人体解剖及动物生理学实验报告蟾蜍骨骼肌生理解读
- 格式:docx
- 大小:411.41 KB
- 文档页数:12
解剖蟾蜍的实验报告解剖蟾蜍的实验报告一、引言蟾蜍是一种常见的两栖动物,广泛分布于全球各地。
由于其生活习性与人类相近,成为了许多科学研究的对象。
本实验旨在通过解剖蟾蜍,深入了解其内部结构和器官功能,为我们对这一物种的认识提供更多的细节。
二、实验方法本次实验使用的蟾蜍为实验室中饲养的成年蟾蜍。
在实验开始前,我们首先对实验器材进行消毒处理,以确保实验的准确性和安全性。
然后,将蟾蜍放置在特制的解剖盘中,用绳索固定住,以防止其在解剖过程中的移动。
接下来,我们使用解剖刀和镊子等工具,逐步剖开蟾蜍的皮肤和内脏,直至完全暴露腹部和内脏器官。
三、解剖结果1. 皮肤和骨骼系统蟾蜍的皮肤呈现出光滑而湿润的特点,具有很强的透气性。
在解剖过程中,我们观察到蟾蜍的皮肤下有一层薄薄的肌肉组织,这是蟾蜍的运动系统之一。
此外,蟾蜍的骨骼系统由一系列的骨骼组成,它们相互连接形成了蟾蜍的骨架,为其提供了支撑和保护。
2. 消化系统蟾蜍的消化系统包括口腔、食道、胃、肠和肝脏等器官。
我们注意到蟾蜍的口腔内有一对锐利的上颌骨和下颌骨,它们能够帮助蟾蜍捕食和咀嚼食物。
食道连接着口腔和胃,将食物从口腔传送到胃中。
胃是消化系统中的重要器官,它通过分泌胃液来分解食物中的营养物质。
肠道则负责吸收和消化食物中的养分。
此外,肝脏是蟾蜍体内最大的器官之一,它在消化过程中起到重要的代谢和排毒作用。
3. 呼吸系统蟾蜍的呼吸系统由肺和皮肤组成。
在解剖过程中,我们观察到蟾蜍的肺位于腹腔内,呈现出泡沫状的结构。
蟾蜍通过肺吸入空气,将氧气吸收到血液中,同时排出二氧化碳。
此外,蟾蜍的皮肤也能够进行呼吸,尤其在水中生活时更为重要。
4. 循环系统蟾蜍的循环系统由心脏、血管和血液组成。
我们发现蟾蜍的心脏位于胸腔内,由三个心房和一个心室组成。
心脏通过收缩和舒张来推动血液循环,将氧气和养分输送到身体各个部位。
蟾蜍的血液呈现出红色,它通过血管系统流动,为身体提供所需的氧气和养分。
四、讨论与结论通过对蟾蜍的解剖,我们深入了解了其内部结构和器官功能。
一、实验目的1. 了解骨骼肌的兴奋收缩原理。
2. 掌握骨骼肌兴奋收缩的实验方法。
3. 观察不同刺激强度和频率对骨骼肌收缩的影响。
二、实验原理骨骼肌的收缩是由神经冲动引起的。
当神经冲动到达骨骼肌时,会引起肌肉细胞膜的去极化,从而触发肌肉收缩。
刺激强度和频率是影响骨骼肌收缩的两个重要因素。
三、实验材料1. 实验动物:蟾蜍2. 实验器材:粗剪刀、玻璃分针、探针、木锤、镊子、培养皿、任氏液、娃板、保护电极、肌槽、张力转换器、锌铜弓、微机生物信号处理系统3. 实验试剂:生理盐水、1%的乙酰胆碱溶液、1%的肾上腺素溶液四、实验方法1. 准备蟾蜍坐骨神经腓肠肌标本,将标本置于肌槽中,用任氏液维持生理状态。
2. 将标本与保护电极连接,用微机生物信号处理系统记录肌肉收缩曲线。
3. 分别给予不同刺激强度和频率的刺激,观察肌肉收缩的变化。
4. 分别给予阈下刺激、阈刺激和最大刺激,观察肌肉收缩曲线的变化。
5. 分别给予不同频率的刺激,观察肌肉收缩曲线的变化。
五、实验结果1. 刺激强度对骨骼肌收缩的影响- 阈下刺激:肌肉不发生收缩。
- 阈刺激:肌肉发生单收缩。
- 最大刺激:肌肉发生最大收缩。
- 随着刺激强度的增加,肌肉收缩幅度逐渐增大,直至达到最大收缩。
2. 刺激频率对骨骼肌收缩的影响- 低频率刺激:肌肉发生单收缩。
- 中等频率刺激:肌肉发生不完全强直收缩。
- 高频率刺激:肌肉发生完全强直收缩。
