2015年广东卷文科数学答案解析
- 格式:docx
- 大小:397.87 KB
- 文档页数:11
绝密★启用前试卷类型:B2015年高考真题—文科数学(广东卷)解析版一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合,,则()A. B. C. D.1.解析:本题考查集合的基本运算,属于基础题. ,故选C.2、已知是虚数单位,则复数()A. B. C. D.2.解析:本题考查复数的乘法运算,属于基础题.,故选D3、下列函数中,既不是奇函数,也不是偶函数的是()A. B. C. D.3、解析:本题考查函数的奇偶性.对于A,,所以非奇非偶,对于B,函数定义域为R,关于原点对称.,故为偶函数;对于C, 函数定义域为R,关于原点对称,因为,所以,故为偶函数; D中函数的定义域为R,关于原点对称,且,故为奇函数. 故答案为A。
4、若变量,满足约束条件,则的最大值为()A. B. C. D.4、解析:本题考查线性规划问题。
在平面直角坐标系中画图,作出可行域,可得该可行域是由(-2,2),(4,-4),(4,-1)组成的三角形。
由于该区域是封闭的,可以通过分别代这三个个边界点进行检验,易知当x=4,y=-1时,z=2x+y取得最大值5。
本题也可以通过平移直线,当直线经过(4,-1)时,截距达到最大,即取得最大值5.故选答案C.5、设的内角,,的对边分别为,,.若,,,且,则()A. B. C. D.5、解析:本题灵活性较强,可利用余弦定理或正弦定理求解.由余弦定理得:,所以,即,解得或.因为,所以.故选B.本题也可以利用正弦定理求解.6、若直线和是异面直线,在平面内,在平面内,是平面与平面的交线,则下列命题正确的是()A.至少与,中的一条相交 B.与,都相交C.至多与,中的一条相交 D.与,都不相交6.解析:本题考查空间中线线的位置关系。
以正方体为模型,易知至少与,中的一条相交.故答案为A.7、已知件产品中有件次品,其余为合格品.现从这件产品中任取件,恰有一件次品的概率为()A. B. C. D.7.解析:本题考查古典概型.采用列举法,记件产品中分别为,其中为分别对应件次品,从5件产品中任取2件有基本事件ab,ac,ad,ae,bc,bd,be,cd,ce,de共10个,恰有一件次品的含有基本事件ad,ae,bd,bd,cd,ce共6个,故恰有一件次品的概率概率为故选B.8、已知椭圆()的左焦点为,则()A. B. C. D.8、解析:本题考查椭圆的定义和几何性质.由题意得,,故.因为,故.故答案为C.9、在平面直角坐标系中,已知四边形是平行四边形,,,则()A. B. C. D.9、解析:本题考查向量加法运算法则和向量的坐标运算.由平行四边形法则,可得,所以,故选D.10、若集合,,用表示集合中的元素个数,则()A. B. C. D.10解析:D.本题属于信息创新型题目,要求学生利用以学过的知识来解决新问题.对于,当,p,q,r可以从0,1,2,3这四个数任取一个,因而有4*4*4=64,;当,p,q,r 可以从0,1,2这三个数任取一个,因而有3*3*3=27,;当,p,q,r可以从0,1这两个数任取一个,因而有2*2*2=8,;当,p=0,q=0,r=0,只有一种,故;对于,先处理前面两个(t,u),当,t可以从0,1,2,3这四个数任取一个,有4种;当,t可以从0,1,2这3个数任取3个;当,t可以从0,1,这四个数任取2个;当,t=0只有一种,故前面两个(t,u)的可能结果有4+3+2+1=10种,同理可得后面(v,w)有10种,故,所以200.点评:本题对于文科生来讲,难度很大,文科学生不学加乘法原理和排列组合大部分学生只能通过靠列举法来计算,这样无疑增添了很多麻烦.因此,对于文科生而言,笔者认为,这题严重超纲!不知道命题者是基于什么考虑而选中这道题的!二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分的.)(一)必做题(11~13题)11、不等式的解集为.(用区间表示)11.解析:本题考查一元二次不等式的解法.由得,即,所以,即的解集为(-4,1)12、已知样本数据,,,的均值,则样本数据,,,的均值为.12.解析:本题考查样本数据数字特征之平均数的定义和计算.由题意有,所以,所以13、若三个正数,,成等比数列,其中,,则.13.本题考查等比数列的定义.因为正数,,成等比数列,所以,所以(二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为,曲线的参数方程为(为参数),则与交点的直角坐标为.14解析:本题考查极坐标与直角坐标的互化,参数方程与普通方程的互化以及曲线交点的求法.由得,由得,所以,联立解得,所以与交点的直角坐标为为(2,-4).15、(几何证明选讲选做题)如图,为圆的直径,为的延长线上一点,过作圆的切线,切点为,过作直线的垂线,垂足为.若,,则.解析:本题考查切割线定理和平行线分线段成比例定理。
绝密★启用前 试卷类型:B2015年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合{}1,1M =-,{}2,1,0N =-,则M N =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 2、已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 3、下列函数中,既不是奇函数,也不是偶函数的是( ) A .2sin y x x =+ B .2cos y x x =- C .122x x y =+D .sin 2y x x =+ 4、若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 5、设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,cos 2A =且b c <,则b =( )AB .2 C. D .36、若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 7、已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .18、已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 9、在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .5 10、若集合(){},,,04,04,04,,,p q r s p s q s r s p q r sE =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题)11、不等式2340x x --+>的解集为 .(用区间表示)12、已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .13、若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = . (二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x ty t⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .15、(几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C 23E =,则D A = .三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.) 16、(本小题满分12分)已知tan 2α=.()1求tan 4πα⎛⎫+ ⎪⎝⎭的值;()2求2sin 2sin sin cos cos 21ααααα+--的值. 17、(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.()1求直方图中x 的值;()2求月平均用电量的众数和中位数;()3在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?18、(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =. ()1证明:C//B 平面D P A ;()2证明:C D B ⊥P ;()3求点C 到平面D P A 的距离.19、(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值;()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; ()3求数列{}n a 的通项公式.20、(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .()1求圆1C 的圆心坐标;()2求线段AB 的中点M 的轨迹C 的方程;()3是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21、(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.()1若()01f ≤,求a 的取值范围; ()2讨论()f x 的单调性; ()3当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数.。
2015广东省高考最后一卷文科数学本试卷共4页,21小题,满分150分。
考试用时120分钟。
参考公式:球的表面积公式24S r π=,其中r 是球的半径. 锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 为锥体的高.线性回归方程ˆˆy bx a =+中系数计算公式为()()()121niii nii x x yyb x x ==--=-∑∑,ˆa y bx=-.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2,0M =,{}1,5B =,则A B =A .∅B .{}0C .{}0,1D .{}2,0,1,52.函数()lg 1()2x f x x -=-的定义域是A .()1,+∞B .()()1,22,+∞()(),22,-∞+∞ D .[)()1,22,+∞3.若复数11i z =+,21i z =-,则复数21z z 的模是 A .1BC .2D .44.下列函数中,在其定义域内既是奇函数又是增函数的是 A .tan y x =B .2x y =C .y x =D .()lg y x 2=1+5.已知平面向量(1,2)=a ,(2,)y =b ,且//a b ,则y = A .1-B .1C .4-D .46.椭圆22194x y +=的实轴长是A .2B .3C .4D .67.经过坐标原点,且与圆()()22312x y -++=相切于第四象限的直线方程是 A .0x y -=B .0x y +=C .70x y -=D .70x y +=8.阅读如图所示的程序框图,若输入6m =,则输出S 等于 A .4 B .9 C .16D .25第7题图第8题图9.某几何体的三视图如图所示,它的表面积为 A .4πB .54π C .78πD .π10.设函数()2xf x e x =-,则 A .2x e=为()f x 的极小值点 B .2x e=为()f x 的极大值点 C .ln 2x =为()f x 的极小值点D . ln 2x =为()f x 的极大值点二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.已知{}n a 是递增等差数列,21=a ,且1a ,2a ,5a 成等比数列,则此数列的公差d =_________.12.已知变量x ,y 满足约束条件20,2,0,x y y x y +-≥⎧⎪≤⎨⎪-≤⎩则2z x y =+的最小值为_________.13.已知a b c ,,分别是ABC ∆的三个内角A B C ,,所对的边,若a =,1b =,cos C =,则sin B =_________. (二)选做题(14-15小题,考生只能从中选做一题)正视图侧视图俯视图14.(坐标系与参数方程选做题)在极坐标系中,直线l 经过圆4cos ρθ=的圆心且与直线cos 4ρθ=平行,则直线l 与极轴的交点的极坐标为_________.15.(几何证明选讲选做题)如图,过圆外一点P 作圆的切线PA (A 为切点),再作割线PBC 依次交圆于B ,C .若6PA =,3PB =,4AB =,则AC =________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数()()sin 0,0f x A x A ωω=>>的最大值为13,且最小正周期为2π. (1)求()f x 的解析式;(2)若145f θ⎛⎫=-⎪⎝⎭,3,2πθπ⎛⎫∈ ⎪⎝⎭,求cos 4πθ⎛⎫+ ⎪⎝⎭的值.17.(本小题满分13分)201515()由表中数据直观分析,甲、乙两人中谁的纯收入较稳定(2)求y 关于x 的线性回归方程,并预测甲在6月份的纯收入;(3)现从乙这5个月的纯收入中,随机抽取两个月,求恰有1个月的纯收入在区间()3 3.5, 中的概率. 18.(本小题满分14分)B PA C如图,直三棱柱111ABC A B C -中,2BAC π∠=,D 为AC 中点,E 为BC 上一点,且CDE ABC ∠=∠.(1)求证:11DE BCC B ⊥平面;(2)若122AA AC AB ===,求三棱锥1D BCB-的体积.19.(本小题满分13分)设数列{}n a 的前n 项和为n S ,且n S 满足232n n n S -=,n N *∈.(1)求数列{}n a 的通项公式; (2)设123n n n a b ++=,求数列{}n b 的前n 项和n T . 20.(本小题满分14分)ECAC 1A 1B 1BD设0p >,抛物线方程为2:2C x py =.如图所示,过焦点F 作x 轴的平行线,与抛物线在第一象限的交点为G ,已知抛物线在点G 的切线经过点()0,1-. (1)求满足条件的抛物线方程;(2)过点()0,2-作抛物线C 的切线,若切点在第二象限,求切线m 的方程;21.(本小题满分14分) 已知函数()3143f x x ax =++. (1)讨论函数()f x 的单调区间;(2)当4a =-时,若函数()f x 在区间[,3]m 上的最大值为283,求m 的取值范围.2015广东省高考最后一卷数学(文科)试题参考答案及评分标准一、选择题 1.【答案】A【解析】A B =∅. 