模块电源测试说明
- 格式:pdf
- 大小:226.09 KB
- 文档页数:3
电源模块测试规范目录1.目的﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒42.适用范围﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 43.引用/参考标准﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒44.测试项目﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒44.1 常规性能指标测试﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 4 4.1.0 遥控特性﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒44.1.1 输出整定电压﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒54.1.2 输入电压范围﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒54.1.3 负载调整率﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒54.1.4 电压调整率﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒54.1.5 稳压精度﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒64.1.6 效率﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒64.1.7 输入过压保护﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒64.1.8 输入欠压保护﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒74.1.9 输出限流特性﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒74.1.10 输出电压微调性能﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒74.1.11 输出过压保护﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒84.1.12 输出欠压保护﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒84.1.13 温度系数﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒94.1.14 纹波与噪声﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒94.1.15 开关机特性﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒104.1.16 动态负载特性﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒104.1.17 输入反射电流﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒114.1.18 耐压测试﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒114.1.19 容性负载特性﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒124.1.20 输入电压跌落﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒124.1.21 动态输入电压﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒124.1.22 输入瞬态冲击电压﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒134.1.23 温升测试﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒13 4.1.23 电话衡重杂音测试﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒13 4.1.24 宽频杂音测试﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒14 4.1.25 交互调节特性测试﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒15 4.2 环境实验﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 15 4.2.1 可焊性实验﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒15 4.2.2 温度实验﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒15 4.2.2.1 高温储存实验﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒15 4.2.2.2 低温储存实验﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒15 4.2.2.3 恒定湿热实验﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒15 4.2.2.4 高温带电老化实验﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒16 4.2.2.5 低温带电老化实验﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒16 4.2.2.6 高低温循环实验﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒16 4.2.2.7 高低温冲击实验﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒17 4.2.3 电磁兼容测试﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒17 4.2.3.1 传导干扰﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒17 4.2.3.2 辐射干扰﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒17 4.2.4 机械实验﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒18 4.2.4.1 振动﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒184.2.4.2 冲击﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒185.特殊说明﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 181、目的规范二次电源模块的测试方法。
电源模块老化测试标准
电源模块老化测试标准指的是对电源模块进行老化测试的一系
列规范和要求。
电源模块作为电子产品中的重要组成部分,其功能稳定性和寿命对整个产品的质量和可靠性有着至关重要的影响。
因此,为了保证电源模块的性能和使用寿命,电源模块老化测试标准应包括以下内容:
1.测试环境。
老化测试应在稳定的环境下进行,包括固定的温度、湿度、气压等参数,并严格控制环境波动。
2.测试时间。
老化测试的时间应根据产品的实际使用情况和所处环境条件而定,并应在测试前通过可靠的方法对时间进行校准。
3.测试电压和电流。
老化测试应根据电源模块的额定电压、电流和功率要求,在规定时间内持续施加合适的电压和电流。
4.测试记录。
老化测试应对测试过程中的各项参数进行记录,并及时分析、处理测试数据,以评估电源模块的老化情况。
5.测试结果。
老化测试的结果应该包括电源模块的寿命、电压降、电流波动、温度变化等参数的变化情况,并应根据测试结果进行评价和分析,以确定是否符合产品质量要求。
总之,电源模块老化测试标准是电子产品质量控制的重要环节,其规范和要求的制定,对于保证电源模块的性能和使用寿命,提高产品的质量和可靠性具有重要的作用。
- 1 -。
电源模块的测试方法及要求
1. 电源模块的电压测试就像给它量身高一样重要呀!比如说,你拿个万用表去测测它输出的电压稳不稳定。
要是电压波动像坐过山车一样,那可不行哦,这就好比人的心跳忽快忽慢,能让人放心吗?
2. 电流测试也不能马虎呢!这就好比看看电源模块能不能吃饱饭有力气干活。
你想想,如果电流太小,它就像饿肚子的人没力气,能带动那些设备正常运转吗?比如一些大功耗的机器,没足够电流怎么行啊!
3. 还有纹波测试,哇,这就像是测试电源模块的情绪是否稳定呢!要是纹波很大,那它就像个脾气暴躁的家伙,会影响设备的性能呀。
就像手机充电时如果电源纹波大,手机会不会容易出问题呢?