3. 阈刺激下,肌肉收缩曲线的变化趋势- 潜伏期:刺激后肌肉收缩前的短暂时间。
- 收缩期:肌肉收缩的时间。
- 舒张期:肌肉收缩后的短暂时间。
六、实验结论1. 骨骼肌的兴奋收缩是由神经冲动引起的。
2. 刺激强度和频率是影响骨骼肌收缩的两个重要因素。
3. 随着刺激强度的增加,肌肉收缩幅度逐渐增大,直至达到最大收缩。
4. 随着刺激频率的增加,肌肉收缩形式由单收缩转变为不完全强直收缩,最终变为完全强直收缩。
七、实验讨论本次实验验证了骨骼肌的兴奋收缩原理,并通过实验观察了不同刺激强度和频率对骨骼肌收缩的影响。
一、实验名称蟾蜍基本实验二、实验目的1. 了解蟾蜍的解剖结构;2. 掌握蟾蜍生理实验的基本操作技术;3. 观察蟾蜍神经系统的反射活动;4. 探讨蟾蜍骨骼肌的兴奋收缩特性。
三、实验原理蟾蜍是一种常用的实验动物,其解剖结构和生理功能与哺乳动物有相似之处,因此常用于生理学、药理学等实验研究。
本实验通过对蟾蜍进行解剖和生理实验,了解其基本结构和生理功能。
四、实验材料与仪器1. 实验材料:蟾蜍、解剖盘、解剖剪、镊子、解剖针、生理盐水、玻璃管、剪刀、刀片、酒精、烧杯、培养皿等;2. 实验仪器:显微镜、生物显微镜、电子天平、生理信号采集处理系统、刺激器等。
五、实验步骤1. 蟾蜍解剖(1)将蟾蜍置于解剖盘中,用解剖剪剪开蟾蜍的腹部,暴露内脏器官;(2)用解剖针分离内脏器官,观察蟾蜍的消化系统、呼吸系统、循环系统、泌尿系统、生殖系统等;(3)观察蟾蜍的神经系统,包括大脑、脊髓、神经节等。
2. 蟾蜍反射实验(1)制备脊蛙:将蟾蜍的脊髓与脑干分离,制成脊蛙;(2)观察脊蛙的屈肌反射和伸肌反射,观察反射弧的完整性和反射活动的敏感性;(3)观察脊蛙的膝跳反射,分析反射中枢的兴奋性和抑制性。
3. 蟾蜍骨骼肌兴奋收缩实验(1)制备坐骨神经-腓肠肌标本:将蟾蜍的坐骨神经与腓肠肌分离,制成标本;(2)观察不同刺激强度、频率对肌肉收缩的影响,分析阈水平和最大收缩;(3)观察收缩的三个时期:潜伏期、缩短期、舒张期,分析刺激频度与肌肉收缩的关系。
六、实验结果与分析1. 蟾蜍解剖结果(1)消化系统:蟾蜍的消化系统包括口腔、咽、食道、胃、小肠、大肠、肛门;(2)呼吸系统:蟾蜍的呼吸系统包括皮肤、口腔、鼻腔、喉、气管、支气管、肺;(3)循环系统:蟾蜍的循环系统包括心脏、血管、血液;(4)泌尿系统:蟾蜍的泌尿系统包括肾脏、输尿管、膀胱、尿道;(5)生殖系统:蟾蜍的生殖系统包括卵巢、输卵管、子宫、阴道、睾丸、输精管、阴茎。
2. 蟾蜍反射实验结果(1)屈肌反射和伸肌反射:在适宜的刺激强度下,蟾蜍可以表现出屈肌反射和伸肌反射,反射弧完整,反射活动敏感;(2)膝跳反射:在适宜的刺激强度下,蟾蜍可以表现出膝跳反射,反射中枢兴奋性较强,抑制性较弱。
生理科学实验报告实验1:蟾蜍骨骼肌兴奋收缩实验实验组成员:刘谨、杨莹莹、张敏霞浙江大学医学院临床医学(七年制)1008班【摘要】实验目的:学习使用RM6240多道生理信号采集处理系统和换能器的使用。
掌握制备具有正常兴奋收缩功能的蛙类坐骨神经-腓肠肌标本基本操作技术。
观察不同刺激强度、频率对肌肉收缩的影响。
观察神经-肌肉接头兴奋传递和骨骼肌兴奋的电变化与收缩之间的时间关系及其各自特点。
【关键词】神经-肌肉、刺激强度、频率、电位变化、张力变化【实验原理】蛙类的某些基本生命活动和生理功能与哺乳类动物有相似之处,而且其离体组织的生活条件比较简单,易于控制和掌握。
因此,蛙或蟾蜍的坐骨神经-腓肠肌标本常被用来观察神经-肌肉的兴奋性、刺激与反应的规律及肌肉收缩特点等实验。
肌肉组织的兴奋主要表现为收缩活动,一个刺激是否能使组织发生兴奋,不仅与刺激形式有关还与刺激时间、强度、强度-时间变化三要素有关,若用方形电脉冲刺激则组织兴奋只与刺激强度、时间有关,终板电位可引起肌肉产生兴奋在宏观上表现为肌肉收缩。
