翅片式换热器 制造工艺
- 格式:docx
- 大小:3.46 KB
- 文档页数:2
家用空调用铜管翅片式换热器制造工艺简介作者:毛锡韶来源:《商品与质量·消费视点》2013年第04期摘要:本文主要对家用空调用铜管翅片式换热器(包括蒸发器和冷凝器,俗称“两器”)的主要生产制造工艺进行简述,重点阐述关键工序的工艺、参数和控制方法等。
关键词:两器;工艺流程;重点关键工序;简介两器的主要生产流程主要包括弯制长U管→冲床→胀管→烘干→自动焊接→氦检六个主要工序。
以下对重点关键工序进行介绍。
二、重点关键工序介绍(三)自动焊接工序(关键工序)1.此工序的加工内容为采用自动焊接机,把小弯头焊接到两器的喇叭口上面2.关键控制点说明自动焊接过程的核心质量问题为防止焊漏,为了有效保证焊接质量,生产过程中需要从以下几个方面进行控制,简介如下:①小弯头和喇叭口的配合间隙根据钎焊原理,为了保证在焊接的过程中有良好的毛细管作用,理想的配合间隙一般推荐为0.05-0.1mm。
在生产过程中的主要控制点有喇叭口的内径尺寸、小弯头的跨度P值以及小弯头的管口圆度。
②清洁度主要为喇叭口和小弯头的清洁度。
要避免喇叭口在前工序受到润滑油、铝粉、手套上的毛线等的污染,小弯头清洁度采用套完环后再进行二次清洗的工艺实现。
③焊接参数A.助燃方式:根据采用助燃气体的不同,分空气助燃和氧气助燃两种方式,气体的气压(或流量)有比较大的区别;温度场方面,空气助燃火力比较猛烈,加热区域大,均匀性差,相反,氧气助燃火力比较柔和,加热区域小,均匀性较好。
(四)氦检工序(关键工序)(1)常用的氦检方法有:吸枪式检漏、喷氦式检漏和真空法检漏,目前普遍采用的是真空法检漏。
(2)基本过程:将两器工件充满氦气后,放到氦检机真空箱里面进行抽真空,若工件有泄漏,工件内的氦气将泄漏到真空箱中。
氦质谱仪通过测试口吸入真空箱内的气体,再将所有气体电离,利用各离子的电荷数和质量数的不同在同一个磁场的旋转半径是不同的原理,将氦离子导入收集极,再经放大极放大以获得氦气离子的“数量”,从而判断氦气量是否超标,最终判定工件是否有泄漏。
翅片式换热器制造工艺一、概述翅片式换热器是一种常用的工业设备,广泛应用于化工、石油、制药等领域。
其制造工艺包括选材、加工、组装等环节,本文将从这些方面进行详细介绍。
二、选材1. 翅片材料的选择翅片式换热器的翅片材料通常采用铝合金或不锈钢。
其中,铝合金具有良好的导热性能和轻质化特点,适用于低温场合;不锈钢则具有耐腐蚀性能和高温稳定性,适用于高温场合。
2. 芯管材料的选择芯管是翅片式换热器中的重要部件,通常采用碳钢或不锈钢制造。
碳钢具有强度高、价格低等优点,适用于低压场合;不锈钢则具有耐腐蚀性能和高温稳定性,适用于高压场合。
三、加工1. 翅片加工(1)板材切割:将铝板或不锈钢板按要求切成规定大小的块。
(2)翅片冲压:将板材经过模具冲压成翅片,其中包括翅片高度、间距、角度等参数的控制。
(3)翅片展开:将冲压好的翅片展开,进行打平、整形等处理。
2. 芯管加工(1)管子切割:将碳钢或不锈钢管子按要求切成规定长度的块。
(2)芯管加工:采用车床、铣床等设备对芯管进行外形加工和内部孔道处理。
四、组装1. 翅片和芯管的组装将翅片套入芯管中,通过机械或手工方式固定在一起。
需要注意的是,翅片与芯管之间应保持一定间隙,以确保换热效果。
2. 管板和法兰的组装将多个芯管组合在一起,并通过法兰连接。