4. 负载调整率测试可太关键啦,就像看一个人适应不同环境的能力强不强。
要是电源模块在不同负载下表现乱七八糟,那可不行!比如说接上不同功率的电器,它总不能一会儿正常一会儿不正常吧?
5. 效率测试也得重视呀!这就像看它会不会过日子,能不能高效利用能量。
要是效率很低,那不是浪费电嘛,就如同汽车很耗油一样,多不划算呀!可以通过专门的仪器来测测它的效率高不高。
6. 温度测试也不容忽视呢,这就跟看看人会不会发烧一样。
电源模块工作时温度太高可不行哦,会影响寿命的!比如长时间使用后,用手摸摸是不是很烫呢。
7. 可靠性测试是最后的把关呀!这就像考察一个人是不是靠得住。
要让电源模块经受各种恶劣条件的考验,看看它能不能始终稳定工作。
要是稍微有点风吹草动就出问题,那怎么行呢?我们肯定希望它像个坚强的战士一样可靠呀!
我觉得电源模块的测试真的太重要了,每一项都不能马虎,只有这样才能保证它能稳定可靠地工作呀!。
1.直流输出模块电源纹波和噪声测试 直流输出模块电源的输出纹波包含共模和差模两部分,差模纹波又包括开关频率的纹波和远高于开关频率的高频噪声,如图1所示。
前者主要由开关频率及谐波组成,后者主要由功率开关器件快速的电压和电流变化产生,这两者都是需要检测的信号。
共模噪声是由于接地点电位差的存在造成的输出纹波,这种信号沿输出线同向流动,最终在负载上转换为差模信号影响系统的工作,同样的原理,在测试时,如果探头两根信号线的阻抗不同,共模信号同样会转变成差模信号,影响真实的纹波。
共模信号与接地方式有很大关系,可以通过滤波措施进行抑制,不属于模块电源的纹波测试范围,这里只介绍差模纹波的测试方法。
图1模块电源输出纹波示意图1.1平行线测试法 示波器优先选用带20MHz带宽限制的模拟示波器,其次是带20MHz带宽限制的数字存储示波器。
(a) 50W及以下模块峰-峰值杂音电压测试电路图(b)50W以上模块峰-峰植杂音电压测试电路图图2 平行线测试法示意图⑴在输入电压为额定值,输出电流为额定值时:小功率模块(=50W)输出管脚接平行铜箔带,后接电容,使用20MHz带宽示波器测试并记录输出端的峰-峰值杂音电压;两平行铜箔带的长度为51mm和76mm(2inch和3inch)之间,两平行铜箔带的之间的距离为2.54mm(0.1inch);C焊接点的位置与模块输出端子的距离为25.4mm(1inch),示波器探头接点如图(a)所示,测试点距模块输出端子51mm左右,铜箔带的厚度和宽度(指两平行铜箔带之和)保证电压降小于2%。
大功率模块(>50W)输出管脚接平行铜箔带,后接电容,使用20MHz带宽示波器测试并记录输出端的峰-峰值杂音电压;两平行铜箔带的长度为51mm和76mm(2inch和3inch)之间,两平行铜箔带的之间的距离为2.54mm(0.1inch);C1焊接点的位置与模块模块输出端子的距离为25.4mm(1inch),C2焊接点与示波器探头的距离为12.7mm,C1为1?F的聚酯电容或瓷片电容(X7R或X5R类型的)C2为10?F的钽电容。
电源模块测试方法电源模块是电子设备中的重要组成部分,它提供给设备所需的电源电压和电流。
为了确保电源模块的可靠性和稳定性,需要进行一系列的测试。
本文将介绍电源模块测试的方法和步骤。
1.输入电压范围测试:首先要测试电源模块的输入电压范围,包括额定输入电压和工作范围。
将电源模块依次接入不同的输入电压,并观察输出电压和电流的变化情况。
确保输出电压和电流在额定工作范围内稳定。
2.稳定性测试:稳定性测试主要测试电源模块输出的电压和电流的稳定性。
可以通过变化输入电压或负载来检测电源模块的稳定性。
观察输出电压和电流的波形,并使用示波器记录数据,以评估电源模块的稳定性。
3.效率测试:效率测试是测试电源模块转换效率的方法。
可以使用功率计来测量输入和输出功率,并计算出效率。
通过改变输入电压或负载,观察效率的变化情况。
通常,电源模块的效率应在额定负载下达到最高值。