肌肉的收缩形式不仅与刺激本身有关而且还与刺激频率有关。
若刺激频率较小,则表现为单收缩,逐渐增大刺激频率则变现为不完全强直收缩,继续增强则表现为完全强直收缩。
【实验步骤】1.实验材料1.1 实验动物:蟾蜍1.2 实验试剂:任氏液,甘油高渗任氏液1.3 实验器材:一维微调器,BB-3G屏蔽盒,针形引导电极,张力换能器,RM6240多道生理信号采集处理系统2. 实验方法2.1 蟾蜍坐骨神经神经-肌肉标本的制作取蟾蜍一只常规方法毁脑脊髓,剪断脊柱并且剪除蟾蜍躯干上部以及内脏,避开神经剥除蟾蜍的皮肤,于任试液中清洗,剪除骶骨分离坐骨神经于坐骨神经根部结扎,将标本固定于木板上,分离大腿部坐骨神经,直至分离至腘窝胫神经分叉处。
然后剪断股二头肌腱、半腱肌和半膜肌肌腱,并绕至前方剪断股四头肌腱。
用剪刀刮除股骨上的肌肉,在距膝关节约1cm处剪断股骨。
一、实验目的1. 理解蟾蜍骨骼肌兴奋收缩的基本原理。
2. 学习使用生理学实验设备,如RM6240多道生理信号采集处理系统和换能器。
3. 掌握制备具有正常兴奋收缩功能的蟾蜍坐骨神经腓肠肌标本的基本操作技术。
4. 观察不同刺激强度、频率对蟾蜍骨骼肌收缩的影响。
5. 分析神经肌肉接头兴奋传递和骨骼肌兴奋的电变化与收缩之间的时间关系及其各自特点。
二、实验原理蟾蜍作为一种经典的实验动物,其生理结构和功能与哺乳动物有相似之处,且其离体组织的生活条件简单,易于控制和观察。
蟾蜍骨骼肌兴奋收缩实验是生理学教学中的一个重要内容,通过观察不同刺激条件下的肌肉收缩反应,可以深入理解神经肌肉兴奋传导和肌肉收缩的生理机制。
三、实验材料与仪器1. 实验材料:蟾蜍、生理盐水、神经钩、镊子、剪刀、玻璃针、电极等。
2. 实验仪器:RM6240多道生理信号采集处理系统、换能器、放大器、示波器、计算机等。
四、实验方法1. 制备蟾蜍坐骨神经腓肠肌标本:将蟾蜍处死后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经及小腿的腓肠肌。
将神经和肌肉端结扎后,离体。
2. 连接电极:将标本的膝关节固定于标本盒的记录电极R3和R4之间,神经中枢端接触刺激电极S1和S2,肌肉接触记录电极R3和R4,之间接触接地电极。
3. 连接换能器:将肌肉的结扎线从标本盒中穿出,连接张力换能器。
4. 设置刺激参数:使用RM6240多道生理信号采集处理系统设置刺激参数,包括刺激强度、频率等。
5. 实验操作:启动刺激器,观察不同刺激强度、频率对蟾蜍骨骼肌收缩的影响,并记录相关数据。
五、实验结果与分析1. 不同刺激强度对蟾蜍骨骼肌收缩的影响:随着刺激强度的增加,蟾蜍骨骼肌的收缩幅度也随之增大,但当刺激强度超过一定阈值后,肌肉收缩幅度不再增加。
2. 不同刺激频率对蟾蜍骨骼肌收缩的影响:低频率刺激下,肌肉表现为单收缩;随着刺激频率的增加,肌肉收缩表现为不完全强直收缩;继续增加刺激频率,肌肉收缩表现为完全强直收缩。
生理解剖蟾蜍实习报告一、实习背景及目的近年来,随着生物学研究的不断深入,人们对生物体的结构与功能有了更加全面的认识。
为了进一步提高我对生物学知识的理解和应用能力,学校组织了一次生理解剖蟾蜍的实习活动。
本次实习的主要目的是观察和了解蟾蜍的形态结构、生理功能及其生态环境,从而提高我们的实践操作能力和综合素质。
二、实习过程在实习过程中,我们首先接受了实习导师的指导,学习了蟾蜍的生物特征、生活习性以及解剖方法。
在导师的示范下,我们学会了如何使用解剖工具,如刀、剪、镊子等,以及如何进行蟾蜍的解剖操作。