2.【答案】B【解析】∵1020x x ->⎧⎨-≠⎩,∴12x x ≥⎧⎨≠⎩,∴函数()f x 的定义域是()()1,22,+∞.3.【答案】A【解析】∵()()()()211i 1i 1i i 1i 1i 1i z z ---===-++-,∴复数21z z 的模是i 1-==.4.【答案】C【解析】A 是奇函数但不是增函数;B 既不是奇函数也不是偶函数;C 既是奇函数又是增函数;D 是偶函数. 5.【答案】D 【解析】 ∵//a b ,∴220y -⨯=,∴4y =. 6.【答案】D【解析】实轴长26a =. 7.【答案】B【解析】依题意,设所求直线方程为y kx =,即0kx y -=,∵圆心到直线的距离为d ==,解得1k =-或17k =(舍去),∴所求直线方程是是0x y +=.8.【答案】C【解析】根据程序框图,135716S =+++=. 9.【答案】B 【解析】根据三视图,该几何体为14个球,半径为1.∴它的表面积为22145311484πππ⨯⨯⨯+⨯⨯=. 10.【答案】C【解析】 由()20xf x e '=-=,得ln 2x =,又ln 2x <时,()0f x '<,ln 2x >时,()0f x '>,∴()f x 在ln 2x =时取得极小值.二、填空题 11.【答案】4【解析】依题意,d d 42,2,2++成等比数列,∴2(2)2(24)d d +=+,解得0d =(舍去)或4=d . 12.【答案】2【解析】如图,作出可行域,当目标函数直线经过点A 时取得最大值.由2,20,y x y =⎧⎨+-=⎩解得()0,2A ,∴max 2022z =⨯+=.13. 【解析】由余弦定理得c ==,∵0c π<<,cos 3C =,∴sin 3C =,∴由正弦定理得sin sin 33b C B c ===. 14.【答案】()2,0【解析】4cos ρθ=化为直角坐标方程()2224x y -+=,圆心为()2,0,cos 4ρθ=化为直角坐标方程4x =,∴直线l 方称为2x =,直线l 与极轴的交点的极坐标为()2,0. 15.【答案】8【解析】由切割线定理可得2PA PB PC =⋅,∴12PC =.∵PAB ∆∽PCA ∆,∴P A A BP C C A=,∴12486PC AB CA PA ⋅⨯===. 三、解答题16.解:(1)∵()f x 的最大值为13,0A > ∴13A =………………………………………………………………………………………………2分∵()f x 的最小正周期为2π∴22 Tππω==又0ω>∴4ω=………………………………………………………………………………………………4分∴1()sin43f x x=……………………………………………………………………………………5分(2)∵11sin435 fθθ⎛⎫==- ⎪⎝⎭∴3sin5θ=-………………………………………………………………………………………………7分又3,2πθπ⎛⎫∈ ⎪⎝⎭∴4cos5θ===-…………………………………………………………9分∴cos cos cos sin sin444πππθθθ⎛⎫+=-⎪⎝⎭4355⎛⎫=---⨯=⎪⎝⎭………………………………………………………………………12分17.解:(1)由表中数据可知,甲的纯收入比乙的纯收入集中,故甲的纯收入较稳定.……………2分(2)∵1(12345)35x=++++=,1(2.9 3.3 3.6 4.4 4.8) 3.85y=++++=,()()()()()()25222221132333435310ix x=-=-+-+-+-+-=∑,()()51i iix x y y=--∑()()()()()()()()()()13 2.9 3.823 3.3 3.833 3.6 3.843 4.4 3.853 4.8 3.8=--+--+--+--+--4.9=∴()()()51521iii ii x x yyb x x ==--=-∑∑ 4.90.4910==,…………………………………………………………5分ˆˆ 3.80.493 2.33ay bx =-=-⨯=.……………………………………………………………6分∴所求回归方程为0.49 2.33y x ∧=+.……………………………………………………………7分令6x =,得0.496 2.33 5.27y ∧=⨯+=,∴预测甲在6月份的纯收入为5.27千元.……………………………………………………………8分(3)现从乙这5个月的纯收入中,随机抽取两个月的基本事件有: ()1,2,()1,3,()1,4,()1,5,()2,3,()2,4,()2,5,()3,4,()3,5,()4,5,共10种…………………………………………………10分记“恰有1个月的纯收入在区间()3 3.5, 中”为事件A ,其中有:()1,3,()1,4,()1,5,()2,3,()2,4,()2,5,共6种………………………………………………………………………………………12分∴恰有1个月的纯收入在区间()3 3.5, 中的概率为()63105P A ==………………………………13分 18.(1)证明:∵111ABC A B C -是直三棱柱 ∴1B B ABC ⊥平面 又DE ABC ⊂平面 ∴1B B DE⊥………………………………………………………………………………………………2分 ∵CDE ABC ∠=∠,DCE BCA ∠=∠ ∴EDC ∆∽ABC ∆∴2DEC BAC π∠=∠=即DE BC ⊥………………………………………………………………………………………………4分又1B B BC B =I ∴11DE BCC B ⊥平面……………………………………………………………………………………6分(2)BCD ABC ABD S S S ∆∆∆=-1122AB AC AB AE =⋅-⋅ 1111211222=⨯⨯-⨯⨯=…………………………………………………………………………………9分∵1B B ABC ⊥平面 ∴1B B为三棱锥1B BCD-的高…………………………………………………………………………10分 ∴11D BCB B BCD V V --=113BCD S B B ∆=⋅ 1112323=⨯⨯=……………………………………………………………………………………………13分19.解:(1)∵232n n n S -=①∴当2n ≥时,()()213112n n nS ----=②…………………………………………………………2分①-②得642n n a -=∴32n a n =- …………………………………………………………………………………………4分∵1n =时,得213112a ⨯-=,∴11a =,符合上式………………………………………………5分∴数列{}n a 的通项公式为32n a n =- ………………………………………………………………6分(2)∵1123333n n n n na n nb +++=== ……………………………………………………………………7分∴231233333n nn T =++++③…………………………………………………………………………8分∴212331333n n n T -=++++④……………………………………………………………………9分④-③得21111213333n n nn T -=++++- 11131313n n n ⎡⎤⎛⎫⨯-⎢⎥⎪⎝⎭⎢⎥⎣⎦=--121333n nn ⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦=- …………………………………………………………12分∴1113323n n nn T +=--⋅………………………………………………………………………………13分20.解:(1)由22x py =得212y x p=, 当2p y =得x p =±,∴G 点的坐标为,2p p ⎛⎫⎪⎝⎭,……………………………………………………2分1'y x p=,'|1x p y ==, 过点G的切线方程为2py x p -=-即2py x =-,…………………………………………………5分 令0x =得2py =-,∴12p-=-即2p =,即抛物线的方程为24x y =…………………………………………………7分(2)设切点2000(0)4x Q x x ⎛⎫< ⎪⎝⎭,.由2xy '=,知抛物线在Q 点处的切线斜率为02x ,…………9分∴所求切线方程2000()42x xy x x -=-, 即20024x x y x =- . ……………………………………………………………………………11分∵点()0,2-在切线上,∴224x -=-,∴0x =(舍去)或0x =- …………………………………………………………13分∴所求切线方程为2y =-. ……………………………………………………………14分21.解:(1)()2f x x a '=+.…………………………………………………………………1分①0a ≥时,()20f x x a '=+≥,()f x 在(,)-∞+∞上单调递增;②0a <时,()(2f x x a x x '=+=+-.令()0f x '=,得10x =,20x =.∴()1,x x ∈-∞时,()0f x '>;()12,x x x ∈时,()0f x '<;()2,x x ∈+∞时,()0f x '>. ∴()f x 在()1,x -∞,()2,x +∞上单调递增;在()12,x x 上单调递减.…………………………7分(2)当4a =-时,31()44,[,3]3f x x x x m =-+∈ ()()2()422f x x x x '=-=+-令()0f x '=得122,2x x =-= ……………………………………………………………………8分将x ,()f x ',()f x 变化情况列表如下:10分由此表可得28()(2)3f x f =-=极大,4()(2)3f x f ==-极小 …………………………………………11分 又28(3)13f =< ……………………………………………………………………………………12分故区间[,3]m 内必须含有2-,即m 的取值范围是2]-∞-(,. ………………………………14分。
2015年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上,用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答.答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015广东,文1)若集合M={-1,1},N={-2,1,0},则M∩N=()A.{0,-1}B.{1}C.{0}D.{-1,1}答案:B解析:因为M,N的公共元素只有1,所以M∩N={1}.2.(2015广东,文2)已知i是虚数单位,则复数(1+i)2=()A.2iB.-2iC.2D.-2答案:A解析:(1+i)2=1+2i+i2=1+2i-1=2i.3.(2015广东,文3)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin 2xB.y=x2-cos xC.y=2x+12x D.y=x2+sin x答案:D解析:A为奇函数,B和C为偶函数,D既不是奇函数,也不是偶函数.4.(2015广东,文4)若变量x,y满足约束条件{x+2y≤2,x+y≥0,x≤4,则z=2x+3y的最大值为()A.2B.5C.8D.10 答案:B解析:约束条件表示的可行域如图阴影部分所示,而z=2x+3y可变形为y=-23x+z3,z3表示直线y=-23x在y轴上的截距,由图可知当直线经过点A(4,-1)时z取最大值,最大值为z=2×4+3×(-1)=5.5.(2015广东,文5)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2√3,cos A=√32且b<c,则b=() A.3 B.2√2 C.2 D.√3答案:C解析:由余弦定理a2=b2+c2-2bc cos A,得4=b2+12-2·b·2√3×√32,即b2-6b+8=0,解得b=2或4.又因为b<c,所以b=2.6.(2015广东,文6)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交答案:D解析:l1与l在平面α内,l2与l在平面β内,若l1,l2与l都不相交,则l1∥l,l2∥l,根据直线平行的传递性,则l1∥l2,与已知矛盾,故l至少与l1,l2中的一条相交.7.(2015广东,文7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8D.1解析:设正品分别为A 1,A 2,A 3,次品分别为B 1,B 2,从中任取2件产品,基本事件共有10种,分别为{A 1,A 2},{A 1,A 3},{A 2,A 3},{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得P=610=0.6.8.(2015广东,文8)已知椭圆x 225+y 2m2=1(m>0)的左焦点为F 1(-4,0),则m=( ) A.2 B.3 C.4 D.9 答案:B解析:由已知a 2=25,b 2=m 2,c=4,又由a 2=b 2+c 2,可得m 2=9.因为m>0,所以m=3.9.(2015广东,文9)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB ⃗⃗⃗⃗⃗ =(1,-2),AD ⃗⃗⃗⃗⃗ =(2,1),则AD ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =( ) A.5 B.4 C.3 D.2 答案:A解析:AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =(1,-2)+(2,1)=(3,-1),所以AD ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(2,1)·(3,-1)=2×3+1×(-1)=5.10.