4.输出电压精度测试:输出电压精度测试是测试电源模块输出电压的准确度和稳定性。
通过设定不同的输出电压值,并使用数字万用表测量输出电压的准确度。
检查输出电压是否在规定的范围内,并评估其稳定性。
5.纹波和噪声测试:纹波和噪声测试是测试电源模块输出电压中存在的纹波和噪声水平的方法。
可以使用示波器检测输出电压的纹波和噪声,并使用频谱分析仪对其进行分析和评估。
6.过载和短路保护测试:过载和短路保护测试是测试电源模块对过载和短路情况的保护能力。
通过给电源模块输入超出其额定电流的负载,或者短路输出端口,观察电源模块的响应。
确保电源模块能及时切断输出,保护设备和本身不受损坏。
7.温度测试:温度测试是测试电源模块在不同温度下的工作情况。
将电源模块置于不同温度的环境中,并检测输出电压和电流的变化情况。
可以使用红外热像仪测量电源模块的温度分布。
确保电源模块在不同温度下依然能正常工作。
8.耐电压测试:耐电压测试是测试电源模块在额定电压范围之外能否正常工作的能力。
将电源模块连接到高于额定电压的电源,观察电源模块的响应,并确保它能正常工作,不受损坏。
10W ,AC-DC 模块电源产品特点●全球通用电压:85-264VAC/100-370VDC ●工作温度范围:-40℃to +85℃●4000VAC 高隔离电压●稳压输出、低纹波噪声●输出短路、过流、过压保护●高效率、高可靠性●全塑料外壳,符合UL94V-0●EMC性能满足CISPR32/EN55032CLASSB●通过IEC62368、UL62368、EN62368认证CBRoHSLHE10-20Bxx 系列-----是金升阳为客户提供的小体积模块式开关电源。
该系列电源具有全球输入电压范围、交直流两用、低功耗、高效率、高可靠性、安全隔离等优点。
产品安全可靠,EMC 性能好,EMC 及安全规格满足IEC/EN61000-4、CISPR32/EN55032、IEC62368、UL62368和EN62368标准。
该系列产品广泛应用于工业、办公及民用等行业中,应用于电磁兼容比较恶劣的环境时必须参考应用电路。
选型表认证产品型号*输出功率标称输出电压及电流(Vo/Io)效率(230VAC,%/Typ.)最大容性负载(µF)UL/CE/CBLHE10-20B03 6.6W3.3V/2000mA 7027000LHE10-20B0510W5V/2000mA 769500LHE10-20B099V/1100mA 783600LHE10-20B1212V/900mA 802400LHE10-20B1515V/700mA 811200LHE10-20B2424V/450mA82470注:*产品型号后缀加“A2”为接线式封装拓展,后缀加“A4”为导轨式封装拓展。
输入特性项目工作条件Min.Typ.Max.单位输入电压范围交流输入85--264VAC 直流输入100--370VDC 输入频率47--63Hz输入电流115V AC ----0.26A230V AC ----0.16冲击电流115V AC --13--230V AC --23--漏电流230VAC/50Hz0.3mA RMS typ.外接保险管推荐值2A/250V ,慢断,必接热插拔不支持输出特性项目工作条件Min.Typ.Max.单位输出电压精度 3.3V 输出--±3--%其它输出--±2--线性调节率满载--±0.5--负载调节率0%-100%负载--±1--纹波噪声*20MHz带宽(峰-峰值)--50100mV 温度漂移系数--±0.02--%/℃短路保护可长期短路,自恢复过流保护≥110%Io,自恢复过压保护3.3/5VDC输出≤7.5VDC 9VDC输出≤15VDC 12/15VDC输出≤20VDC 24VDC输出≤30VDC最小负载0----%掉电保持时间115V AC输入--15--ms 230V AC输入--80--注:*纹波和噪声的测试方法采用平行线测试法,具体操作方法参见《AC-DC模块电源应用指南》。
