅的最小值为5.在正方体中随机取3条棱,它们两两异面的概率为6.在平面直角坐标系xOy 中,点集{}(,)(36)(36)0K x y x y x y =+-+-≤所对应的平面区域的面积为7.设ω为正实数,若存在,(2)a b a b ππ≤<≤,使得sin sin 2a b ωω+=,则ω的取值范围是8.对四位数(19,0,,9)abcd a b c d ≤≤≤≤,若,,a b b c c d ><>,则称abcd 为P 类数,若 ,,a b b c c d <><,则称abcd 为Q 类数,用(),()N P N Q 分别表示P 类数与Q 类数的个数,则 ()()N P N Q -的值为二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤9.(本题满分16分)若实数,,a b c 满足242,424a b c a b c +=+=,求c 的最小值.10.(本题满分20分)设1234,,,a a a a 是4个有理数,使得{}311424,2,,,1,328i j a a i j ⎧⎫≤<≤=----⎨⎬⎩⎭,求1234a a a a +++的值. 11.(本题满分20分)在平面直角坐标系xOy 中,12,F F 分别是椭圆2212x y +=的左、右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点,A B ,焦点2F 到直线l 的距离为d ,如果直线11,,AF l BF 的斜率依次成等差数列,求d 的取值范围.2015年全国高中数学联合竞赛加试试题(A 卷)一、(本题满分40分)设12,,,(2)n a a a n ≥是实数,证明:可以选取{}12,,,1,1n εεε∈-,使得222111(1)n n n i i i i i i i a a n a ε===⎛⎫⎛⎫⎛⎫+≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. 二、(本题满分40分)设{}12,,,n S A A A =,其中12,,,n A A A 是n 个互不相同的有限集合(2n ≥),满足对任意的,i j A A S ∈,均有ij A A S ∈,若1min 2i i n k A ≤≤=≥.证明:存在1ni i x A =∈,使得x 属于12,,,n A A A 中的至少n k 个集合(这里X 表示有限集合X 的元素个数). 三、(本题满分50分)如图,ABC ∆内接于圆O ,P 为BC 上一点,点K 在线段AP 上,使得BK 平分ABC ∠,过,,K P C 三点的圆Ω与边AC 交于D ,连接BD 交圆Ω于点E ,连接PE 并延长与边AB 交于点F .证明:2ABC FCB ∠=∠.(解题时请将图画在答卷纸上)四、(本题满分50分)求具有下述性质的所有正整数k :对任意正整数n ,(1)12k n -+不整除()!!kn n .P。
2015 年全国高中数学联赛江苏赛区复赛参考答案与评分标准加 试一、(本题满分 40 分)如图,E 、F 分别是△ABC ,△ACD 的内心,AC 平分∠BAD ,AC 2=AB ·AD ,延长 EC 交 △CDF 的外接圆于点 K ,延长 FC 交△BCE 的外接圆于点 R .若 RK ∥EF ,求证:点 A 是△BCD 的外心.RK 证明:如图,连接 ER ,FK .因为∠BAC =∠CAD ,AC 2=AB ·AD , 所以△ABC ∽△ADC ,∠ABC =∠ACD .又∠EBC =1∠ABC ,∠ACF 1ACD ,2 所以∠EBC =∠ACF .=2∠ 由∠EBC =∠ERC 得,∠ERC =∠ACF ,所以 ER ∥AC . K同理 FK ∥AC ,于是 ER ∥FK . ………………………… 20 又因为 RK ∥EF ,所以四边形 EFKR 为平行四边形,从而 ER =FK . 因为 ER ∥AC ,所以∠REC =∠ECA =∠ECB . 又因为∠EBC =∠ERC ,EC =EC , 所以△BEC ≌△ECR ,从而 BC =ER . 同理,CD =FK ,所以 BC =CD .AC AD CD由AB =AC =BC =1,得△ABC ≌△ADC ,于是 AB =AC =AD ,即 A 为△BCD 外接圆的外心. ..................................... 40 分≤ n +23( 3 )33求所有的正整数 n ,使得对于任意正实数 a 、b 、c 满足 a +b +c =1,有 abc (a n +b n +c n ) 1. 