同时,在两端加上管板,通过螺栓紧固固定在一起。
五、检测完成组装后,需要进行检测以确保产品质量。
检测内容包括外观质量、尺寸精度、密封性能和耐压试验等。
六、涂层处理为了增加换热器的耐腐蚀性能和美观度,可以对其进行涂层处理。
通常采用喷涂或浸渍等方式进行。
七、包装和运输完成涂层处理后,将翅片式换热器进行包装,并安排运输。
在运输过程中需要注意防潮、防震、防撞等措施,以确保产品完好无损地到达目的地。
总结:翅片式换热器的制造工艺包括选材、加工、组装、检测、涂层处理和包装运输等环节。
其中,选材是制造过程中的关键环节之一,加工和组装需要严格控制尺寸精度和质量要求,检测是确保产品质量的重要手段。
翅片式换热器制造工艺简介翅片式换热器是一种常用于空调、冷却系统和加热系统的换热设备。
本文将详细介绍翅片式换热器的制造工艺,包括原材料选择、加工工艺和装配工艺等。
原材料选择翅片式换热器的主要材料包括翅片、管组、集箱和壳体。
以下是原材料选择的要点:翅片翅片通常采用铝合金制造,因其轻量化和优良的导热性能。
选择合适的铝合金材料,如铝锰合金或铝硅合金,以确保翅片的强度和耐腐蚀性。
管组管组的材料通常为铜管,因其良好的导热性和耐腐蚀性。
选择壁厚适中的铜管,以平衡热传导和机械强度。
集箱集箱通常由不锈钢或钢板制成,以提供稳固的连接和密封。
壳体壳体可以选用钢板或铝合金。
钢板壳体价格低廉,但铝合金壳体具有更好的散热性能和轻量化特性。
加工工艺翅片式换热器的加工工艺包括以下几个步骤:制作翅片1.选择合适的铝合金板材。
2.利用切割设备将铝合金板材裁剪成翅片的尺寸。
3.利用冲床将翅片复模出所需的形状。
加工管组1.将铜管切割成所需长度。
2.进行管端的成型和修整,以确保管端的平整度和密封性能。
加工集箱和壳体1.利用折弯机将不锈钢板或钢板制成集箱和壳体的形状。
2.使用焊接设备将集箱和壳体进行固定焊接,确保密封性能和结构强度。
组装1.将翅片安装在管组上,使用焊接或膨胀套管固定。
2.将管组安装在集箱中,通过焊接或膨胀套管与集箱固定。
3.将密封件安装在集箱和壳体之间,确保换热器的密封性能。
4.安装进、出口管道和支架等配件,完成整体组装。
检测与质量控制检测方法1.使用超声波测厚仪检测管组和壳体的壁厚。
2.利用静压试验或泄漏检测设备检测换热器的密封性能。
3.进行外观检查,确保换热器表面无氧化、划痕或变形等缺陷。
质量控制1.制定严格的生产工艺控制标准,确保每个步骤符合要求。
2.定期对原材料进行检测,确保其质量稳定。
3.引进先进的生产设备,提高生产效率和产品质量。
4.进行定期的质量抽检,及时调整和改进生产工艺。
应用与展望翅片式换热器广泛应用于空调、冷却系统和加热系统等领域。
南京工程学院毕业设计说明书(论文)作者:郑俊伟学号: *********系部:机械工程学院专业:过程装备与控制工程题目:一种翅片管式热管换热器的设计指导者:朱大胜副教授评阅者:2013年06月南京毕业设计说明书(论文)中文摘要毕业设计说明书(论文)外文摘要目录第一章绪论 (1)1.1 热管的发展历程及应用领域 (1)1.2 我国热管及热管换热器的发展 (2)1.3 本文主要内容 (3)第二章热管的工作原理及应用 (4)2.1 热管节能技术概述 (4)2.2 热管的工作原理 (4)2.3 热管的分类 (5)2.4 热管的基本特性 (6)第三章热管换热器 (8)3.1 