电源模块动态负载测试标准一、测试条件1.测试环境:室内、恒温、无尘环境。
2.测试电源:稳定的直流电源,具有足够的功率以满足测试需求。
3.测试样品:待测电源模块。
4.测试人员:经过专业培训的测试工程师。
二、测试设备1.电源供应器:稳定的直流电源,精度±1%。
2.负载设备:能够模拟动态负载的设备,如电子负载器或电阻负载箱。
3.数据采集设备:万用表、示波器等用于数据记录和观察的设备。
4.测试软件:用于控制负载设备和记录测试数据的软件。
三、测试程序1.准备测试设备,设置负载设备的类型和参数。
2.连接电源模块与负载设备,确保稳定连接。
3.启动负载设备,开始模拟动态负载。
4.记录电源模块在不同负载条件下的性能数据。
5.结束测试,断开电源模块与负载设备的连接。
四、负载类型1.线性负载:电流随电压线性变化。
2.非线性负载:电流与电压之间存在非线性关系,如电阻-电容-电感(RCL)负载。
3.复合负载:由以上两种负载组合而成的负载。
五、加载过程1.预加载:在正式测试前,对电源模块进行轻载测试,以确保其正常工作。
2.加载:按照设定的负载类型和参数,逐步增加负载,并记录电源模块的性能数据。
3.过载:在加载过程中,超过电源模块的额定负载能力,以检测其过载性能。
4.卸载:在加载过程中,逐步减少负载至零,并记录电源模块的性能数据。
六、测试步骤1.设定测试条件:如测试电压、测试负载类型和加载过程等。
2.准备测试设备,连接电源模块与负载设备。
3.启动负载设备,开始模拟动态负载。
4.按照加载过程,逐步改变负载,并记录电源模块的性能数据。
5.结束测试,断开电源模块与负载设备的连接。
6.对测试数据进行整理和分析。
七、数据记录1.记录测试过程中的电压、电流和功率等数据。
2.记录电源模块在不同负载条件下的温度、声音等数据。
3.对数据进行分析,以评估电源模块的性能。
八、结果分析1.根据测试数据,评估电源模块的电压稳定度、负载稳定度、效率等性能指标。
电源模块老化测试控制系统技术方案说明作者:联洲电器吴工2021年12月7日一、功能和操控1、显示160路的实时电流,并记录至数据库中,记录频率可设置,方便日后做数据分析;2、显示箱体实时温度、湿度,以及DC电源的电压、电流、功率,同样也会记录至数据库中;3、每一次老化作业以任务或计划的形式进行,作业前可对此任务设定相应的电源电压、箱体温度、湿度,测试时长等参数,另外,还可以设置样品上下限电流值,当越限时界面提示报警信息,对应的位置背景颜色显示红色。
这些设置参数自动保存为模板,在下次使用时可方便操作人员选择参数模板。
4、老化结束后,可按指定的格式将数据转发至MES系统或打包后再转发,并支持导出EXCel数据表,如果MES有特别要求,亦可按其要求设定;5、支持样品电流数据曲线查看;6、支持DC电源电压、电流、功率、箱体温度、湿度等数据曲线查看;7、可协同温控仪程式执行老化测试;8、支持软件授权使用、限制功能使用等,可用于试用或回款,配套有授权工具;9、支持所有存档参数、设置参数等数据进行加密保护,防止泄密;10、其他未尽功能;二、数据采集1、系统采用RS485通讯对电流传感器进行数据采集,可将160个电流传感器分为5组,每组32只,每一组对应使用一个串口,平均每个电流传感器读取频率为0.5-0.7秒。
如果要求更高的读取频率,可增加分组来减少每组的数量。
2、电流传感器采用DC9-30V供电,精度为0.2%,量程为DCO-100O微安,导轨安装,宽度为24MM,是一种采用电源、采样、通讯三隔离的高性能电流传感器,特点是精度高(一般是0.5%)、性能稳定、质量好、体积小易安装。
稳定二端隔离•输入/输出信号隔离有效去除信号传输过程的电磁干扰•输入信号/电源隔离有效滤除信号中的噪音,大大提高信号的稳定性•输出信号/电源隔离有效去除电源产生巨大的电磁信号对信号输出时的干扰k三、精度控制1、微安电流的测量精度由于被测电流非常小,属于微安级别的微小电流,但是对于我们来说,不管是微安、毫安都是一样的。