3解:(1)当 n ≥3 时,取 a 2 b =c 1=3, =6, 则 abc (a n +b n +c n ) 1 (2n -1 11 1 > .所以 n ≥3 不满足题意. 3n +3 +2n +2n3n +2………………………… 10 分(2) 当 n =1 时,abc (a +b +c )=abc ≤ a +b +c 3≤ 1,所以n =1 时,满足题意.………………………… 20 分(3) 当 n =2 时,原不等式也成立.令 x =ab +bc +ca ,则 a 2+b 2+c 2=1-2x , 由(ab +bc +ca )2≥3abc (a +b +c ),得3abc ≤x 2. 于是,abc (a 2+b 2+c 2)≤1x 2(1-2x ). 因此 0<x 1 1 2 -2x ) 1x +x +1-2x 3 1<2,从而3x (1 ≤3×( 3) =34. 即 abc (a 2+b 2+c 2) 1 2 -2x ) 1 ………………………… 40 分 ≤3x (1 ≤34.= )设n 为正整数,求满足以下条件的三元正整数组〈a,b,c〉的个数:(1)ab=n;(2)1≤c≤b;(3)a、b、c 的最大公约数为1.解:用(a,b,c)表示a、b、c 的最大公约数.令S n={〈a,b,c〉| a、b、c 为正整数,ab=n,1≤c≤b,(a,b,c)=1},记S n中元素的个数为f(n) (n∈N*).显然f(1)=1.①如果n=pα,其中p 为素数,α≥1.设〈a,b,c〉∈S n,若b=1,则a=pα,c=1;若b=p t,1≤t≤α-1,则a=pα-t,(c,p)=1,1≤c≤b;若b=pα,则a=1,1≤c≤b.因此,f(pα)=1 α-1t+pα=pα-1+pα.(这里φ(x)为Euler 函数).+∑φ(p )t=1……………………………… 20 分②下证:如果m,n 为互素的正整数,那么f(mn)=f(m)·f(n).首先,对每个〈a,b,c〉∈S mn.由于ab=mn.令b1=(b,n),b2=(b,m),那么(b1,b2)=1,再令a1=(a,n),a2=(a,m),那么(a1,a2)=1,而且a1b1=n,a2b2=m.因为1=(a,b,c)=(a1a2,b1b2,c)=((a1a2,b1b2),c)=((a1,a2)·(b1,b2),c).那么(a1,b1,c)=1,(a2,b2,c)=1,令c i≡c(mod b i),1≤c i≤b i,i=1,2.那么(a1,b1,c1)=1,(a2,b2,c2)=1,因此,〈a1,b1,c1〉∈S n,〈a2,b2,c2〉∈S m.……………………………… 30 分其次,若〈a1,b1,c1〉∈S n,〈a2,b2,c2〉∈S m.令a=a1a2,b=b1b2.由于(m,n)=1,从而(b1,b2)=1.⎧c≡c1 (mod b1)由中国剩余定理,存在唯一的整数c,1≤c≤b,满足⎨.⎩c≡c2 (mod b2)……………………………… 40 分显然(a1,b1,c)=(a1,b1,c1)=1,(a2,b2,c)=(a2,b2,c2)=1,从而(a,b,c)=((a,b),c)=((a1,b1)(a2,b2),c)=(a1,b1,c) (a2,b2,c)=1.因此,〈a,b,c〉∈S mn.所以,f(mn)=f(m)·f(n).利用①②可知,f(n)=nΠ(1+1 ). .................................. 50 分p|np设 a 、b 、c 、d 、e 为正实数,且 a 2+b 2+c 2+d 2+e 2=2.若 5 个正三角形的面积分别为 a 2, b 2,c 2,d 2,e 2.求证:这五个三角形中存在四个能覆盖面积为 1 的正三角形 ABC . 证明:不妨设 a ≥b ≥c ≥d ≥e >0.若 a ≥1,则面积为 a 2 的三角形可覆盖△ABC . ..................... 10 分若 a <1,则必有 b +c >1,这是因为当 c 1 b ≥c ,则 b +c >1;当 c 1>2时,由于 又 a <1,则 b 2=2-a 2-c 2-d 2-e 2>1-3c 2≥(1-c )2,≤2时,所以 b +c >1,从而 a +c >1,a +b >1. .......................... 20 分用面积为 a 2,b 2,c 2 的三个三角形覆盖的△ABC ,使得每个三角形都分别有一个顶点与△ABC 的一个顶点重合,且有两条边在△ABC 的两条边上.于是,这三个三角形两两相交.