概况 (8)3.2 热管换热器的特点 (8)3.3 热管换热器的分类 (9)3.4 热管换热器的设计方法 (10)3.5 热管换热器存在的问题 (11)第四章翅片管的原理和类型 (12)4.1 翅片管的工作原理 (12)4.2 翅片管的组成 (12)4.3 翅片管的类型和选择 (12)第五章热管换热器工艺计算 (14)5.1 热管换热器技术参数 (14)5.2 热管换热器设计准备 (14)5.3 热平衡方程 (15)5.4 选取迎风面质量流速 (15)5.5 换热管的排列形式 (16)5.6 翅化比 (17)5.6.1 换热系数 (17)5.6.2 翅化比 (19)5.7 翅片效率 (19)5.8 传热平均温差 (21)5.9 传热面积 (23)5.10 热管总根数和间隔 (23)5.11 压力降 (24)第六章热管元件设计 (25)6.1 热管工作温度的选择 (25)6.2 热管工质的选择 (26)6.3 热管材料的选择 (27)6.4 热管长度的校核 (27)6.5 热管传热极限的影响 (28)第七章热管换热器结构设计 (29)7.1 隔板密封 (29)7.2 翅片管的选择 (30)7.3 管箱设计 (31)7.4 螺栓法兰连接设计 (34)7.4.1 垫片选择 (34)7.4.2 压紧面的选择 (34)7.4.3 螺栓设计 (34)7.5 隔板设计 (36)7.6 管板与热管的连接 (36)7.7 其他结构 (37)7.8 总体效果 (38)第八章结论 (39)参考文献 (40)致谢 (42)第一章绪论1.1 热管的发展历程及应用领域热管作为一种具有高导热性能的传热元件,其概念首先是由美国俄亥俄州通用发动机公司的Gaugler 于1944 年在美国专利(US2350348)提出的。
翅片式换热器制造工艺
翅片式换热器是一种常见的换热设备,它主要由翅片和管子组成。
翅片是一种薄片状的金属材料,通常是铝或铜,它们被固定在管子上,以增加管子的表面积,从而提高换热效率。
翅片式换热器广泛应用于空调、冷却器、汽车散热器等领域。
翅片式换热器的制造工艺主要包括以下几个步骤:
1. 材料准备:翅片和管子是翅片式换热器的两个主要部分,它们的材料选择和准备非常重要。
通常情况下,翅片和管子都是由铝或铜制成的,这些材料具有良好的导热性能和耐腐蚀性能。
2. 翅片加工:翅片是翅片式换热器的关键部分,它的加工质量直接影响到换热器的性能。
翅片通常是通过冲压或滚压的方式加工而成,这些加工方式可以保证翅片的尺寸和形状的精度。
3. 管子加工:管子是翅片式换热器的另一个重要部分,它的加工质量也会影响到换热器的性能。
管子通常是通过拉伸或挤压的方式加工而成,这些加工方式可以保证管子的尺寸和形状的精度。
4. 翅片和管子的组装:翅片和管子是翅片式换热器的两个主要部分,它们需要通过一定的组装工艺进行组装。
通常情况下,翅片和管子是通过焊接或胶合的方式进行组装,这些组装方式可以保证翅片和管子之间的紧密接触,从而提高换热效率。
5. 检测和质量控制:翅片式换热器的制造过程中需要进行多次检测和质量控制,以确保换热器的性能和质量符合要求。
通常情况下,翅片式换热器需要进行压力测试、泄漏测试、尺寸检测等多项测试和检测。
翅片式换热器的制造工艺非常复杂,需要经过多个步骤的加工和组装。
只有通过严格的质量控制和检测,才能保证翅片式换热器的性能和质量符合要求。