选型表认证产品型号输入电压(VDC)输出效率(%,Min./Typ.)@满载最大容性负载(µF)标称值(范围值)输出电压(VDC)输出电流(mA)(Max./MIn.)UL/CE (认证中)B0503S-1WR35(4.5-5.5)3.3303/3070/742400B0505S-1WR35200/2078/822400B0509S-1WR39111/1279/831000B0512S-1WR31284/979/83560B0515S-1WR31567/779/83560B0524S-1WR32442/481/85220输入特性项目工作条件Min.Typ.Max.单位输入电流(满载/空载)3.3VDC/5VDC 输出--270/5286/10mA9VDC/12VDC 输出--241/12254/2015VDC/24VDC 输出--241/18254/30反射纹波电流*--15--输入冲击电压(1sec.max.)-0.7--9VDC输入滤波器电容滤波热插拔不支持注:*反射纹波电流测试方法详见《DC-DC (定压)模块电源应用指南》。
输出特性项目工作条件Min.Typ.Max.单位输出电压精度见误差包络曲线图(图1)线性调节率输入电压变化±1%3.3VDC 输出---- 1.5%/%其他输出---- 1.2负载调节率10%到100%负载3.3VDC 输出--1520%5VDC 输出--10159VDC 输出--81012VDC 输出--71015VDC 输出--61024VDC 输出--510纹波&噪声*20MHz 带宽其他输出--3075mVp-p24VDC 输出--501001W ,定电压输入,隔离非稳压单路输出专利保护RoHS产品特点●可持续短路保护●空载输入电流低至5mA ●工作温度范围:-40℃to +105℃●效率高达85%●隔离电压3000VDC ●国际标准引脚方式●小型SIP 封装●符合UL62368,EN62368认证(认证中)B_S-1WR3系列产品是专门针对线路板上分布式电源系统中需要产生一组与输入电源隔离的电源的应用场合而设计的。
电源测试全攻略(一):极限测试
1.模块输出电流极限测试
模块输出电流极限测试是测试模块在输出限流点放开(PFC的过流保护也要放开)之后所能输出的最大电流,测试的目的是为了验证模块的限流点设计是否适当,模块的器件选择是否合适。
如果模块的输入电流极限值偏小,表明模块的输出电流量不够;如果模块的输出电流极限值设计过大,表明模块的输出电流裕量过高,模块的成本还可以降低。
测试方法:
将模块的输出限流点放开,按额定输出电流的5%逐步增加模块的输出电流,每个电流值保持10分钟,直至模块损坏(或输出熔断丝断),记录模块损坏时的输出电流值即为模块的输出电流极限值。
为了防止在测试过程中模块出现积热损坏,每一个测试点测试完成之后,须将模块冷却到测试前的冷机状态。
测试的电流极限值为模块额定电流的120%(也就是说,超过120%以后,无需进行测试)。
判定标准:
模块的电流极限必须满足110%,合格,同时测试结果作为模块设计的依据(参考数据)。
否则不合格。
2.静态高压输入
测试说明:
在静态高压时,PFC电路实现了过压保护,此测试主要是评估一次电源模块在静态高压情况下的可靠性。
测试方法:
A、按规格书要求将模块输入电压调整为最大静态耐压点,运行1小时。
按照下面的步骤测试一下电源模块:1.脱离伺服电源负载:X351扁平电缆和P600、M600直流母线;2.X181端子上的1U1-2U1;1V1-2V1;1W1-2W1分别短接;3.将U1、V1、W1端子分别接到三相380V(50Hz)的交流电源上;4.接通交流电源,绿色LED指示灯变亮,其他五个指示灯均不亮(其中四个红色指示灯为报警指示,正常情况下不亮)。
此时直流母线P600、M600电压为26VDC;5.在通电情况下,将短接好的NS1-NS2插头插入X171,将短接好的9-48-112插头插入X161(5kw电源模块均在X141B插头上)。