若这三个三角形能覆盖△ABC ,则结论成立.否则有(a +b -1)+(b +c -1)+(c +a -1)<1,得 2-a -b -c >0.……………………………… 30 分令中间不能被 a 2,b 2,c 2 的三个三角形所覆盖的正三角形面积为 f 2, 则 f 2=1-(a 2+b 2+c 2)+(a +b -1)2+(b +c -1)2+(c +a -1)2=(2-a -b -c )2,得 f =2-a -b -c . .............................................. 40 分下证:d ≥f .若 d 1 1 1>2,由 a ≥b ≥c ≥d ≥2,则 f =2-a -b -c <2,从而 d >f .若 d 1 2 2 2 2 2 2≤2,由 a 、b 、c <1,有 d ≥2d ≥d +e =2-a -b -c >2-a -b -c =f . 所以,面积为 d 2 的正三角形可以覆盖△ABC 不能被面积 a 2,b 2,c 2 覆盖的部分.……………………………… 50 分。
2015年全国高中数学联赛(B 卷)(一试)一、填空题(每个小题8分,满分64分 1:已知函数⎩⎨⎧+∞∈∈-=),3(log ]3,0[)(2x a x xa x f x,其中a 为常数,如果)4()2(f f <,则a 的取值范围是2:已知3)(x x f y +=为偶函数,且15)10(=f ,则)10(-f 的值为3:某房间的室温T (单位:摄氏度)与时间t (单位:小时)的函数关系为:),0(,cos sin +∞∈+=t t b t a T ,其中b a ,为正实数,如果该房间的最大温差为10摄氏度,则b a +的最大值是4:设正四棱柱1111D C B A ABCD -的底面ABCD 是单位正方形,如果二面角11C BD A --的大小为3π,则=1AA 5:已知数列{}n a 为等差数列,首项与公差均为正数,且952,,a a a 依次成等比数列,则使得121100a a a a k >+⋅⋅⋅++的最小正整数k 的值是6:设k 为实数,在平面直角坐标系中有两个点集{})(2),(22y x y x y x A +=+=和{}03),(≥++-=k y kx y x B ,若B A 是单元集,则k 的值为7:设P 为椭圆13422=+x y 上的动点,点)1,0(),1,1(-B A ,则PB PA +的最大值为 8:正2015边形201521A A A ⋅⋅⋅内接于单位圆O ,任取它的两个不同顶点j i A A ,, 则1≥+j i OA OA 的概率为 二、解答题9:(本题满分16分)数列{}n a 满足,31=a 对任意正整数n m ,,均有mn a a a n m n m 2++=+ (1)求{}n a 的通项公式; (2)如果存在实数c 使得c a ki i<∑=11对所有正整数k 都成立,求c 的取值范围10:(本题满分20分)设4321,,,a a a a 为四个有理数,使得:{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i aa ji,求4321a a a a +++的值11:(本题满分20分)已知椭圆)0(12222>>=+b a by a x 的右焦点为)0,(c F ,存在经过点F的一条直线l 交椭圆于B A ,两点,使得OB OA ⊥,求该椭圆的离心率的取值范围(加试)1:(本题满分40分)证明:对任意三个不全相等的非负实数c b a ,,都有:21)()()()()()(222222≥-+-+--+-+-a c c b b a ab c ac b bc a ,并确定等号成立的充要条件 2:(本题满分40分)如图,在等腰ABC ∆中,AC AB =,设I 为其内心,设D 为ABC ∆内的一个点,满足D C B I ,,,四点共圆,过点C 作BD 的平行线,与AD 的延长线交于E 求证:CE BD CD ⋅=23:(本题满分50分)证明:存在无穷多个正整数组)2015,,)(,,(>c b a c b a 满足:1,1,1++-ab c ac b bc a4:(本题满分50分)给定正整数)2(,n m n m ≤≤,设m a a a ,,,21⋅⋅⋅是n ,,2,1⋅⋅⋅中任取m 个互不相同的数构成的一个排列,如果存在{}m k ,,2,1⋅⋅⋅∈使得k a k +为奇数,或者存在整数 )1(,m l k l k ≤<≤,使得l k a a >,则称m a a a ,,,21⋅⋅⋅是一个“好排列”,试确定所有好排列的个数。