翅片式换热器的生产工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!翅片式换热器是一种常用的换热设备,广泛应用于化工、石油、电力等领域。
翅片管换热器的主要技术参数翅片管换热器的主要技术参数1. 引言翅片管换热器是一种常见的换热设备,其主要作用是通过翅片管的散热和换热功能,实现热量的传递和温度的调节。
翅片管换热器被广泛应用于工业生产中,包括化工、石油、电力等领域。
了解翅片管换热器的主要技术参数对于设计和运营人员来说至关重要,因此在本文中,我将详细介绍翅片管换热器的主要技术参数,并对其进行全面评估。
2. 翅片管换热器的主要技术参数2.1 散热面积翅片管换热器的散热面积是一个非常重要的技术参数。
它直接影响着换热效率和性能,通常用于评估散热器在一定工况下的换热能力。
散热面积的大小取决于翅片管换热器的设计尺寸和结构,同时也受到换热介质的流速、温度和物性参数的影响。
在实际应用中,需要对散热面积进行精确计算和评估,以保证换热器的正常运行和高效工作。
2.2 翅片间距翅片管换热器的翅片间距也是一个关键的技术参数。
翅片间距的大小直接影响着翅片管内流体的流动阻力和换热传递效率。
通常情况下,较小的翅片间距可以增加流体的湍流程度,进而提高换热传递效率,但也会增加流体的流动阻力;而较大的翅片间距则可以降低阻力,但换热效果会相应减弱。
在实际设计和运行中,需要对翅片间距进行合理选择和调节,以实现最佳的换热效果和能耗控制。
2.3 温差翅片管换热器的温差是指散热剂和换热剂之间的温度差,也是一个重要的技术参数。
温差的大小直接影响着翅片管换热器的换热速率和温度调节能力。
通常情况下,较大的温差可以提高换热速率,但也会增加能耗和运行成本;而较小的温差则可以降低能耗,但换热速率会相应减弱。
在实际应用中,需要对温差进行合理控制和调节,以实现能耗和换热效率的平衡。
3. 总结通过本文的介绍和评估,我对翅片管换热器的主要技术参数有了更深入和全面的了解。
熟悉这些技术参数,可以帮助我更好地设计和运行翅片管换热器,提高生产效率和降低能耗成本。
在实际应用中,需要根据具体的工艺条件和要求,合理选择和调节这些技术参数,以实现最佳的换热效果和运行性能。
制冷剂系统翅片式换热器设计及计算制冷剂系统的换热器的传热系数可以通过一系列实验关联式计算而得,这是因为在这类换热器中存在气液两相共存的换热过程,所以比较复杂,现在多用实验关联式进行计算。
之前的传热研究多对于之前常用的制冷剂,如R12,R22,R717,R134a等,而对于R404A和R410A的,现在还比较少。
按照传热过程,换热器传热量的计算公式为:Q=KoFΔtm (W)Q—单位传热量,WKo—传热系数,W/(m2.C)F—传热面积,m2Δtm—对数平均温差,CΔtmax—冷热流体间温差最大值,对于蒸发器,是入口空气温度—蒸发温度,对于冷凝器,是冷凝温度—入口空气温度。
Δtmin—冷热流体间温差最小值,对于蒸发器,是出口空气温度—蒸发温度,对于冷凝器,是冷凝温度—出口空气温度。