此时,黄色LED变亮,直流母线电压(P600、M600)约为540VDC(根据电网电压变化而变化);6.将短接好63-9和64-9的插头插入X121(5kw电源模块在X141A插头上)。
此时绿色LED熄灭,只有黄色LED保持亮的状态,闭环电源直流母线(P600、M600)电压将稳定在600VDC,且不会随电网电压变化而变化;7.检查电子电源状态:在X141端子上可以检查电子电源状态。
其中15为参考0V, 7:+20.4...28.8 V/50 mA 45:+15 V/10 mA10:-20.4...28.8 V/50 mA 44:-15 V/10 mA8.如果以上测试通过,证明伺服电源模块无明显短路或电子电源供电异常等故障,电源回馈工作正常。
正常情况下,电源模块的开关电源通电后绿灯就亮,48与9接通后接触器吸合,63、64与9接通后,只有黄灯亮,绿灯灭。
如果所有使能都加上,反而所有灯都不亮了,正常的电源模块是由于48与9没有接通,而63、64与9接通就会出现这种情况。
如果48接通后接触器也动作了,建议检查接触器上的辅助触点是否良好。
TSP系列模块电源纹波测试方法1、纹波定义纹波(ripple)的定义是指在直流电压或电流中,叠加在直流稳定量上的交流分量。
2、纹波的危害2.1容易在用电器上产生谐波,而谐波会产生更多的危害。
2.2降低了电源的效率。
2.3较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器。
2.4会干扰数字电路的逻辑关系,影响其正常工作。
2.5会带来噪音干扰,使图像设备、音响设备不能正常工作。
3、纹波、纹波系数的表示方式3.1纹波:用有效值或峰值来表示,单位通常为mV。
3.2 纹波系数:输出的直流电压中,脉动峰值与谷值之差的一半,与直流输出电压平均值之比。
4、纹波及噪音成分4.1 输入低频纹波:输入电压含有的低频波动,经稳压环调整后,在输出端体现的交流同步波动成分。
4.2 高频纹波:和开关频率相同,主要由开关脉冲及输出滤波而形成的高频脉动成分。
4.3 共模纹波噪音:由变压器及漏感、分布电容等构成的高频干扰噪声。
4.4 功率器件开关噪声:由功率器件开关过程中产生的超高频谐振噪声。
4.5 闭环调节控制引起的纹波噪音:由器件自身固有噪声,环路增益等方面形成的噪音5、纹波的测量方法以20M示波器带宽为限制标准(建议采用20M带宽模拟示波器测试),通道设置为交流耦合,电压设为Pk-Pk(也有测有效值的),去除示波器探头上的夹子地线(夹子与地线会形成环路,像一个天线接收杂讯,使测量信号中引入一些不必要的干扰,影响测量结果),使用接地环(不使用接地环需考虑其产生的误差),在探头上并联一个47μF电解电容与一个0.1μF瓷片电容,用示波器的探针直接进行测试;如果示波器探头不是直接接触输出点,应该用双绞线,或者50Ω同轴电缆方式测量。
5.1示波器探头加入屏蔽环直流输出纹波的测量,需要对示波器探头做修改,以减少杂散信号的干扰。
如下图1为20M带宽示波器探头,去掉钩子和夹子地线后的状态。
图1 20M带宽示波器探头如下图2为20M带宽示波器探头接入屏蔽环后的状态图2 20M带宽示波器探头接入屏蔽环5.2 错误测量与正常测量结果的比较错误测量:测量电源纹波本身有一定的技巧性,图3给出了一个不当使用示波器测量电源纹波的实例。
爱浦模块电源各种电子元件检验要求与方法大全一、电容器的检验要求与方法:1.外观检查:检查电容器外观是否完好无损,是否有变形、裂纹、破损等情况。
2.容值检查:用多用途电表的电容测量功能进行测量,比对测得容值与标称容值的误差是否在允许范围内。
3.绝缘电阻检查:用万用表的绝缘电阻档进行测量,检查电容器的绝缘电阻是否满足要求。
4.电压容量检查:用合适的电源进行电容器的电压容量测试,检查电容器是否能够承受额定电压的工作条件。
二、电感器的检验要求与方法:1.外观检查:检查电感器外观是否完好无损,是否有变形、损坏等情况。