(2015广东,文10)若集合E={(p ,q ,r ,s )|0≤p<s ≤4,0≤q<s ≤4,0≤r<s ≤4且p ,q ,r ,s ∈N },F={(t ,u ,v ,w )|0≤t<u ≤4,0≤v<w ≤4且t ,u ,v ,w ∈N },用card(X )表示集合X 中的元素个数,则card(E )+card(F )=( ) A.200 B.150 C.100 D.50 答案:A解析:E 中有序数组的要求为s 均大于p ,q ,r ,当s 取4时,p 可取0,1,2,3,q 也可取0,1,2,3,r 也可取0,1,2,3,此时不同数组有4×4×4=64个;同理当s 取3时,p ,q ,r 均可从0,1,2中任取1个,此时不同数组有3×3×3=27个;当s 取2时,p ,q ,r 可从0,1中任取1个,不同数组有2×2×2=8个;当s 取1时,p ,q ,r 只能都取0,不同数组有1个,因此E 中不同元素共有64+27+8+1=100个.F 中元素要求为t<u ,v<w ,当u 取4时,t 可取0,1,2,3;当u 取3时,t 可取0,1,2;当u 取2时,t 可取0,1; 当u 取1时,t 取0,所以t ,u 的不同组合为10种.同理,v ,w 不同组合也有10种,故F 中元素个数为10×10=100,所以card(E )+card(F )=200. 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.(2015广东,文11)不等式-x 2-3x+4>0的解集为 .(用区间表示) 答案:(-4,1)解析:不等式可化为x 2+3x-4<0,即(x-1)(x+4)<0,解得-4<x<1.12.(2015广东,文12)已知样本数据x 1,x 2,…,x n 的均值x =5,则样本数据2x 1+1,2x 2+1,…,2x n +1的均值为 . 答案:11解析:由题意,y i =2x i +1(i=1,2,…,n ),则y =2x +1=2×5+1=11.13.(2015广东,文13)若三个正数a ,b ,c 成等比数列,其中a=5+2√6,c=5-2√6,则b= . 答案:1解析:因为a ,b ,c 成等比数列,所以b 2=ac ,即b 2=(5+2√6)(5-2√6)=1. 又b 是正数,所以b=1.(二)选做题(14-15题,考生只能从中选做一题)14.(2015广东,文14)(坐标系与参数方程选做题)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为{x =t 2,y =2√2t ,(t 为参数),则C 1与C 2交点的直角坐标为 . 答案:(2,-4)解析:∵ρ(cos θ+sin θ)=-2,∴曲线C 1的直角坐标方程为x+y=-2. 由已知得曲线C 2的普通方程为y 2=8x. 由{x +y =-2,y 2=8x ,得y 2+8y+16=0, 解得y=-4,x=2.所以C 1与C 2交点的直角坐标为(2,-4).15.(2015广东,文15)(几何证明选讲选做题)如图,AB 为圆O 的直径,E 为AB 延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线EC 的垂线,垂足为D.若AB=4,CE=2√3,则AD= .解析:由切割线定理得EC 2=EB ·EA ,即12=EB ·(EB+4),可求得EB=2. 连接OC ,则OC ⊥DE ,所以OC ∥AD ,所以EO EA=OC AD ,即46=2AD,所以AD=3.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(2015广东,文16)已知tan α=2.(1)求tan (α+π4)的值;(2)求sin2αsin 2α+sinαcosα-cos2α-1的值.解:(1)tan (α+π4)=tanα+tan π41-tanαtan π4=tanα+11-tanα=2+11-2=-3. (2)sin2αsin 2α+sinαcosα-cos2α-1=2sinαcosαsin 2α+sinαcosα-(2cos 2α-1)-1=2sinαcosαsin 2α+sinαcosα-2cos 2α=2tanαtan 2α+tanα-2 =2×222+2-2=1.17.(本小题满分12分)(2015广东,文17)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解:(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5,所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230. 因为(0.002+0.009 5+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a , 由(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,得a=224, 所以月平均用电量的中位数是224.(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户), 月平均用电量在[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量在[260,280)的用户有0.005×20×100=10(户),月平均用电量在[280,300]的用户有0.002 5×20×100=5(户),抽取比例为1125+15+10+5=15,所以月平均用电量在[220,240)的用户中应抽取25×15=5(户).18.(本小题满分14分)(2015广东,文18)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.(1)证明:因为四边形ABCD 是长方形,所以BC ∥AD.因为BC ⊄平面PDA ,AD ⊂平面PDA , 所以BC ∥平面PDA.(2)证明:因为四边形ABCD 是长方形,所以BC ⊥CD.因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD=CD ,BC ⊂平面ABCD , 所以BC ⊥平面PDC.因为PD ⊂平面PDC ,所以BC ⊥PD.(3)解:取CD 的中点E ,连接AE 和PE.因为PD=PC ,所以PE ⊥CD.在Rt △PED 中,PE=√PD 2-DE 2=√42-32=√7.因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD=CD ,PE ⊂平面PDC , 所以PE ⊥平面ABCD. 由(2)知BC ⊥平面PDC. 由(1)知BC ∥AD. 所以AD ⊥平面PDC.因为PD ⊂平面PDC ,所以AD ⊥PD. 设点C 到平面PDA 的距离为h , 因为V 三棱锥C-PDA =V 三棱锥P-ACD ,所以13S △PDA ·h=13S △ACD ·PE , 即h=S △ACD ·PE S △PDA=12×3×6×√712×3×4=3√72, 所以点C 到平面PDA 的距离是3√72. 19.(本小题满分14分)(2015广东,文19)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n+2+5S n =8S n+1+S n-1.(1)求a 4的值;(2)证明:{a n+1-12a n }为等比数列; (3)求数列{a n }的通项公式.(1)解:当n=2时,4S 4+5S 2=8S 3+S 1,即4(1+32+54+a 4)+5(1+32)=8(1+32+54)+1, 解得a 4=78. (2)证明:因为4S n+2+5S n =8S n+1+S n-1(n ≥2),所以4S n+2-4S n+1+S n -S n-1=4S n+1-4S n (n ≥2), 即4a n+2+a n =4a n+1(n ≥2).因为4a 3+a 1=4×54+1=6=4a 2, 所以4a n+2+a n =4a n+1(n ∈N *). 因为a n+2-12a n+1a n+1-12a n=4a n+2-2a n+14a n+1-2a n=4a n+1-a n -2a n+14a n+1-2a n=2a n+1-a n 2(2a n+1-a n )=12,所以数列{a n+1-12a n }是以a 2-12a 1=1为首项,公比为12的等比数列. (3)解:由(2)知数列{a n+1-12a n }是以a 2-12a 1=1为首项,公比为12的等比数列,所以a n+1-12a n =(12)n -1, 即a n+1(12)n+1−a n(12)n =4,所以数列{a n(12)n }是以a 112=2为首项,公差为4的等差数列,所以a n(12)n =2+(n-1)×4=4n-2,即a n =(4n-2)×(12)n =(2n-1)×(12)n -1. 所以数列{a n }的通项公式是a n =(2n-1)×(12)n -1. 20.(本小题满分14分)(2015广东,文20)已知过原点的动直线l 与圆C 1:x 2+y 2-6x+5=0相交于不同的两点A ,B. (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y=k (x-4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由. 解:(1)圆C 1:x 2+y 2-6x+5=0可化为(x-3)2+y 2=4,所以圆C 1的圆心坐标为(3,0). (2)设线段AB 的中点M (x ,y ),由弦的性质可知C 1M ⊥AB ,即C 1M ⊥OM. 故点M 的轨迹是以OC 1为直径的圆,该圆的圆心为C (32,0),半径r=12|OC 1|=12×3=32,其方程为(x -32)2+y 2=(32)2,即x 2+y 2-3x=0.又因为点M 为线段AB 的中点,所以点M 在圆C 1内, 所以√(x -3)2+y 2<2. 又x 2+y 2-3x=0,所以可得x>53. 易知x ≤3,所以53<x ≤3.所以线段AB 的中点M 的轨迹C 的方程为x 2+y 2-3x=0(53<x ≤3).(3)由题意知直线L 表示过定点T (4,0),斜率为k 的直线.结合图形,(x 0-32)2+y 02=94(53<x 0≤3)表示的是一段关于x 轴对称,起点为F (53,-2√53)按逆时针方向运动到E (53,2√53)的圆弧(不含端点). 根据对称性,只需讨论在x 轴下方的圆弧. 由F (53,-2√53),则k FT =2√534-53=2√57, 而当直线L 与轨迹C 相切时,|3k 2-|√k +1=32,解得k=±34.在这里暂取k=34,因为2√57<34,所以k FT <k.结合图形,可得对于x 轴下方的圆弧,当0≤k ≤2√57或k=34时,直线L 与x 轴下方的圆弧有且只有一个交点.根据对称性可知当-2√57≤k<0或k=-34时,直线L 与x 轴上方的圆弧有且只有一个交点. 综上所述,当-2√57≤k ≤2√57或k=±34时,直线L :y=k (x-4)与曲线C 只有一个交点.21.(本小题满分14分)(2015广东,文21)设a 为实数,函数f (x )=(x-a )2+|x-a|-a (a-1). (1)若f (0)≤1,求a 的取值范围; (2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x在区间(0,+∞)内的零点个数. 解:(1)f (0)=a 2+|a|-a 2+a=|a|+a.因为f (0)≤1,所以|a|+a ≤1. 当a ≤0时,0≤1,显然成立;当a>0时,则有2a ≤1,所以a ≤12. 所以0<a ≤12.综上所述,a 的取值范围是a ≤12.(2)f (x )={x 2-(2a -1)x ,x ≥a ,x 2-(2a +1)x +2a ,x <a .对于u 1=x 2-(2a-1)x ,其图象的对称轴为x=2a -12=a-12<a ,开口向上, 所以f (x )在[a ,+∞)上单调递增;对于u 2=x 2-(2a+1)x+2a ,其图象的对称轴为x=2a+12=a+12>a ,开口向上, 所以f (x )在(-∞,a )上单调递减.综上,f (x )在[a ,+∞)上单调递增,在(-∞,a )上单调递减. (3)由(2)得f (x )在[a ,+∞)上单调递增,在(0,a )上单调递减, 所以f (x )min =f (a )=a-a 2.①当a=2时,f (x )min =f (2)=-2,f (x )={x 2-3x ,x ≥2,x 2-5x +4,x <2,令f (x )+4x=0,即f (x )=-4x(x>0). 因为f (x )在(0,2)上单调递减, 所以f (x )>f (2)=-2,而y=-4x 在(0,2)上单调递增,y<f (2)=-2, 所以y=f (x )与y=-4x在(0,2)上无交点. 当x ≥2时,令f (x )=x 2-3x=-4x, 即x 3-3x 2+4=0,所以x 3-2x 2-x 2+4=0. 所以(x-2)2(x+1)=0.因为x ≥2,所以x=2,即当a=2时,f (x )+4x有一个零点x=2.②当a>2时,f (x )min =f (a )=a-a 2, 当x ∈(0,a )时,f (0)=2a>4,f (a )=a-a 2,而y=-4x在x ∈(0,a )上单调递增,当x=a 时,y=-4a.下面比较f (a )=a-a 2与-4a 的大小.因为a-a 2-(-4a)=-(a 3-a 2-4)a =-(a -2)(a 2+a+2)a<0,所以f (a )=a-a 2<-4a.结合图象不难得当a>2时,y=f (x )与y=-4x有两个交点. 综上,当a=2时,f (x )+4x 有一个零点x=2; 当a>2时,y=f (x )与y=-4x有两个零点.。