在实际的解剖过程中,我们按照导师的指导,逐步进行了蟾蜍的解剖。
首先,我们观察了蟾蜍的外观特征,包括体型、皮肤纹理、颜色等。
然后,我们用刀切开蟾蜍的腹部,逐层解剖,观察其内部器官的形态和位置。
在解剖过程中,我们特别注意观察了蟾蜍的心脏、肝脏、肺部、胃等主要器官的结构和功能。
此外,我们还观察了蟾蜍的生殖系统,了解了其生殖特点。
在观察蟾蜍的皮肤时,我们发现其皮肤表面有许多疣状突起,这些突起是蟾蜍的特征之一。
我们还了解到,蟾蜍的皮肤具有毒性,可以用来防御天敌。
此外,我们还解剖了蟾蜍的尾部,观察了其内部的构造。
在实习过程中,我们不仅进行了实地的解剖操作,还学习了相关的理论知识。
导师为我们讲解了蟾蜍的生活习性、生态环境以及其对人类生活的影响。
我们了解到,蟾蜍是两栖动物,生活在水边或湿润的环境中。
它们主要以昆虫为食,对农业生产具有积极作用。
同时,蟾蜍也面临着栖息地破坏、环境污染等威胁,需要加强保护。
三、实习收获通过本次实习,我对蟾蜍的形态结构、生理功能和生态环境有了更加深入的了解。
在实际操作中,我们学会了如何进行动物解剖,提高了实践操作能力。
同时,我们也意识到动物保护的重要性,增强了自己的环保意识。
本次实习让我们亲身体验了生物学研究的乐趣,激发了我们进一步学习生物学的热情。
在今后的学习中,我们将更加努力地学习生物学知识,提高自己的综合素质,为保护生物多样性和生态环境做出贡献。
一、实习目的通过本次生理解剖蟾蜍实习,了解蟾蜍的解剖结构,掌握蟾蜍各器官系统的位置、形态和功能,为后续生物学、生理学等相关课程的学习奠定基础。
二、实习时间2021年X月X日三、实习地点XX学院生理解剖实验室四、实习内容1.蟾蜍外部形态观察蟾蜍身体呈椭圆形,分为头、躯干和四肢三部分。
头部扁平,吻端尖,眼大而突出,耳后腺明显。
躯干部较宽,皮肤粗糙,全身密布大小不等的疣状突起。
四肢粗短,指(趾)端有吸盘,善于吸附。
2.蟾蜍内部解剖(1)头部解剖头部主要器官包括大脑、小脑、眼、耳、鼻、舌、咽、喉、食道等。
1)大脑:位于颅腔内,分为大脑皮层、白质和基底神经节。
大脑皮层负责处理感觉和运动信息。
2)小脑:位于颅腔后部,负责协调运动和维持身体平衡。
3)眼:蟾蜍眼睛较大,具有较好的视觉功能。
眼球由角膜、晶状体、玻璃体和视网膜组成。
4)耳:蟾蜍有外耳和内耳。
外耳负责收集声波,内耳负责听觉和平衡。
5)鼻:蟾蜍鼻腔内有嗅觉器官,负责嗅觉功能。
6)舌:蟾蜍舌较大,呈舌状,用于捕食。
7)咽、喉、食道:蟾蜍的咽部与喉部相连,食道连接咽部和胃。
(2)躯干部解剖躯干部主要器官包括心脏、肺、肝、脾、胃、肠、肾脏、生殖器官等。
1)心脏:蟾蜍心脏为两心房、两心室,负责血液循环。
2)肺:蟾蜍肺为薄壁结构,位于胸腔内,负责呼吸功能。
3)肝、脾:蟾蜍肝、脾位于腹腔内,分别负责代谢和免疫。
4)胃、肠:蟾蜍胃位于腹腔内,分为胃底、胃体和胃窦。
肠分为小肠和大肠,负责消化和吸收。
5)肾脏:蟾蜍肾脏位于腹腔后部,负责排泄代谢废物。
6)生殖器官:蟾蜍生殖器官包括卵巢、睾丸、输卵管、输精管、子宫、阴道等,负责生殖功能。
(3)四肢解剖四肢主要由骨骼、肌肉和血管组成,负责运动和支撑。
1)骨骼:蟾蜍骨骼包括头骨、躯干骨和四肢骨。
2)肌肉:蟾蜍肌肉分为骨骼肌和平滑肌,负责运动。
3)血管:蟾蜍血管包括动脉、静脉和毛细血管,负责血液循环。
五、实习总结通过本次生理解剖蟾蜍实习,我对蟾蜍的解剖结构有了较为全面的了解。