2.电感值检查:用万用表的电感测量功能进行测量,比对测得电感值与标称电感值的误差是否在允许范围内。
3.绝缘电阻检查:用万用表的绝缘电阻档进行测量,检查电感器的绝缘电阻是否满足要求。
4.频率特性检查:用合适的频率信号源和示波器进行测试,检查电感器在不同频率下的阻抗变化情况。
三、二极管的检验要求与方法:1.外观检查:检查二极管外观是否完好无损,是否有变形、破损等情况。
2.正向电压降检查:用万用表的二极管测试功能进行测量,比对测得正向电压降与标称电压降的误差是否在允许范围内。
3.反向电阻检查:用万用表的二极管测试功能进行测量,比对测得反向电阻与标称反向电阻的误差是否在允许范围内。
4.测试稳定性:用高速信号源和示波器进行测试,检查二极管在不同频率下的反向电容变化情况。
四、晶体管的检验要求与方法:1.外观检查:检查晶体管外观是否完好无损,是否有变形、破损等情况。
2.放大倍数检查:用万用表的二极管测试功能进行测量,比对测得放大倍数与标称放大倍数的误差是否在允许范围内。
3.饱和电压检查:用万用表的二极管测试功能进行测量,比对测得饱和电压与标称饱和电压的误差是否在允许范围内。
4.高频特性检查:用高频信号源和示波器进行测试,检查晶体管在不同频率下的增益变化情况。
总的来说,对于爱浦模块电源中的各种电子元件,包括电容器、电感器、二极管和晶体管,都需要进行外观检查和性能测试,以确保其正常工作和安全性能。
高压电源变换器模块测试方法
首先,测试人员需要准备一台高压电源供应器和一台示波器。
高压电源供应器用于提供所需的测试电压,而示波器用于监测输出波形和幅度。
在进行测试之前,必须确保所有测试设备都处于良好状态,并且符合相关的安全标准。
接下来,测试人员应按照制造商提供的规格书和测试程序来连接高压电源变换器模块。
这可能涉及到连接输入和输出端子,以及设置合适的电压和频率。
在连接完成后,测试人员应该仔细检查所有连接,以确保没有任何错误或短路。
一旦连接完成,测试人员可以开始对高压电源变换器模块进行测试。
首先,他们可以逐步增加输入电压,并使用示波器来监测输出波形和幅度。
他们应该确保输出波形符合规格书中的要求,并且在不同负载条件下保持稳定。
此外,测试人员还应该测试高压电源变换器模块的过载能力和短路保护功能。
他们可以通过增加负载或者短路输入来模拟这些情况,并观察高压电源变换器模块的响应。
他们应该确保高压电源变换器模块能够及时地断开输出,以保护设备和人员的安全。
最后,在测试完成后,测试人员应该记录所有测试结果,并与制造商提供的规格书进行比较。
他们应该确保高压电源变换器模块的性能符合规格书中的要求,并且没有任何异常情况。
总之,高压电源变换器模块的测试是非常重要的,它可以确保设备的性能和安全性。
通过使用适当的测试方法和设备,测试人员可以有效地评估高压电源变换器模块的性能,并及时发现潜在的问题。
这有助于提高设备的可靠性,同时也保障了工作场所的安全。
1.直流输出模块电源纹波和噪声测试
直流输出模块电源的输出纹波包含共模和差模两部分,差模纹波又包括开关频率的纹波和远高于开关频率的高频噪声,如图1所示。
前者主要由开关频率及谐波组成,后者主要由功率开关器件快速的电压和电流变化产生,这两者都是需要检测的信号。
共模噪声是由于接地点电位差的存在造成的输出纹波,这种信号沿输出线同向流动,最终在负载上转换为差模信号影响系统的工作,同样的原理,在测试时,如果探头两根信号线的阻抗不同,共模信号同样会转变成差模信号,影响真实的纹波。
共模信号与接地方式有很大关系,可以通过滤波措施进行抑制,不属于模块电源的纹波测试范围,这里只介绍差模纹波的测试方法。
图1模块电源输出纹波示意图
1.1平行线测试法
示波器优先选用带20MHz带宽限制的模拟示波器,其次是带20MHz带宽限制的数字存储示波器。
(a) 50W及以下模块峰-峰值杂音电压测试电路图
(b)50W以上模块峰-峰植杂音电压测试电路图