2015 年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 2. 已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 3. 下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =- C .122xx y =+D .sin 2y x x =+ 4. 若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .25. 设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =cos A =,且b c <,则b =( )AB .2 C. D .3 6. 若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交8.已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 9. 在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .510. 若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(11~13题)11. 不等式2340x x --+>的解集为 .(用区间表示)12. 已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .13. 若三个正数a ,b ,c 成等比数列,其中5a =+5c =-则b = .(二)选做题(14、15题,考生只能从中选作一题)14. (坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为2x t y ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .15. (几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C E =,则D A = .三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16、(本小题满分12分)已知tan 2α=.()1求tan 4πα⎛⎫+ ⎪⎝⎭的值;()2求2sin 2sin sin cos cos 21ααααα+--的值.17、(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.()1求直方图中x 的值;()2求月平均用电量的众数和中位数;()3在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?18、(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.()1证明:C//B 平面D P A ;()2证明:C D B ⊥P ;()3求点C 到平面D P A 的距离.19、(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值;()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; ()3求数列{}n a 的通项公式.20、(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . ()1求圆1C 的圆心坐标;()2求线段AB 的中点M 的轨迹C 的方程;()3是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21、(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.()1若()01f ≤,求a 的取值范围; ()2讨论()f x 的单调性; ()3当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数.参考答案1-5 BADBC 6-10 DBBAA11、(-4,1) 12、10 13、1 14、(2,-4) 15、3 16、(1)解:tan tan4tan()41tan tan 4tan 11tan παπαπααα++=-+=- ∵ tan 2α= ∴21tan()34121πα++==-- (2)222222222sin sin cos cos 21sin 1sin cos (cos sin )cos sin cos cos sin sin cos 2cos sin αααααααααααααααααα+--=-+--=-+-+=-+∵sin 22sin cos ααα=∴22222sin cos sin cos -2cos sin 2tan =tan 2tan 221222ααααααααα=+-+⨯==-+原式17、解:(1)(0.002+0.0025+0.005+x +0.0095+0.011+0.0125)⨯20=1∴0.0075x = (2)众数:230中位数:取频率直方图的面积平分线 0.0020.00950.0110.0225110.0252020.0250.02250.00250.0025202202240.0125++=⨯=∴-=⨯+=(3)[220,240):0.01252010025⨯⨯=[240,260):0.00752010015⨯⨯= [260,280):0.0052010010⨯⨯=[280,300):0.0025201005⨯⨯=共计:55户 ∴[220,240)抽取:2511555⨯=户 18、解:(1)∵ 四边形ABCD 为长方形∴BC AD∵BC PDA AD PDA ⊄⊂平面,平面 ∴BC PDA 平面(2)取DC 中点E ,连接PE∵PC=PD ∴ PE ⊥CD∵ 面PCD ⊥面ABCD ,面PCD ⋂面ABCD=CD PE ⊂面PCD ,PE ⊥CD ∴ PE ⊥面ABCD 而BC ⊂面ABCD ∴ BC ⊥PE∵ BC ⊥CD ,CD ⋂PE=E ∴ BC ⊥面PCD PD ⊂面PCD ∴ BC ⊥PD(3)由(2)得:PE 为面ABCD 的垂线∴P-ADC ΔACD 1V PE S 3=⨯⨯在等腰三角形PCD中,ACD 11S AD DC 36922∆=⨯⨯=⨯⨯=∴P-ADC 1V 93==设点C 到平面PDA 距离为h∴C-PDA PDA 1V S 3h ∆=⨯⨯而PDA 11S AD PD 34622∆=⨯⨯=⨯⨯=∴163h =⨯⨯∴h =,即:点C 到平面PDA19、解:(1)令n=2,则:43123123112124444348535151244135122155481542374237837371578848S S S S S a a a S a S a a S S S a S =+-=++=++====+=+=∴=⨯+-⨯==∴=-=-=(2)211112211211121321212112114584584584444{44}5344=4-4+1=04244=042=2-42=12-n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n nS S S S S S S S a a a a a a a a a a a a a a a a a a a a a a a a a a a ++-+--++-+++-+++++++++++=+⎧⎨+=+⎩∴+=+∴-+=-+∴-+-+⨯⨯∴-+∴--∴为常数列211211114-2=112-21-12=2-21{-}2n n n n n n n n n n a a a a a a a a a a +++++++∴∴∴()()为等比数列(3)由(2)得:11{-}2n n a a +是首相为:2113-=22a a ,公比为12的等边数列111411()()22{}2,411()22=2+4()2121()()221n n n n n n n n n n na aa aan n n a n ++∴-=∴=∴-∴==-为首相公差为的等差数列(+1)=4-24-2 20、(1)解:2222650,34x y x x y +-+=-+=∴配方得:()圆心坐标为(3,0)(2)由题意得:直线l 的斜率一定存在,设直线l 的斜率为k ,则l :y kx =设1122(,),(,),(,)A x y B x y M x y12122222222122212222222222222650650(1)650661161313131()30(1)6500,,364(1)5011x x x y y y y kx x y x x k x x k x x x x k k ky y k x k k y k x xx x y k x x k k +⎧=⎪⎪∴⎨+⎪=⎪⎩=⎧⎨+-+=⎩∴+-+=∴+-+=-∴+=-=++∴+=+⎧=⎪⎪+∴⎨⎪=⎪+⎩∴=+∴-+=+-+=∴∆>-+>∴≤+<有解即29535(,3]13x k ∴=∈+(3)曲线C :22530(,3]3x x y x -+=∈2221233()()220354303543x y k k k -+=-==--==-的两个极限值:3|04|323433[{,}44k k k k --∴=±∴∈⋃-相切时:21、解:(1)222(0)||(1)||||f a a a a a a a a a a =+--=+-+=+ 10,21,21020,1,012a a a a a a a a R a a ≥≤≤∴≤≤<+≤∈∴<≤若即:若即:-综上所述: (2)22()()(1)()()()()(1)()x a x a a a x a f x x a x a a a x a ⎧-+---≥⎪=⎨-----<⎪⎩22(12)()()(12)2()x a x x a f x x a x a x a ⎧+-≥⎪=⎨-++<⎪⎩ 对称轴分别为:12122a x a a +==+>∴(,)a -∞在区间上单调递减,,a +∞在区间()上单调递增(3)由(2)得()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,所以2min ()()f x f a a a ==-. ①当2a =时,-22()(min ==)f x f ,⎩⎨⎧<+-≥-=24523)(22x x x x x x x f ,, 当04)(=+x x f 时,即)0(4)(>-=x xx f . 因为()f x 在(0,2)上单调递减,所以()(2)2f x f >=- 令xx g 4)(-=,则)(x g 为单调递增函数,所以在区间(0,2)上,2)2()(-=<g x g , 所以函数)(x f 与)(x g 在(0,2)无交点. 当2x ≥时,令xx x x f 43)(2-=-=,化简得32340x x -+=,即()()0122=+-x x ,则解得2=x综上所述,当2a =时,xx f 4(+)在区间()+∞,0有一个零点x=2. ②当2a >时,2min ()()f x f a a a ==-,当(0,)x a ∈时,(0)24f a => ,0)(2<-=a a a f , 而x x g 4)(-=为单调递增函数,且当),0(a x ∈时,04)(<-=xx g 故判断函数)()(x g x f 与是否有交点,需判断2)(a a a f -=与aa g 4)(-=的大小. 因为0)2)(2()4()4(2232<++--=---=---aa a a a a a a a a 所以24()f a a a a=-<-,即)a g a f ()(< 所以,当),0(a x ∈时,)()(x g x f 与有一个交点;当),(+∞∈a x 时,)(x f 与)(x g 均为单调递增函数,而04)(<-=xx g 恒成立 而令a x 2=时,02)1()2(2>=--+=a a a a a a f ,则此时,有)2()2(a g a f >, 所以当),(+∞∈a x 时,)()(x g x f 与有一个交点; 故当2>a 时,()y f x =与xx g 4)(-=有两个交点.11 综上,当2a =时,4()f x x +有一个零点2x =; 当2>a ,4()f x x+有两个零点.。
2015年高考文数试题及答案(广东)
2015年高考的脚步已经离我们越来越近了,现在所有的考生都在复习冲刺,就等着临门一脚了,高考频道会在广东高考后第一时间首发2015年广东高考文数真题及答案,以便大家能够估分,对估分有所困惑的考生们可以看看小编下面为您准备的估分的四个基本小技巧!
小编提醒:估分四个基本技巧
一、考后估分的关键点就是能有效的回忆起自己当时考试所做的答案,考生可以一个人静静思索,千万不要其他人讨论,把自己在考场的解题思路都回忆起来。
二、要好好核对标准答案,把握得分点,对自己有个初步的估分,宽松合理,有些主观题答对一点老师也是会酌情给分的,就算是得数错了,过程对了,也是有分的,所以不要应该一个小小的失误就患得患失。
三、现在大多数的省份都是成绩出来之后志愿填报了,所以估分时也可以不用太过紧张,估分之后就可以看看志愿填报的一些指南,早作准备,不要等成绩出来再来临时抱佛脚。
四,对于那些估分不是很理想的要给予一定的关怀,估分不理想对考生的心态会造成很大的影响,有些考生甚至会认为自己已经高考失败了,这个时候家长一定要多多关注自己的孩子。
2015年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上,用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答.答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015广东,文1)若集合M={-1,1},N={-2,1,0},则M∩N=()A.{0,-1}B.{1}C.{0}D.{-1,1}答案:B解析:因为M,N的公共元素只有1,所以M∩N={1}.2.(2015广东,文2)已知i是虚数单位,则复数(1+i)2=()A.2iB.-2iC.2D.-2答案:A解析:(1+i)2=1+2i+i2=1+2i-1=2i.3.(2015广东,文3)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin 2xB.y=x2-cos xC.y=2x+D.y=x2+sin x答案:D解析:A为奇函数,B和C为偶函数,D既不是奇函数,也不是偶函数.4.(2015广东,文4)若变量x,y满足约束条件则z=2x+3y的最大值为()A.2B.5C.8D.10答案:B解析:约束条件表示的可行域如图阴影部分所示,而z=2x+3y可变形为y=-x+表示直线y=-x在y轴上的截距,由图可知当直线经过点A(4,-1)时z取最大值,最大值为z=2×4+3×(-1)=5.5.(2015广东,文5)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cos A=且b<c,则b=()A.3B.2C.2D.答案:C解析:由余弦定理a2=b2+c2-2bc cos A,得4=b2+12-2·b·2,即b2-6b+8=0,解得b=2或4.又因为b<c,所以b=2.6.(2015广东,文6)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交答案:D解析:l1与l在平面α内,l2与l在平面β内,若l1,l2与l都不相交,则l1∥l,l2∥l,根据直线平行的传递性,则l1∥l2,与已知矛盾,故l至少与l1,l2中的一条相交.7.(2015广东,文7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为() A.0.4 B.0.6 C.0.8 D.1答案:B解析:设正品分别为A1,A2,A3,次品分别为B1,B2,从中任取2件产品,基本事件共有10种,分别为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得P==0.6.8.