生理解剖课的实验报告篇一:生理实验报告人体解剖及动物生理学实验报告实验名称姓学系组同组姓名号别别名神经干复合动作电位XX年4月23日实验室温度实验日期一、实验题目蟾蜍坐骨神经干复合动作电位(CAP) A蟾蜍坐骨神经干CAP阈值和最大幅度的确定 B蟾蜍坐骨神经干CAP传导速度的确定 C蟾蜍坐骨神经干CAP不应期的确定二、实验目的确定蟾蜍坐骨神经干复合动作电位(CAP)的(1)临界值和最大值(2)传导速度(3)不应期(相对不应期、绝对不应期)三、实验方法蟾蜍坐骨神经标本的制作1. 双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经干及其下行到小腿的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。
注意保持神经湿润。
2. 将神经搭于标本盒内,保证神经与电极充分接触,中枢端接触刺激电极S1和S2,外周端接触记录电极R1-R2,之间接触接地电极。
3. 刺激输出线两夹子分别连接标本盒的刺激电极S1和S2,插头接生物信号采集系统RM6240的刺激输出插口;信号输入倒显得红色和绿色夹子分别连接记录电极(绿色夹子在前,引导出正向波形,即出现的第一个波峰向上),黑色夹子连接接地电极,插头接通道1.A. 蟾蜍坐骨神经干复合动作电位(CAP)临界和最大幅度的确定(1)打开信号采集软件,从“实验”菜单中选取“神经干动作电位”,出现自动设置的界面,各项参数已设置好,界面中只有一个采集通道,对应仪器面板上的通道1(因此信号输入线应连接在通道1)。
(2)确定装置是否正常工作,以及神经是否具有活性。
采用较大的刺激强度,1V,刺激时程0.2ms,延时5ms,刺激模式为但刺激。
选择“同步触发”,按下“开始刺激”后,正常情况下屏幕上会出现一个双相电位即CAP。
(3)快速降低刺激强度,确定CAP的阈电位。
记录刺激阈值及CAP幅度(波峰与波谷之间的差值)。
(4)以0.05V或更小的间隔,逐渐增大刺激强度,观察CAP幅度的变化,同时,记录刺激电位及对应的CAP幅度,直到CAP达到稳定,即最大值(神经标本在正常生理活性时,1V以内的刺激强度即可引起最大的CAP)。
人体解剖及动物生理学实验报告实验名称蟾蜍骨骼肌生理姓名学号系别组别同组姓名实验室温度实验日期2015年5月7日一、实验题目蟾蜍骨骼肌生理A蟾蜍腓肠肌刺激强度与骨骼肌收缩反应的关系B蟾蜍骨骼肌单个肌肉收缩分析(潜伏期、收缩期和舒张期的确定)C蟾蜍腓肠肌刺激频度与骨骼肌收缩的关系二、实验目的确定蟾蜍骨骼肌收缩的(1)阈水平和最大收缩以及刺激强度与肌肉收缩之间的关系曲线(2)收缩的三个时期:潜伏期、缩短期、舒张期(3)刺激频度与肌肉收缩的关系三、实验方法1、蟾蜍坐骨神经-骨骼肌标本的制作及电路连接1)双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的做个神经及小腿的腓肠肌,注意不要将胫神经与腓神经分离。
神经端结扎后,剪去无关分支后游离至膝关节处;肌肉端结扎在肌腱上,将腓神经也一起结扎,结扎线留长。
保留膝关节,剪去腿骨,将标本离体。
注意保持神经肌肉湿润。
2)用大头钉将标本的膝关节固定于标本盒R2和R3两记录电极之间的石蜡凹槽内,保证神经、肌肉与电极充分接触。
神经中枢端接触刺激电极S1和S2,肌肉接触记录电极R3和R4,之间接触接地电极。
3)肌肉的结扎线从标本盒中穿出,连接张力换能器。
注意连线尽量短,以减小阻力。
在实验过程中,注意标本的休息:将神经搭在肌肉上,用浸湿了任氏液的棉花覆盖神经肌肉,保持湿润。
但标本盒内避免有过多的液体,防止短路。
4)换能器插头接RM6240通道1。
刺激输出线两夹子分别连接标本盒的刺激电极S1和S2,插头接刺激输出插口。
如果需要记录肌肉的动作电位,则在肌肉所搭置的记录电极上连接输入导线,注意接地,插头接通道2。