传热系数K值的计算公式为:K=1/(1/α1+δ/λ+1/α2)但换热器中用的都是圆管,而且现在都会带有肋片(无论是翅片式还是壳管式),换热器表面会有污垢,引入污垢系数,对于蒸发器还有析湿系数,在设计计算时,一般以换热器外表面为基准计算传热,所以对于翅片式蒸发器表述为:Kof--以外表面为计算基准的传热系数,W/(m2.C)αi—管内侧换热系数,W/(m2.C)γi—管内侧污垢系数,m2.C/kWδ,δu—管壁厚度,霜层或水膜厚度,mλ,λu—铜管,霜或水导热率,W/m.Cξ,ξτ—析湿系数,考虑霜或水膜使空气阻力增加系数,0.8-0.9(空调用亲水铝泊时可取1)αof—管外侧换热系数,W/(m2.C)Fof—外表面积,m2Fi—内表面积,m2Fr—铜管外表面积,m2Ff—肋片表面积,m2ηf—肋片效率,公式分析:从收集的数据(见后表)及计算的结果来看,空调工况的光滑铜管内侧换热系数在2000-4000 W/(m2.C)(R22取前段,R134a取后段,实验结果表明,R134a的换热性能比R22高)之间。
因为现在蒸发器多使用内螺纹管,因此还需乘以一个增强因子1.6-1.9。
铝制板翅式换热器设计要点分析摘要:铝制板翅式换热器是一种换热设备,具有高效性的特点,该散热器结构紧凑,可以快速传导热量,而且其重量较小,在当前的工业等领域得到了广泛应用。
为了进一步突出铝制板翅式换热器的优势作用,在对其进行设计的过程中,需要合理进行结构选型,并且注重细节优化,保证铝制板翅式换热器的散热效果。
本文铝制板翅式换热器设计要点进行分析研究,并且提出了几点浅见。
关键词:铝制板;翅式换热器;材料选择;设计要点一、铝制板翅式换热器的特点铝制板翅式换热器是一种高效的散热设备,具有非常明显的应用优势。
铝制板翅式换热器出现于美国,早在1942年,美国科学家Norris就提出了传热系数与Raylow数的关系,研究了平板、钉、波纹等翅片的传热性能。
随着这一技术的积极应用,美国将深化对板翅式换热器与舰船、海军、航空等环节的研究。
近年来,随着我国制造技术的发展,铝板翅片已经取代了传统的金属管壳结构。
其总质量比仅为1/10,传热效果显著,是传统金属的5~10倍。
因此,铝板翅片换热器在化工和天然气液化中得到了广泛应用。
二、板翅式换热器存在问题从结构上来看,板翅式换热器主要由进口管、进口封头、换热器芯、出口封头和出口管组成。
其结构尺寸为:进水管直径200mm,长度176mm,进水封头直径308mm,长度905mm;流体通道的宽度为19 mm,长度为308 mm;出口管的直径为200 mm,长度为246 mm。
由于进入各层中的板翅式换热器的通道的流体的不同流动模式,三个通道中的流动是不同的。
径向通道流是最大的,其次是环形通道流、涡流通道流是最小的。
进气管附近通道内的流速通常比头部末端涡流槽通道内的流速大一个数量级,各通道内的流速随进气管速度的增大而增大。
因此,板翅式换热器横向流动存在严重的不均匀分布,影响了换热器的传热效率。
考虑到锥形分配器可以实现均匀的分配和收集,不影响板翅式换热器的流量分布不均匀,只模拟了换热器的结构,包括进口管和出口管。
翅片式换热器结构特点概述说明以及解释1. 引言1.1 概述翅片式换热器是一种广泛应用于工业、航空航天和汽车行业的换热设备。
它通过利用翅片的大面积来增加热交换效果,实现了高效传热。
其结构紧凑、体积小、重量轻的特点使得它在许多领域中成为首选的换热器类型。
1.2 文章结构本文主要围绕翅片式换热器的结构特点展开阐述,目录分为五个部分。
除引言外,第二部分将介绍翅片式换热器的定义与原理,以及其主要组成部分和工作原理。
第三部分将详细介绍该类型换热器的优势和特点,包括高效传热能力、压力损失小以及结构紧凑等方面。