(2015广东,文8)已知椭圆=1(m>0)的左焦点为F1(-4,0),则m=()A.2B.3C.4D.9答案:B解析:由已知a2=25,b2=m2,c=4,又由a2=b2+c2,可得m2=9.因为m>0,所以m=3.9.(2015广东,文9)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,-2),=(2,1),则=()A.5B.4C.3D.2答案:A解析:=(1,-2)+(2,1)=(3,-1),所以=(2,1)·(3,-1)=2×3+1×(-1)=5.10.(2015广东,文10)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200B.150C.100D.50答案:A解析:E中有序数组的要求为s均大于p,q,r,当s取4时,p可取0,1,2,3,q也可取0,1,2,3,r也可取0,1,2,3,此时不同数组有4×4×4=64个;同理当s取3时,p,q,r均可从0,1,2中任取1个,此时不同数组有3×3×3=27个;当s取2时,p,q,r可从0,1中任取1个,不同数组有2×2×2=8个;当s取1时,p,q,r只能都取0,不同数组有1个,因此E中不同元素共有64+27+8+1=100个.F中元素要求为t<u,v<w,当u取4时,t可取0,1,2,3;当u取3时,t可取0,1,2;当u取2时,t可取0,1;当u取1时,t取0,所以t,u的不同组合为10种.同理,v,w不同组合也有10种,故F中元素个数为10×10=100,所以card(E)+card(F)=200.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.(2015广东,文11)不等式-x2-3x+4>0的解集为.(用区间表示)答案:(-4,1)解析:不等式可化为x2+3x-4<0,即(x-1)(x+4)<0,解得-4<x<1.12.(2015广东,文12)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1的均值为.答案:11解析:由题意,y i=2x i+1(i=1,2,…,n),则=2+1=2×5+1=11.13.(2015广东,文13)若三个正数a,b,c成等比数列,其中a=5+2,c=5-2,则b=.答案:1解析:因为a,b,c成等比数列,所以b2=ac,即b2=(5+2)(5-2)=1.又b是正数,所以b=1.(二)选做题(14-15题,考生只能从中选做一题)14.(2015广东,文14)(坐标系与参数方程选做题)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.答案:(2,-4)解析:∵ρ(cos θ+sin θ)=-2,∴曲线C1的直角坐标方程为x+y=-2.由已知得曲线C2的普通方程为y2=8x.由-得y2+8y+16=0,解得y=-4,x=2.所以C1与C2交点的直角坐标为(2,-4).15.(2015广东,文15)(几何证明选讲选做题)如图,AB为圆O的直径,E为AB延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4,CE=2则AD=.答案:3解析:由切割线定理得EC2=EB·EA,即12=EB·(EB+4),可求得EB=2.连接OC,则OC⊥DE,所以OC∥AD,所以,即,所以AD=3.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(2015广东,文16)已知tan α=2.(1)求tan的值;(2)求--的值.解:(1)tan-=--=-3.(2)--=---=-=-=-=1.17.(本小题满分12分)(2015广东,文17)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解:(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5,所以直方图中x的值是0.007 5.(2)月平均用电量的众数是=230.因为(0.002+0.009 5+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,得a=224,所以月平均用电量的中位数是224.(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户),月平均用电量在[240,260)的用户有0.007 5×20×100=15(户),月平均用电量在[260,280)的用户有0.005×20×100=10(户),月平均用电量在[280,300]的用户有0.002 5×20×100=5(户),抽取比例为,所以月平均用电量在[220,240)的用户中应抽取25×=5(户).18.(本小题满分14分)(2015广东,文18)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.(1)证明:因为四边形ABCD是长方形,所以BC∥AD.因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA.(2)证明:因为四边形ABCD是长方形,所以BC⊥CD.因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC⊂平面ABCD,所以BC⊥平面PDC.因为PD⊂平面PDC,所以BC⊥PD.(3)解:取CD的中点E,连接AE和PE.因为PD=PC,所以PE⊥CD.在Rt△PED中,PE=--.因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PDC,所以PE⊥平面ABCD.由(2)知BC⊥平面PDC.由(1)知BC∥AD.所以AD⊥平面PDC.因为PD⊂平面PDC,所以AD⊥PD.设点C到平面PDA的距离为h,因为V三棱锥C-PDA=V三棱锥P-ACD,所以S△PDA·h=S△ACD·PE,即h=△△,所以点C到平面PDA的距离是.19.(本小题满分14分)(2015广东,文19)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4S n+2+5S n=8S n+1+S n-1.(1)求a4的值;(2)证明:-为等比数列;(3)求数列{a n}的通项公式.(1)解:当n=2时,4S4+5S2=8S3+S1,即4+5=8+1,解得a4=.(2)证明:因为4S n+2+5S n=8S n+1+S n-1(n≥2),所以4S n+2-4S n+1+S n-S n-1=4S n+1-4S n(n≥2),即4a n+2+a n=4a n+1(n≥2).因为4a3+a1=4×+1=6=4a2,所以4a n+2+a n=4a n+1(n∈N*).因为-------=--,所以数列-是以a2-a1=1为首项,公比为的等比数列. (3)解:由(2)知数列-是以a2-a1=1为首项,公比为的等比数列,所以a n+1-a n=-,即=4,所以数列是以=2为首项,公差为4的等差数列, 所以=2+(n-1)×4=4n-2,即a n=(4n-2)×=(2n-1)×-.所以数列{a n}的通项公式是a n=(2n-1)×-.20.(本小题满分14分)(2015广东,文20)已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.解:(1)圆C1:x2+y2-6x+5=0可化为(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2)设线段AB的中点M(x,y),由弦的性质可知C1M⊥AB,即C1M⊥OM.故点M的轨迹是以OC1为直径的圆,该圆的圆心为C,半径r=|OC1|=×3=,其方程为-+y2=,即x2+y2-3x=0.又因为点M为线段AB的中点,所以点M在圆C1内,所以-<2.又x2+y2-3x=0,所以可得x>.易知x≤3,所以<x≤3.所以线段AB的中点M的轨迹C的方程为x2+y2-3x=0.(3)由题意知直线L表示过定点T(4,0),斜率为k的直线.结合图形,-表示的是一段关于x轴对称,起点为F-按逆时针方向运动到E的圆弧(不含端点).根据对称性,只需讨论在x轴下方的圆弧.由F-,则k FT=-,而当直线L与轨迹C相切时,-,解得k=±.在这里暂取k=,因为,所以k FT<k.结合图形,可得对于x轴下方的圆弧,当0≤k≤或k=时,直线L与x轴下方的圆弧有且只有一个交点.根据对称性可知当-≤k<0或k=-时,直线L与x轴上方的圆弧有且只有一个交点.综上所述,当-≤k≤或k=±时,直线L:y=k(x-4)与曲线C只有一个交点.21.(本小题满分14分)(2015广东,文21)设a为实数,函数f(x)=(x-a)2+|x-a|-a(a-1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2时,讨论f(x)+在区间(0,+∞)内的零点个数.解:(1)f(0)=a2+|a|-a2+a=|a|+a.因为f(0)≤1,所以|a|+a≤1.当a≤0时,0≤1,显然成立;当a>0时,则有2a≤1,所以a≤.所以0<a≤.综上所述,a的取值范围是a≤.(2)f(x)=---对于u1=x2-(2a-1)x,其图象的对称轴为x=-=a-<a,开口向上,所以f(x)在[a,+∞)上单调递增;对于u2=x2-(2a+1)x+2a,其图象的对称轴为x==a+>a,开口向上, 所以f(x)在(-∞,a)上单调递减.综上,f(x)在[a,+∞)上单调递增,在(-∞,a)上单调递减.(3)由(2)得f(x)在[a,+∞)上单调递增,在(0,a)上单调递减,所以f(x)min=f(a)=a-a2.①当a=2时,f(x)min=f(2)=-2,f(x)=--令f(x)+=0,即f(x)=-(x>0).因为f(x)在(0,2)上单调递减,所以f(x)>f(2)=-2,而y=-在(0,2)上单调递增,y<f(2)=-2,所以y=f(x)与y=-在(0,2)上无交点.当x≥2时,令f(x)=x2-3x=-,即x3-3x2+4=0,所以x3-2x2-x2+4=0.所以(x-2)2(x+1)=0.因为x≥2,所以x=2,即当a=2时,f(x)+有一个零点x=2.②当a>2时,f(x)min=f(a)=a-a2,当x∈(0,a)时,f(0)=2a>4,f(a)=a-a2,而y=-在x∈(0,a)上单调递增, 当x=a时,y=-.下面比较f(a)=a-a2与-的大小.因为a-a2-----=--<0,所以f(a)=a-a2<-.结合图象不难得当a>2时,y=f(x)与y=-有两个交点.综上,当a=2时,f(x)+有一个零点x=2;当a>2时,y=f(x)与y=-有两个零点.。
2015年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合{}1,1M =-,{}2,1,0N =-,则M N = ( )A .{}0,1-B .{}0C .{}1D .{}1,1- 2、已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 3、下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =-C .122x x y =+ D .sin 2y x x =+4、若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 5、设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,cos A =,且b c <,则b =( )AB .2 C. D .36、若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 7、已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .18、已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .29、在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =- ,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .510、若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题)11、不等式2340x x --+>的解集为 .(用区间表示)12、已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .13、若三个正数a ,b ,c成等比数列,其中5a =+5c =-,则b = . (二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为2x t y ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .15、(几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C E =D A = .三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.) 16、(本小题满分12分)已知tan 2α=.()1求tan 4πα⎛⎫+ ⎪⎝⎭的值;()2求2sin 2sin sin cos cos 21ααααα+--的值.17、(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.()1求直方图中x 的值;()2求月平均用电量的众数和中位数;()3在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?18、(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.()1证明:C//B 平面D P A ;()2证明:C D B ⊥P ;()3求点C 到平面D P A 的距离.19、(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值; ()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; ()3求数列{}n a 的通项公式.20、(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .()1求圆1C 的圆心坐标;()2求线段AB 的中点M 的轨迹C 的方程;()3是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21、(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.()1若()01f ≤,求a 的取值范围; ()2讨论()f x 的单调性;()3当2a ≥时,讨论()4f x x +在区间()0,+∞内的零点个数.绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} (2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3 (B )-2 (C )2 (D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13 (B )12 (C )23(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b= (A(B(C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13 (B )12 (C )23 (D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3)(7)如图,学.科网某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C ) (D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )2y x = (B )3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A,11//CB D α平面,ABCD m α= 平面,11ABB A n α= 平面,则m ,n 所成角的正弦值为(A(B(C (D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦ (D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13) ~ (21)题为必考题,每个试题考生都必须作答.第(22) ~ (24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =___________ (14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=___________.(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为_________(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
2015年高考数学 广东卷(文科)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若集合{1,1}M =-,{2,1,0}N =-,则M N = ( )A. {0,-1}B. {0}C. {1}D. {-1,1} 【参考答案】 C【测量目标】集合交集及其运算 【试题分析】{1}M N = ,故选C.2.已知i 是虚数单位,则复数2(1i)+=( ) A. -2 B. 2 C.-2i D. 2i 【参考答案】 D【测量目标】复数的乘法运算.【试题分析】22(1i)12i i 12i 1+=++=+-=2i ,故选D.3. 下列函数中,既不是奇函数,也不是偶函数的是( ) A. 2sin y x x =+ B. 2cos y x x =-C. 122xxy =+D. sin 2y x x =+ 【参考答案】 A【测量目标】函数奇偶性的判断【试题分析】函数2()sin f x x x =+的定义域为R ,因为(1)1sin1,(1)1sin1f f =+-=- ,所以函数2()sin f x x x =+既不是奇函数,也不是偶函数;函数2cos y x x =-的定义域为R ,关于y 轴对称,因为22()()cos()cos ()f x x x x x f x -=---=-=, 所以函数2cos y x x =-是偶函数;函数122x xy =+的定义域为R , 关于y 轴对称,因为11()22(),22x x x x f x f x ---=+=+=所以函数122x x y =+是偶函数;函数sin 2y x x=+的定义域为R , 关于原点对称,因为()sin(2)sin 2(),f x x x x x f x -=-+-=--=-所以函数sin 2y x x =+是奇函数.故选A.4 . 若变量,x y 满足约束条件2204x y x y x +⎧⎪+⎨⎪⎩≤≥≤, 则23z x y =+的最大值为( )A. 10B. 8C. 5D. 2 【参考答案】 C 【测量目标】线性规划.【试题分析】作出可行域如图所示:第4题图作直线0:230,l x y +=再作一组平行于0l 的直线l 经过点A 时,23z x y =+取得最大值,由224x y x +=⎧⎨=⎩得41x y =⎧⎨=-⎩, 所以点A 的坐标为(4 ,-1),所以max z =243(1)5⨯+⨯-=, 故选C.5.设ABC △的内角,,A B C 的对边分别为,,.a b c若2,a c A ===且,b c <则b =( )A.B. 2C. D. 3【参考答案】 B【测量目标】余弦定理【试题分析】由余弦定理得:2222cos ,a b c bc A =+-所以2222b =+2b -⨯⨯2, 即2680b b -+=, 解得:2b =或4,b =因为,b c <所以2b =,故选 B. 6. 若直线1l 和2l 是异面直线, 1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A. l 至少与1l ,2l 中的一条相交B. l 与1l ,2l 都相交C. l 至多与1l ,2l 中的一条相交D. l 与1l ,2l 都不相交 【参考答案】 A【测量目标】空间点、线、面的位置关系.【试题分析】直线1l 和2l 是异面直线, 1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,若l 与1l ,2l 都不相交,即1l //l ,2l //l ,即1l //2l ,1l 与2l 在同一平面,与题意不符,则l 至少与1l ,2l 中的一条相交, 故选A.7. 已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A. 0.4B. 0.6C. 0.8D. 1 【参考答案】 B 【测量目标】古典概型【试题分析】5件产品中有2件次品,记为,a b , 有3件合格品,记为,,,c d e 从这5件产品中任取2件,有10种,分别是(,)a b ,(,),(,),(,),(,),a c a d a e b c (,),(,),(,),(,),b d b e c d c e(,),d e 恰有一件次品,有6种,分别是(,),(,),(,),(,),(,),(,),a c a d a e b c b d b e 设事件A =“恰有一件次品”,则)P A (=610=0.6,故选B. 8. 已知椭圆222125x y m+=(m >0)的左焦点为1(4,0),F -则m =( ) A. 9 B. 4 C. 3 D. 2 【参考答案】 C【测量目标】椭圆的简单几何性质.【试题分析】由题意得:222549,m =-=因为0,m >所以3,m =故选C.9. 在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形, (1,2),AB =-(2,1),AD =则AD AC ⋅= ( )A. 2B. 3C. 4D. 5 【参考答案】 D【测量目标】平面向量的加减运算和坐标运算.【试题分析】因为四边形ABCD 是平行四边形, 所以(1,2)(2,1)AC AB AD =+=-+=(3,1),-所以AD AC ⋅=231(1)5,⨯+⨯-=故选D.10. 若集合{(,,,)|04,04,04E p q r s p s q s r s =<<<≤≤≤≤≤≤且,,,p q r s ∈N},{(,,,)|04,04F t u v w t u v w =<<≤≤≤≤且,,,t u v w ∈N },用()card X 表示集合X 中的元素个数,则()()card E card F +=( ) A. 50 B. 100 C. 150 D. 200 【参考答案】D【测量目标】推理与证明.【试题分析】当4s =时,,,p q r 都是取0,1,2,3中的一个,有44464⨯⨯=种,当3s =时,,,p q r 都是取0,1,2中的一个,有33327⨯⨯=种,当2s =时,,,p q r 都是取0,1中的一个,有2228⨯⨯=种,当1s =时,,,p q r 都取0,有1种,所以()card E =64+27+8+1=100,当0t =时,u 取1,2,3,4中的一个,有4种,当1t =时,u 取2,3,4中的一个,有3种,当2t =时,u 取3,4中的一个,有2种,当3t =时,u 取4,有1种,所以t 、u 的取值有1+2+3+4=10种,同理,v 、w 的取值也有10种,所以()card F =10⨯10=100,所以()()c a r d Ec a rd F +=100+100=200,故选D.一、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题)11.不等式2340x x --+>的解集为_________. 【参考答案】 (-4,1) 【测量目标】一元二次不等式.【试题分析】由2340x x +-<得:41,x -<<所以不等式2340x x --+>的解集为 (-4,1),所以答案应填(-4,1).12. 已知样本数据12,,...,n x x x 的均值x =5,则样本数据1221,21,...,21n x x x +++的均值为__________. 【参考答案】 11 【测量目标】均值的性质.【试题分析】因为样本数据12,,...,n x x x 的均值x =5,所以样本数据1221,21,...,21n x x x +++的均值为2125111,x +=⨯+=所以答案应填:11.13. 若三个正数,,a b c 成等比数列,其中55a c =+=-则b =__________. 【参考答案】1【测量目标】等比中项.【试题分析】因为三个正数,,a b c成等比数列,所以2(51b ac ==+-=,因为0,b >所以1,b =所以答案应填:1.(二)选作题(14、15题,考生只能从中选作一题)14.(坐标系与参数方程选做题)在平面直角坐标系xoy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为(cos sin )2,ρθθ+=-曲线2C 的参数方程为2x t y ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为__________. 【参考答案】 (2,-4)【测量目标】1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点.【试题分析】曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28,y x =由228x y y x+=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为(2,-4),所以答案应填:(2,-4). 15. (几何证明选讲选做题)如图,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线EC 的垂线,垂足为D .若AB =4,CE=则AD =____________.第15题图【参考答案】 3【测量目标】切线的性质、平行线分线段成比例定理、切割线定理.【试题分析】连接OC ,则OC ⊥DE ,所以OC //,AD 所以,OC OEAD AE=由切割线定理得:2,CE BE AE =⋅所以(4)12,BE BE +=即24120,BE BE +-=解得:2BE =或6BE =-(舍去),所以263,4OC AE AD OE ⋅⨯===所以答案应填:3.三、解答题(本大题共6小题,满分80分.解答题写出文字说明、证明过程和演算步骤.) 16. (本小题满分12分)已知tan 2.α= (1)求πtan()4α+的值. (2)求2sin 2sin sin cos cos 21ααααα+--的值. 【测量目标】(1)两角和的正切公式;(2)二倍角的正、余弦公式,同角三角函数的基本关系.【试题分析】(1)tan tantan 1214tan()341tan 121tan tan4παπααπαα++++====----(2)2sin 2sin sin cos cos 21ααααα+--=222sin cos sin sin cos (2cos 1)1αααααα+---=222sin cos sin sin cos 2cos αααααα+- =22tan tan tan 2ααα+- =222222⨯+-=117. (本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280.300]分组的频率分布直方图如图.第17题图(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【测量目标】(1)频率分布直方图;(2)样本的数字特征(众数、中位数);(3)分层抽样.【试题分析】(1)由(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)⨯20=1得:x=0.0075,所以直方图中x的值是0.0075(2)月平均用电量的众数是2202402302+=因为(0.002+0.0095+0.011)⨯20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)⨯20+0.0125⨯(a-220)=0.5得:a=224,所以月平均用电量的中位数是224.(3)月平均用电量为[220,240)的用户有0.0125⨯20⨯100=25户,月平均用电量为[240,260)的用户有0.0075⨯20⨯100=15户,月平均用电量为[260,280)的用户有0.005⨯20⨯100=10户,月平均用电量为[280,300)的用户有0.0025⨯20⨯100=5户,抽取比例=111 25151055=+++,所以月平均用电量在[220,240)的用户中应抽取12555⨯=户18.