2、蟾蜍骨骼肌生理各项数据测定A蟾蜍腓肠肌刺激强度和骨骼肌收缩反应的关系1)打开信号采集软件,从“实验”菜单中选取“刺激强度对骨骼肌收缩的影响”,出现软件自动设置界面,各项参数已设置好,但需要将“采集频率”修改成“20kHz”,扫描速度仍然是“1.0s/div”。
人体解剖及动物生理学实验报告蟾蜍骨骼肌生理【实验题目】蟾蜍骨骼肌生理A蟾蜍腓肠肌刺激强度与骨骼肌收缩反应的关系B蟾蜍骨骼肌单个肌肉收缩分析(潜伏期、收缩期和舒张期的确定)C蟾蜍腓肠肌刺激频度与骨骼肌收缩的关系【实验目的】确定蟾蜍骨骼肌收缩的(1)阈水平和最大收缩以及刺激强度与肌肉收缩之间的关系曲线(2)收缩的三个时期:潜伏期、缩短期、舒张期(3)刺激频度与肌肉收缩的关系【实验方法】1、蟾蜍坐骨神经-骨骼肌标本的制作及电路连接(1)双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的做个神经及小腿的腓肠肌,注意不要将胫神经与腓神经分离。
神经端结扎后,剪去无关分支后游离至膝关节处;肌肉端结扎在肌腱上,将腓神经也一起结扎,结扎线留长。
保留膝关节,剪去腿骨,将标本离体。
注意保持神经肌肉湿润。
(2)用大头钉将标本的膝关节固定于标本盒R2和R3两记录电极之间的石蜡凹槽内,保证神经、肌肉与电极充分接触。
神经中枢端接触刺激电极S1和S2,肌肉接触记录电极R3和R4,之间接触接地电极。
(3)肌肉的结扎线从标本盒中穿出,连接张力换能器。
注意连线尽量短,以减小阻力。
在实验过程中,注意标本的休息:将神经搭在肌肉上,用浸湿了任氏液的棉花覆盖神经肌肉,保持湿润。
但标本盒内避免有过多的液体,防止短路。
(4)换能器插头接RM6240通道1。
刺激输出线两夹子分别连接标本盒的刺激电极S1和S2,插头接刺激输出插口。
如果需要记录肌肉的动作电位,则在肌肉所搭置的记录电极上连接输入导线,注意接地,插头接通道2。
2、蟾蜍骨骼肌生理各项数据测定A蟾蜍腓肠肌刺激强度和骨骼肌收缩反应的关系(1)打开信号采集软件,从“实验”菜单中选取“刺激强度对骨骼肌收缩的影响”,出现软件自动设置界面,各项参数已设置好,但需要将“采集频率”修改成“20kHz”,扫描速度仍然是“1.0s/div”。
界面的采集通道默认为RM6240B面板上的通道1.刺激模式自动设置为强度递增刺激,起始强度为0.02V(可根据标本特性灵活选择)(2)检查装置连接正确后,点击“开始记录”,屏幕下出现扫描线,软件处于记录状态。
(主义不要点击“开始示波”,在示波状态下,文件不能保存。
)扫描线如偏离零点较远,需要调零:将换能器与标本盒的棉线放松,旋转换能器的调零钮,使基线恢复零点。
(3)将换能器连接的棉线拉直,如果基线偏移零位(肌肉被牵拉的程度会影响基线位置),不必去管(不必重新调零,测量时,将偏移量减去即可)。
点击“开始刺激”,刺激器按一定时间间隔自动输出单个刺激方波,后一次比前一次强度递增。
将“刺激标注”激活,显示出每次发放的刺激的强度。
屏幕上应出现一系列由刺激触发的肌肉收缩曲线,同时可以观察到标本盒中肌肉的收缩。
注意文件的保存(不要移动标本盒与换能器的位置,即肌肉被牵拉的程度保持固定。
此要求也适用于ⅡB和ⅡC。
)(4)当收缩幅度不再变化时,停止刺激,停止记录。
(5)应用测量工具,确定收缩的阈水平和最大收缩。
并确定最大收缩所对应的最小刺激强度(即最适刺激强度)。
记录下收缩幅度,刺激和放大器的参数设置。
(注意在测量时。
需将波形适当展开,确保测量数据更准确。
)(6)绘制刺激强度与肌肉收缩幅度之间的关系曲线。