第四部分将通过实际案例来探讨该类型换热器在工业、航空航天和汽车行业中的应用领域。
最后,在结论部分将对全文进行总结,并展望未来该领域的发展方向或提出相关建议。
1.3 目的本文的目的是全面概述和解释翅片式换热器的结构特点以及其在不同领域中的应用案例。
通过深入了解该类型换热器的工作原理和优势,读者将能够更好地了解并选择合适的换热设备。
此外,本文还致力于提供对未来发展趋势的展望,以帮助读者把握该领域的发展方向。
2. 翅片式换热器结构特点:2.1 翅片式换热器的定义与原理:翅片式换热器是一种常见的紧凑型换热器,通过将许多薄翅片堆叠在一起形成的结构来增加传热面积。
其工作原理基于将流体通过散热片进行对流传热,通过散热片间隙之间的流动路径,实现了高效率的换热过程。
2.2 翅片式换热器的主要组成部分:(1)壳体:壳体是一个容纳内部组件并为流体提供流动通道的外部固定结构。
(2)平板:平板是位于壳体内部、用于支撑和连接散热片的平面元件。
(3)散热片:散热片是由金属材料制成的薄板,其表面具有大量纵横交错排列的细小褶皱或齿条,并负责传递和散发余温。
(4)进出口管道:进出口管道用于引导工作介质进入和离开换热器。
(5)夹层背板:夹层背板连接着相邻的散热片,形成夹层,使热量在片之间循环传递。
2.3 翅片式换热器的工作原理:当介质通过进出口管道流入换热器后,首先被引导到散热片之间的空隙中。
翅片式换热器制造工艺
翅片式换热器是一种常用的换热设备,广泛应用于工业领域。
它的制造工艺对于换热器的性能和效果有着重要的影响。
翅片式换热器的制造工艺主要包括以下几个步骤:材料准备、翅片制造、管道制造、翅片与管道的组合、焊接和表面处理。
材料准备是翅片式换热器制造的第一步。
根据设计要求,选择适合的材料。
常见的翅片式换热器材料包括铝合金、不锈钢等。
材料应具有良好的导热性能、耐腐蚀性和机械强度。
接下来是翅片制造。
翅片是翅片式换热器的关键组件,用于增加换热面积和提高换热效率。
翅片的制造通常采用铝合金压制工艺。
首先,根据设计要求,将铝合金板材切割成适当大小的翅片形状。
然后,通过专用设备将铝合金板材加工成具有一定形状和间距的翅片。
翅片的制造需要注意保持一定的平整度和间距精度,以确保换热器的换热效果。
管道制造是翅片式换热器的另一个重要环节。
管道是翅片式换热器的导热介质,用于传递热量。
管道的制造通常采用无缝钢管或铜管。
根据设计要求,将管道切割成适当长度,然后进行弯曲和成型,以满足换热器的安装要求。
翅片与管道的组合是翅片式换热器制造的关键步骤。
在组合过程中,
需要将翅片与管道紧密结合,以确保换热器的换热效果。
通常,翅片与管道的组合采用机械加工和焊接工艺。
机械加工可以确保翅片与管道之间的间距一致,以提高换热效果。
焊接工艺则用于固定翅片与管道的连接,确保其牢固可靠。
最后是焊接和表面处理。
焊接工艺主要用于连接翅片与管道之间的接头,确保其密封性和强度。
焊接过程需要控制好焊接温度和时间,以避免焊接变形和裂纹。
表面处理则用于提高翅片式换热器的耐腐蚀性和美观度。
常见的表面处理方法包括喷涂、镀锌和电镀等。
翅片式换热器的制造工艺包括材料准备、翅片制造、管道制造、翅片与管道的组合、焊接和表面处理等环节。
通过合理的工艺控制和严格的质量检验,可以制造出性能优良、效果稳定的翅片式换热器。
翅片式换热器的制造工艺是保证其性能和效果的关键,也是实现高效换热的重要保障。