(本小题满分14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,4,6, 3.PD PC AB BC====第18题图(1)证明://BC 平面PDA ; (2)证明:BC ⊥PD ; (3)求点C 到平面PDA 的距离.【测量目标】(1)线面平行;(2)线线垂直;(3)点到平面的距离.【试题分析】(1)因为四边形ABCD 是长方形,所以//BC AD ,因为BC ⊄平面PDA ,AD ⊂平面PDA ,所以//BC 平面PDA(2)因为四边形ABCD 是长方形,所以BC ⊥CD ,因为平面PDC ⊥平面ABCD ,平面PDC 平面,ABCD CD =BC ⊂平面ABCD ,所以BC ⊥平面PDC ,因为PD ⊂平面,PDC 平面PDC 平面,ABCD CD =所以BC ⊥PD(3)取CD 的中点E ,连结AE 和PE ,因为,PD PC =所以PE ⊥CD ,在Rt △PED中,PE因为平面PDC ⊥平面ABCD ,平面PDC 平面,ABCD CD =PE ⊂平面PDC ,所以PE ⊥平面ABCD ,由(2)知:BC ⊥平面PDC ,由(1)知://BC AD ,所以AD 垂直平面PDC ,因为PD ⊂平面PDC ,所以AD ⊥PD ,设点C 到平面PDA 的距离为h ,因为C PDA P ACD V V --=三棱锥三棱锥,所以1133PDA ACD S h S PE ⋅=⋅△△,即ACD PDA S PE h S ⋅=△△=1362342⨯⨯=⨯⨯,所以点C 到平面PDA19.(本小题满分14分)设数列{n a }的前n 项和为n S ,n ∈*N .已知1a =1,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.(1)求4a 的值;(2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列;(3)求数列{}n a 的通项公式.【测量目标】(1)等比数列的定义;(2)等比数列的通项公式;(3)等差数列的通项公式. 【试题分析】(1)当n =2时,4231458S S S S +=+,即43534(1)5(1)242a +++++= 358(1)124+++,解得:478a =(2)因为211458n n n n S S S S ++-+=+(2n ≥),所以21114444n n n n n n S S S S S S ++-+-+-=-(2)n ≥,即214(2),n n n a a a n +++=≥因为312544164,4a a a +=⨯+==所以24n n a a ++=14n a +,因为2121111111114242212142422(2)22n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a +++++++++++-----====----,所以数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列.(3)由(2)知:数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列,所以1111()22n n n a a -+-=,即114,11()()22n n n n a a ++-=所以数列1()2n na ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是以1212a =为首项,公差为4的等差数列,所以2(1)442,1()2n n an n =+-⨯=-即1(42)()2n n a n =-⨯,所以数列{}n a 的通项公式是11(21)()2n n a n -=-⨯.20.(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程; (3)是否存在实数k ,使得直线L :()4y k x =-与曲线C 只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【测量目标】(1)圆的标准方程;(2)直线与圆的位置关系;(3)圆锥曲线与圆的位置关系.【试题分析】 将圆1C :22650x y x +-+=化为()2234x y -+=,所以圆1C 的圆心坐标为()3,0.(2)设线段AB 的中点()00,M x y ,由圆的性质可得1C M 垂直于直线l ,设直线l 的方程为y mx =(易知直线l 的斜率存在),所以11C M k m ⋅=-,00y mx =,所以000013y y x x ⋅=--,所以200030x x y -+=即22003924x y ⎛⎫-+= ⎪⎝⎭,因为动直线l 与圆1C 相交,所以2<,所以245m <,所以222200045y m x x =<,所以22000435x x x -<,解得053x >或00x <,又因为003x <≤,所以0533x <≤.所以()00,M x y 满足220003953243x y x ⎛⎫⎛⎫-+=<≤ ⎪⎪⎝⎭⎝⎭, 即M 的轨迹C 的方程为223924x y ⎛⎫-+=⎪⎝⎭533x ⎛⎫<≤ ⎪⎝⎭. (3)由题意知直线L 表示过定点()4,0T ,斜率为k 的直线结合图形,220003953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭表示的是一段关于x轴对称,起点为5,3⎛ ⎝⎭按逆时针方向运动到5,33⎛ ⎝⎭的圆弧.根据对称性,只需讨论在x 轴对称下方的圆弧.设P 5,33⎛⎫- ⎪ ⎪⎝⎭,则3543PT k ==-,而当直线L 与轨迹C32=,解得34k =±.在这里暂取34k =,因为34<,所以PT k k <,第20题图结合图形,可得对于x 轴对称下方的圆弧,当0k ≤≤或43k =时,直线L 与x 轴对称下方的圆弧有且只有一个交点,根据对称性可知77k -≤≤或43k =±.综上所述:当77k -≤≤43k =±时,直线L :()4y k x =-与曲线C 只有一个交点.21.(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---. (1)若()01f ≤,求a 的取值范围; (2)讨论()f x 的单调性; (3)当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数. 【测量目标】(1)绝对值不等式;(2)函数的单调性;(3)函数的最值和函数的零点. 【试题分析】 (1)()220f a a a a a a =+-+=+,因为()01f ≤,所以1a a +≤,当0≤a 时,01≤,显然成立;当0a >时,则有21a ≤,所以12a ≤,所以102a <≤.综上所述,a 的取值范围是12a ≤. (2)()()()2221,212,x a x x a f x x a x a x a⎧--≥⎪=⎨-++<⎪⎩,对于()2121u x a x =--,其对称轴为21122a x a a -==-<,开口向上,所以()f x 在(),a +∞上单调递增;对于()21212u x a x a =-++,其对称轴21122a x a a +==+> ,开口向上,所以()f x 在(),a -∞上单调递减.综上所述:()f x 在 (),a +∞上单调递增,在(),a -∞上单调递减.(3)由(2)得()f x 在(),a +∞上单调递增,在()0,a 上单调递减,所以()()2min f x f a a a ==-.(i )当2a =时,()()min 22,f x f ==-()223,254,2x x x f x x x x ⎧-≥=⎨-+<⎩令()40f x x +=,即()4f x x =-()0x >,因为()f x 在()0,2上单调递减,所以()()22f x f >=-而4y x=-在()0,2上单调递增,()22y f <=-,所以()y f x =与4y x=-在()0,2上无交点.当2x ≥时,()243f x x x x=-=-,即32340x x -+=,所以322240x x x --+=,所以()()2210x x -+=,因为2x ≥,所以2x =,即当2a =时()4f x x +有一个零点2x =.(ii )当2a >时,()()2m i n fx f a a a ==-,当()0,x a ∈时,()024f a =>,()2f a a a =-,而4y x =-在()0,x a ∈上单调递增,当x a =时,4y a=-.下面比较()2f a a a =-与4a -因为0)2)(2()4()4(2232<++--=---=---aa a a a a a a a a 所以aa a a f 4)(2-<-=第21题图结合图象不难得当2>a ,)(x f y =与xy 4-=有两个交点. 综上,当2=a 时,()4f x x +有一个零点2x =;当2>a ,)(x f y =与xy 4-=有两个零点.。
2015 年广东省高考数学试卷(文科)一、选择题(共10 小题,每题 5 分,满分 50 分) 2015 年一般高等学校招生全国一致考试(广东卷)数学(文科)1.(5分)若会合 M={ ﹣1,1} ,N={ ﹣2,1,0} 则 M∩N=()A.{ 0.﹣1}B.{ 0}C.{ 1} D.{ ﹣1,1}2.(5分)已知 i 是虚数单位,则复数( 1+i)2=()A.2i B.﹣ 2i C.2D.﹣ 23.(5分)以下函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C. y=2x+D. y=x2+sinx4.( 5 分)若变量 x,y 知足拘束条件,则z=2x+3y的最大值为()A.2 B.5 C.8 D.105.( 5 分)设△ ABC的内角 A,B,C 的对边分别为 a,b,c.若 a=2,c=2,cosA=.且 b<c,则 b=()A.B.2 C.2 D.36.(5 分)若直线 l1和 l2是异面直线, l1在平面α内, l2在平面β内, l 是平面α与平面β的交线,则以下命题正确的选项是().l 与 l 1,l2 都不订交B.l 与 l 1,l2都订交AC.l 至多与 l1,l 2中的一条订交 D. l 起码与 l1, l2中的一条订交7.(5 分)已知 5 件产品中有 2 件次品,其他为合格品.现从这 5 件产品中任取2 件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8D.1.(分)已知椭圆(m >)的左焦点为(﹣ 4,0),则 m=()8 5+ =1F1A.2B.3C.4D.99.( 5 分)在平面直角坐标系 xOy 中,已知四边形ABCD是平行四边形,=( 1,A.5B.4C.3D.210.( 5 分)若会合E={ (p,q,r,s)| 0≤ p< s≤ 4, 0≤ q< s≤4, 0≤r<s≤4且 p,q,r, s∈ N} , F={ ( t,u,v,w)| 0≤t <u≤4,0≤v< w≤4 且 t,u,v,w∈ N} ,用 card(X)表示会合 X 中的元素个数,card( E)+card(F)=()A.200 B.150 C.100 D.50二、填空(共 3 小,考生作答 4 小,每小 5 分,分 15 分)(一)必做( 11~13 )11.(5分)不等式2 3x+4> 0 的解集.(用区表示)x12.(5分)已知本数据1,x2,⋯,x n 的均=5,本数据2x1+1,2x2+1,⋯,x2x n +1 的均.13.( 5分)若三个正数a, b,c 成等比数列,此中 a=5+2, c=5 2 ,b=.坐系与参数方程做14.( 5 分)在平面直角坐系 xOy 中,以原点 O 极点, x 的正半极成立极坐系.曲C1的极坐方程ρ(cosθ+sin θ)= 2,曲 C2的参数方程(t 参数), C1与 C2交点的直角坐.几何明做15.如, AB O 的直径, E AB 的延上一点, E 作 O 的切,切点 C, A 作直 EC的垂,垂足 D.若 AB=4.CE=2,AD=.三、解答(共 6 小,分 80 分)16.( 12 分)已知tan α =2.( 1)求 tan(α+)的值;( 2)求的值.17.( 12 分)某城市 100 户居民的月均匀用电量(单位:度),以 [ 160, 180),[ 180,200),[ 200,220),[ 220,240),[ 240,260),[ 260,280),[ 280,300)分组的频次散布直方图如图.(1)求直方图中 x 的值;(2)求月均匀用电量的众数和中位数;(3)在月均匀用电量为, [ 220,240),[ 240,260),[ 260,280),[ 280,300)的四组用户中,用分层抽样的方法抽取 11 户居民,则月均匀用电量在 [ 220,240)的用户中应抽取多少户?18.( 14 分)如图,三角形PDC所在的平面与长方形ABCD 所在的平面垂直,PD=PC=4,AB=6, BC=3.(1)证明: BC∥平面 PDA;(2)证明: BC⊥PD;(3)求点 C 到平面 PDA的距离.19.( 14 分)设数列 { a n} 的前 n 项和为 S n,n∈N*.已知 a1=1,a2=,a3=,且当 n≥2 时, 4S n+2+5S n=8S n+1+S n﹣1.( 1)求 a4的值;(2)证明: { a n+1﹣ a n } 为等比数列;(3)求数列 { a n} 的通项公式.20.(14 分)已知过原点的动直线l 与圆 C1:x2+y2﹣ 6x+5=0 订交于不一样的两点A,B.(1)求圆 C1的圆心坐标;(2)求线段 AB 的中点 M 的轨迹 C 的方程;(3)能否存在实数 k,使得直线 L:y=k(x﹣4)与曲线 C 只有一个交点?若存在,求出 k 的取值范围;若不存在,说明原因.21.( 14 分)设 a 为实数,函数f(x)=(x﹣ a)2+| x﹣a| ﹣a(a﹣ 1).(1)若 f (0)≤ 1,求 a 的取值范围;(2)议论 f( x)的单一性;(3)当 a≥2 时,议论 f( x) + 在区间(0,+∞)内的零点个数.第4页(共 21页)2015 年广东省高考数学试卷(文科)参照答案与试题分析一、选择题(共10 小题,每题 5 分,满分 50 分) 2015 年一般高等学校招生全国一致考试(广东卷)数学(文科)1.(5 分)若会合 M={ ﹣1,1} ,N={ ﹣2,1,0} 则 M∩N=()A.{ 0.﹣1}B.{ 0} C.{ 1}D.{ ﹣1,1}【剖析】进行交集的运算即可.【解答】解:M∩N={ ﹣1,1} ∩{ ﹣2,1,0} ={ 1} .应选: C.【评论】考察列举法表示会合,交集的观点及运算.2.