B单个肌肉收缩分析(确定潜伏期、缩短期、舒张期)(1)将ⅡA实验得到的最大刺激强度对应的收缩曲线展开,应用测量工具确定收缩的三个时期:潜伏期、缩短期、舒张期。
(2)至少测量三次。
计算几次重复测量得到的三个时期的平均值和标准差。
C蟾蜍腓肠肌刺激频度与骨骼肌收缩的关系(1)打开信号采集软件,关闭通道3和4,保留通道1和2,分别对应肌肉收缩信号和肌肉动作电位信号。
示波状态下修改参数设置:采集频率20kHz;通道1:通道模式为张力,扫描速度400ms/div,灵敏度7.5g(可根据收缩幅度合理选择),放大器时间常数设为直流,滤波频率100Hz;通道2:通道模式为生物电,扫描速度400ms/div,灵活度2mv,放大器时间常数0.001s,滤波频率1kHz。
刺激模式为串单单刺激,波宽1ms,延时20ms,选择一定的刺激脉冲个数(10-60个,避免让肌肉受到过多刺激)和刺激强度(阈上刺激强度即可,不必达到最大刺激强度,避免收缩幅度过大,超出换能器量程)。
(2)点击“开始记录”,软件进入记录状态。
(3)记录过程中逐渐提高刺激频率,在一定的刺激频率下,点击“开始刺激”,刺激器按此频率连续发放设定的刺激脉冲个数,肌肉出现相应的收缩。
(4)观察肌肉收缩的总和现象,确定肌肉收缩的最小融合频率,观察肌肉动作电位与收缩的关系。
(5)观察不同频率引起肌肉收缩的幅度变化。
【实验结果】A、蟾蜍腓肠肌刺激强度和骨骼肌收缩反应的关系表1 蟾蜍腓肠肌刺激强度与骨骼肌收缩强度的关系表刺激强度(V)收缩强度(g)刺激强度(V)收缩强度(g)0.18 0.19 0.002.310.240.2510.4410.900.20 4.79 0.26 10.72 0.21 7.46 0.27 10.81 0.22 9.07 0.28 11.04 0.23 9.98 0.29 11.23图1. 蟾蜍腓肠肌刺激强度和骨骼肌收缩反应的关系图图2.蟾蜍腓肠肌刺激强度与骨骼肌收缩强度的曲线图结果分析:由上述图表可以看出,刚开始以较低强度刺激时,骨骼肌并没有收缩,直到达到阈刺激强度时(阈刺激强度在0.18-0.19V之间),骨骼肌开始收缩;随着刺激强度的增大,骨骼肌收缩强度逐渐增大;刺激强度约为0.25V时,骨骼肌收缩强度达到最大值,最大值在10.90g左右;在这之后,随着刺激强度的增大,骨骼肌收缩强度虽然有所增加,但不再明显变化,而是在最大收缩强度附近波动。
产生此现象的原因分析:由于一块肌肉由许许多多肌纤维组成,骨骼肌的收缩受运动神经元的支配。
单个运动神经元可支配多根肌纤维,一个运动神经元与它所支配的肌纤维组成一个运动单位。
而不同的运动单位兴奋阈值不同。
低于阈刺激的刺激强度,神经纤维不发生兴奋,其所支配的肌细胞也不发生反应;当刺激电压达到阈强度时,神经干中阈值最低的神经开始兴奋,其所支配的运动单位也兴奋并发生收缩。
刺激强度逐渐增大,神经干中兴奋的神经纤维增加,收缩的运动单位也增加,于是骨骼肌收缩张力增加。
当刺激电压达到最大刺激强度后,所有的神经纤维都兴奋,其所支配的所有的运动单位也收缩,所有刺激强度再增大。
骨骼肌收缩力也不再增加。
B、蟾蜍骨骼肌单个肌肉收缩分析(潜伏期、收缩期和舒张期的确定)表2蟾蜍骨骼肌单收缩潜伏期、缩短期及舒张期数据测量表刺激强度(V)潜伏期(ms)缩短期(ms)舒张期(ms)1 0.27 10 96 4432 0.28 12 92 4543 0.29 15 98 470Mean 0.28 12.33 95.33 455.67SD 0.01 2.51 3.06 13.58图3 单个肌肉收缩分析图(潜伏期、收缩期和舒张期的确定)从上图可看出,从刺激开始到收缩开始这一段无明显外部表现的时间,称为潜伏期。