图2 平行线测试法示意图
⑴在输入电压为额定值,输出电流为额定值时:
小功率模块(=50W)输出管脚接平行铜箔带,后接电容,使用20MHz带宽示波器测试并记录输出端的峰-峰值杂音电压;两平行铜箔带的长度为51mm和76mm(2inch和3inch)之间,两平行铜箔带的之间的距离为2.54mm(0.1inch);C
焊接点的位置与模块输出端子的距离为25.4mm(1inch),示波器探头接点如图(a)所示,测试点距模块输出端子51mm左右,铜箔带的厚度和宽度(指两平行铜箔带之和)保证电压降小于2%。
大功率模块(>50W)输出管脚接平行铜箔带,后接电容,使用20MHz带宽示波器测试并记录输出端的峰-峰值杂音电压;两平行铜箔带的长度为51mm和76mm(2inch和3inch)之间,两平行铜箔带的之间的距离为2.54mm(0.1inch);C1焊接点的位置与模块模块输出端子的距离为25.4mm(1inch),C2焊接点与示波器探头的距离为12.7mm,C1为1?F的聚酯电容或瓷片电容(X7R或X5R类型的)C2为10?F的钽电容。
示波器探头点如图(b)所示,测试点距模块输出端子51mm 左右,铜箔带的厚度和宽度(指两平行铜箔带之和)保证电压降小于2%。
⑵缓慢调节输出负载,从0调到额定负载,在输出端的峰-峰值杂音电压达到最大值时记录下来;
⑶ 将输入电压调节为最大值和最小值,负载在空满载范围内变化时,测试并记录峰-峰值杂音电压的最大值;
⑷取所有测试值中最大值作为峰-峰值杂音电压。
这一测试方法被大多数模块电源制造商接受,在条件允许的情况下优先选用这一测试方案
1.2靠接法和双绞线测试法
靠接法和双绞线测试法的示意图如图3和图4所示,用20MHz带宽限制的数字存储示波器或模拟示波器记录模块电源在输入电压和负载范围内输出电压的最大峰-峰值。
采用靠接法测试把示波器的地线摘除,直接在模块电源的输入输出之间靠接,靠接时尽量在输出插针的根部测量,这一方法仅适用于输出两根端子很近的场合。
双绞线测试方法由于规定不够详细,模块电源的纹波测试结果相差很远,重复效果较差。
图3 靠接法
图4 双绞线测试法
2.模块电源的效率测试
测试线路如图5所示,测试仪器设备为电压表、电流表、直流稳压可调电源,可调负载装置。
测试时将变换器的输入电压调至额定值Ui。
调节负载,使变换器输出电流为额定值Io;测出此时的输出电压Uo和输入电流Ii。
按公式下式计算效率η值。
η=(Uo*Io/(Uin*Iin))*100%
式中:Ii——变换器的输入电流,通过电流表读取。
Ui——变换器的输入电压,测量模块电源输入引脚的电压值
IO——变换器的输出电流,通过电流表读取。
UO——变换器的输出电压,测量模块电源输出引脚的电压值。
图5 模块电源效率测量电路图
注意: 模块电源的输出电压测试一定要在输出插针的根部测量,否则可能造成较大测量误差,尤其是大电流应用场合。
3.模块电源的带容性负载能力测试
带容性负载能力测试电路图如图6所示。
测试仪器有直流稳压电源,数字电压表两台,电流表两块,电子负载(或者电阻性负载),数字存储示波器,10000µF或者2200µF的电容C。
如果负载为电子负载,注意要使用恒阻档来测试。
图6带容性负载开关机特性测试电路图
测试步骤为:
⑴ 按照图6连接好线路;
⑵ 将输入电压调节为额定值Vi,负载调节为满载电流,开启和关断开关K1,两通道数字示波器分别测试输入电压和输出电压,检测二者之间的时间差就是电源端启动延迟时间;用示波器记录被测模块的输入;输出电压波形;
⑶ 断开开关K2,开启和关断开关K1,用双通道数字示波器记录被测模块的输出波形;
⑷ 将输入电压调节为输入电压范围最大值和最小值,重复以上步骤,记录开启和关断时输入、输出电压波形;
⑸ 从输出波形测试过冲电压和过冲持续时间,以及启动延迟时间。
4.其它测试项
上文主要介绍了模块电源测试中需要注意的测试项,如需了解更详细全面的测试内容和测试方法,请登陆公司网站进行查询。