自肌肉开始收缩至收缩达到高峰,是长度缩短或张力增高的时间,称为缩短期。
自收缩高峰开始,曲线较缓慢地下降至基线,为长度或张力恢复过程的时间,称为舒张期。
C、蟾蜍腓肠肌刺激频度与骨骼肌收缩的关系表3 蟾蜍腓肠肌刺激频度与骨骼肌最大收缩幅度数据记录表实验次数波间隔(ms)刺激频度(Hz)最大收缩幅度(g)现象1 500 2.00 2.50 单收缩2 300 3.33 2.90 单收缩3 200 5.00 4.06 单收缩4 150 6.67 17.70 不完全强直收缩5 50 20.0 28.33 不完全强直收缩6 25 40.0 27.14 不完全强直收缩7 20 50.0 29.20 完全强直收缩如下图显示的为几个分离的单收缩,实验显示,直到波间隔降低到200ms,蟾蜍的骨骼肌均为分离的单收缩。
图4蟾蜍腓肠肌刺激频度与骨骼肌收缩的关系图(当前波间隔为500ms)以下两图(图5、图6)显示的为几个收缩反应的重叠,即发生收缩总和。
实验显示,波间隔在150ms—25ms,骨骼肌均发生不完全强直收缩现象。
图5蟾蜍腓肠肌刺激频度与骨骼肌收缩的关系图(当前波间隔为50ms)图6蟾蜍腓肠肌刺激频度与骨骼肌收缩的关系图(当前波间隔为25ms)下图(图7)显示的为肌肉发生强直收缩的现象,可得到一条光滑的曲线。
实验显示,当波间隔降低到20ms,蟾蜍的骨骼肌会发生强直收缩现象。
图7蟾蜍腓肠肌刺激频度与骨骼肌收缩的关系图(当前波间隔为20ms)实验结果分析:上述图为不同刺激频率下肌肉收缩的曲线,通过测量可以发现在一定范围内,最大收缩幅度随波间隔的减小而增加,即最大收缩幅度随刺激频率的增加而增加。
但当波间隔减小到一定值(50ms),即刺激频率增大到一定值(20Hz)后,骨骼肌最大收缩幅度便不再增强,而是在最大值上下波动。
若给肌肉不同的有效地频率刺激,实验也可以分别观察到单收缩(2—5Hz)、收缩总和/不完全强直收缩(6.7—40Hz)和强直收缩现象(50Hz)。
如果后一次刺激落在前一收缩的舒张期,肌肉出现不完全强直收缩;继续增大频率,后一刺激落在前一收缩的收缩期,出现完全强直收缩。
【分析讨论】1、刺激强度与收缩幅度的关系是怎样的?为什么?神经细胞的兴奋是因为膜内外的NA+和K+离子浓度变化引起的,膜上存在着许多的NA+和K+离子通道,它们都有电压门控系统控制离子通道的开与闭。
在刺激的强度很小的时候,由于不足以使得电压门控通道开放,故无法引起神经细胞兴奋,只有在强度足够大的时候,神经细胞才会兴奋并传导至肌肉。
细胞膜上的NA+和K+离子通道是有限的,给予一个最适刺激强度,NA+和K+离子通道将全部开放,神经达到最大兴奋性。
若给予神经细胞更大的刺激强度,因为离子通道的限制,神经细胞也不可能出现更大的兴奋性。
2、什么是潜伏期?你认为本实验所测的潜伏期内发生了怎样的生理过程?(1)从刺激开始到到肌肉机械收缩之前这一段无明显外部表现的时间,称为潜伏期。
(2)潜伏期内发生了很多生理过程,包括神经干动作电位的传导、神经肌接头兴奋的传递和兴奋收缩耦联。
其与舒张期显著相关,机械收缩之前肌纤维的生物化学活动对肌肉的舒张机制有调制作用。
3、肌肉的收缩期和舒张期分别发生了怎样的生理过程?肌肉的收缩和舒张是否都需要能量?(1)收缩期、收缩幅度和舒张期三者间显著相关,Ca2 +升高在引起肌纤维进行机械收缩的同时,也调节Ca2 +泵活动的程度和效率,从而决定肌浆中Ca2 +浓度降低的速度。
(2)肌肉的收缩和舒张都需要能量。
4、刺激频率和肌肉动作电位及收缩的关系分别是怎样的?(1)刺激频率和肌肉动作电位:肌肉动作电位不会随着刺激频率的增大而发生叠加,刺激频率只会改变肌肉动作电位的峰值及时程。