(5 分)已知 i 是虚数单位,则复数(1+i)2=()A.2i B.﹣ 2i C.2D.﹣ 2【剖析】利用完整平方式睁开化简即可.【解答】解:(1+i)22+2i+i2﹣;=1=1+2i1=2i应选: A.【评论】此题考察了复数的运算;注意i2﹣.= 13.(5 分)以下函数中,既不是奇函数,也不是偶函数的是()2x2【剖析】利用函数奇偶性的判断方法对选项分别剖析选择.【解答】解:四个选项中,函数的定义域都是R,对于A,﹣x+sin(﹣2x)=﹣(x+sin2x);是奇函数;对于 B,(﹣ x)2﹣cos(﹣ x)=x2﹣cosx;是偶函数;对于 C,,是偶函数;对于D,(﹣x)2+sin(﹣x)=x2﹣sinx≠x2+sinx,x2﹣sinx≠﹣(x2+sinx);因此是非奇非偶的函数;应选: D.【评论】此题考察了函数奇偶性的判断,在定义域对于原点对称的前提下,判断f (﹣ x)与 f( x)的关系,相等就是偶函数,相反就是奇函数.4.( 5 分)若变量 x,y 知足拘束条件,则z=2x+3y的最大值为()A.2B.5C.8D.10【剖析】作出不等式对应的平面地区,利用线性规划的知识,经过平移即可求 z 的最大值.【解答】解:作出不等式对应的平面地区(暗影部分),由 z=2x+3y,得 y=,平移直线 y=,由图象可知当直线y=经过点B时,直线y=的截距最大,此时z 最大.由,解得,即 B(4,﹣ 1).此时z 的最大值为z=2×4+3×(﹣1)=8﹣3=5,应选: B.【评论】此题主要考察线性规划的应用,利用数形联合是解决线性规划题目的常用方法.5.( 5 分)设△ ABC的内角 A,B,C 的对边分别为 a,b,c.若 a=2,c=2,cosA=.且 b<c,则 b=()A.B.2C.2D.3【剖析】运用余弦定理: a2=b2+c2﹣2bccosA,解对于 b 的方程,联合 b<c,即可获得 b=2.【解答】解: a=2,c=2,cosA=.且b<c,由余弦定理可得,a2=b2+c2﹣2bccosA,即有 4=b2+12﹣4×b,解得 b=2 或 4,由 b<c,可得b=2.应选: B.【评论】此题考察三角形的余弦定理及应用,主要考察运算能力,属于中档题和易错题..(5分)若直线l1 和l2 是异面直线,1在平面α内, l2在平面β内, l 是平面6lα与平面β的交线,则以下命题正确的选项是().与 l 1,l2 都不订交B.l 与 l 1,l2都订交A lC.l 至多与 l1,l 2中的一条订交D. l 起码与 l1, l2中的一条订交【剖析】能够画出图形来说明l 与 l1,l2的地点关系,进而可判断出A,B,C 是错误的,而对于D,可假定不正确,这样l 便和 l1,l2都不订交,这样可推出和l1,l2异面矛盾,这样便说明 D 正确.【解答】解: A.l 与 l1, l2能够订交,如图:第7页(共 21页)B.l 能够和 l 1,l2中的一个平行,如上图,∴该选项错误;C.l 能够和 l1,l 2都订交,以以下图:,∴该选项错误;D.“l起码与 l1,l2中的一条订交”正确,若是 l 和 l1,l2都不订交;∵l 和l1,l2都共面;∴ l 和 l1,l2都平行;∴ l1∥ l2, l1和 l2共面,这样便不切合已知的l 1和 l2异面;∴该选项正确.应选: D.【评论】考察异面直线的观点,在直接说明一个命题正确困难的时候,可说明它的反面不正确.7.(5 分)已知 5 件产品中有 2 件次品,其他为合格品.现从这 5 件产品中任取2 件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8D.1【剖析】第一判断这是一个古典概型,而基本领件总数就是从 5 件产品任取2件的取法,取到恰有一件次品的取法可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从 5 件产品中任取 2 件的取法为;∴基本领件总数为10;设“选的2 件产品中恰有一件次品”为事件A,则 A 包含的基本领件个数为=6;∴ P( A) ==0.6.应选: B.【评论】考察古典概型的观点,以及古典概型的概率求法,理解基本领件和基本领件总数的观点,掌握组合数公式,分步计数原理..(分)已知椭圆(m >)的左焦点为(﹣ 4,0),则 m=()8 5+ =1F1A.2B.3C.4D.9【剖析】利用椭圆+=1(m>0 )的左焦点为 F1(﹣ 4,0),可得 25﹣m2=16,即可求出 m.【解答】解:∵椭圆+=1(m>0 )的左焦点为 F1(﹣ 4, 0),∴25﹣m2=16,∵ m>0,∴m=3,应选: B.【评论】此题考察椭圆的性质,考察学生的计算能力,比较基础.9.( 5 分)在平面直角坐标系 xOy 中,已知四边形ABCD是平行四边形,=( 1,﹣2),=(2,1)则? =()A.5B.4C.3D.2【剖析】由向量加法的平行四边形法例可求=的坐标,而后辈入向量数量积的坐标表示可求【解答】解:由向量加法的平行四边形法例可得,==(3,﹣1).∴=3×2+(﹣ 1)× 1=5.应选: A.【评论】此题主要考察了向量加法的平行四边形法例及向量数目积的坐标表示,属于基础试题.10.( 5 分)若会合E={ (p,q,r,s)| 0≤ p< s≤ 4, 0≤ q< s≤4, 0≤r<s≤4且 p,q,r, s∈ N} , F={ ( t,u,v,w)| 0≤t <u≤4,0≤v< w≤4 且 t,u,v,w∈ N} ,用 card(X)表示会合 X 中的元素个数,则 card( E)+card(F)=()A.200 B.150 C.100 D.50【剖析】对于会合 E,s=4 时, p,q,r 从 0,1,2,3 任取一数都有 4 种取法,进而组成的元素( p, q, r, s)有 4×4×4=64 个,再议论 s=3,2,1 的状况,求法同样,把每种状况下元素个数相加即可获得会合E的元素个数,而对于会合F,需议论两个数: u,w,方法近似,最后把求得的会合 E,F 元素个数相加即可.【解答】解:(1)s=4时, p, q, r 的取值的摆列状况有4×4×4=64 种;s=3时, p,q,r 的取值的摆列状况有3×3×3=27 种;s=2时,有 2× 2× 2=8 种;s=1时,有 1× 1× 1=1 种;∴card(E)=64+27+8+1=100;(2) u=4 时:若 w=4, t,v 的取值的摆列状况有 4× 4=16 种;若 w=3,t ,v 的取值的摆列状况有 4×3=12 种;若 w=2,有 4×2=8 种;若 w=1,有 4×1=4 种;u=3 时:若 w=4,t ,v 的取值的摆列状况有3×4=12 种;若 w=3,t ,v 的取值的摆列状况有 3×3=9 种;若 w=2,有 3×2=6 种;若 w=1,有 3×1=3 种;u=2 时:若 w=4,t ,v 的取值的摆列状况有2×4=8 种;若 w=3,有 2×3=6 种;若 w=2,有 2×2=4 种;若 w=1,有 2×1=2 种;u=1 时:若 w=4,t ,v 的取值的摆列状况有1×4=4 种;若w=3,有1×3=3 种;若w=2,有1×2=2 种;若w=1,有1×1=1 种;∴ card(F)=100;∴ card(E)+card(F)=200.故: A.【点】考描绘法表示会合,散布数原理的用,注意要弄清,做到不重不漏.二、填空(共 3 小,考生作答 4 小,每小 5 分,分 15 分)(一)必做( 11~13 )11.( 5 分)不等式 x23x+4> 0 的解集(4,1).(用区表示)【剖析】第一将二次系数化正数,而后利用因式分解法解之.【解答】解:原不等式等价于x2+3x 4<0,因此( x+4)(x 1)< 0,因此 4<x<1;因此不等式的解集( 4, 1);故答案:( 4,1).【点】本考了一元二次不等式的解法;一般的第一将二次系数化正数,而后适合的方法解之;属于基.12.(5 分)已知本数据x1,x2,⋯,x n的均=5,本数据2x1+1,2x2+1,⋯,2x n +1 的均11.【剖析】利用均匀数算公式求解【解答】解:∵数据 x1, x2,⋯,x n的均匀数均=5,本数据2x1+1,2x2+1,⋯,2x n+1 的均:=5×2+1=11;故答案: 11.【点】本考数据的均匀数的求法,是基.13.(5 分)若三个正数 a,b,c 成等比数列,此中a=5+2,c=52,b=1.【剖析】由已知可得, b2=ac,代入已知条件即可求解b【解答】解:∵三个正数a,b,c 成等比数列,∴b2=ac,∵a=5+2 ,c=5﹣2 ,∴=1,故答案为: 1.【评论】此题主要考察了等比数列的性质,属于基础试题坐标系与参数方程选做题14.( 5 分)在平面直角坐标系 xOy 中,以原点 O 为极点, x 轴的正半轴为极轴成立极坐标系.曲线 C1的极坐标方程为ρ(cosθ+sin θ)=﹣2,曲线 C2的参数方程为(t 为参数),则 C1与 C2交点的直角坐标为(2,﹣4).【剖析】曲线 C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,把代入可得直角坐标方程.曲线C2的参数方程为(t为参数),化为一般方程:y2=8x.联立解出即可.【解答】解:曲线 C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,化为直角坐标方程:x+y+2=0.曲线 C2的参数方程为(t为参数),化为一般方程:y2=8x.联立,解得,则 C1与 C2交点的直角坐标为( 2,﹣4).故答案为:( 2,﹣ 4).【评论】此题考察了极坐标化为直角坐标方程、参数方程化为一般方程、曲线的交点,考察了推理能力与计算能力,属于中档题.几何证明选讲选做题15.如图, AB 为圆 O 的直径, E 为 AB 的延伸线上一点,过 E 作圆 O 的切线,切点为 C,过 A 作直线 EC的垂线,垂足为 D.若 AB=4.CE=2,则AD=3.【剖析】连结 OC,则 OC⊥ DE,可得,由切割线定理可得2,求CE=BE?AE出 BE,即可得出结论.【解答】解:连结 OC,则 OC⊥ DE,∵AD⊥DE,∴ AD∥OC,∴2由切割线定理可得CE =BE?AE,∴12=BE?(BE+4),∴BE=2,∴OE=4,∴,∴AD=3故答案为: 3.【评论】此题考察切割线定理,考察学生剖析解决问题的能力,比较基础.三、解答题(共 6 小题,满分 80 分)16.( 12 分)已知t an α =2.( 1)求 tan(α+)的值;( 2)求的值.【剖析】(1)直接利用两角和的正切函数求值即可.(2)利用二倍角公式化简求解即可.【解答】解: tan α=2.( 1) tan(α+)===﹣3;(2)== ==1.【评论】此题考察两角和的正切函数的应用,三角函数的化简求值,二倍角公式的应用,考察计算能力.17.( 12 分)某城市 100 户居民的月均匀用电量(单位:度),以 [ 160, 180),[ 180,200),[ 200,220),[ 220,240),[ 240,260),[ 260,280),[ 280,300)分组的频次散布直方图如图.(1)求直方图中 x 的值;(2)求月均匀用电量的众数和中位数;(3)在月均匀用电量为, [ 220,240),[ 240,260),[ 260,280),[ 280,300)的四组用户中,用分层抽样的方法抽取 11 户居民,则月均匀用电量在 [ 220,240)的用户中应抽取多少户?【剖析】( 1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)× 20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[ 220,240)内,设中位数为 a,解方程( 0.002+0.0095++0.011)×20+0.0125×( a﹣220)=0.5 可得;(3)可得各段的用户分别为 25,15, 10,5,可得抽取比率,可得要抽取的户数.【解答】解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)× 20=1,解方程可得 x=0.0075,∴直方图中 x 的值为 0.0075;( 2)月均匀用电量的众数是=230,∵( 0.002+0.0095+0.011)× 20=0.45<0.5,∴月均匀用电量的中位数在[ 220,240)内,设中位数为 a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5 可得a=224,∴月均匀用电量的中位数为 224;(3)月均匀用电量为 [ 220, 240)的用户有 0.0125× 20×100=25,月均匀用电量为 [ 240,260)的用户有 0.0075×20×100=15,月均匀用电量为 [ 260,280)的用户有 0.005× 20×100=10,月均匀用电量为 [ 280,300)的用户有 0.0025×20×100=5,∴抽取比率为= ,∴月均匀用电量在 [ 220, 240)的用户中应抽取25× =5 户.【评论】此题考察频次散布直方图,波及众数和中位数以及分层抽样,属基础题.18.( 14 分)如图,三角形PDC所在的平面与长方形ABCD 所在的平面垂直,PD=PC=4,AB=6, BC=3.(1)证明: BC∥平面 PDA;(2)证明: BC⊥PD;(3)求点 C 到平面 PDA的距离.【剖析】(1)利用四边形 ABCD是长方形,可得 BC∥AD,依据线面平行的判断定理,即可得出结论;(2)利用平面与平面垂直的性质定理得出 BC⊥平面 PDC,即可证明 BC⊥PD;(3)利用等体积法,求点 C 到平面 PDA的距离.【解答】(1)证明:由于四边形 ABCD是长方形,因此 BC∥AD,由于 BC?平面 PDA,AD? 平面 PDA,因此 BC∥平面 PDA;( 2)证明:由于四边形 ABCD是长方形,因此 BC⊥CD,由于平面 PDC⊥平面 ABCD,平面 PDC∩平面 ABCD=CD,BC? 面 ABCD,因此 BC⊥平面 PDC,由于 PD? 平面 PDC,因此 BC⊥PD;(3)解:取 CD的中点 E,连结 AE 和 PE,由于 PD=PC,因此 PE⊥ CD,在 Rt△PED中, PE===.由于平面 PDC⊥平面 ABCD,平面 PDC∩平面 ABCD=CD,PE? 平面 PDC,因此 PE⊥平面 ABCD.由( 2)知: BC⊥平面 PDC,由( 1)知: BC∥AD,因此 AD⊥平面 PDC,由于 PD? 平面 PDC,因此 AD⊥PD.设点 C 到平面 PDA的距离为 h.由于 V C﹣PDA=V P﹣ACD,因此,因此 h==,因此点 C 到平面 PDA的距离是.【评论】此题考察平面与平面垂直的性质,线面垂直与线线垂直的判断,考察三棱锥体积等知识,注意解题方法的累积,属于中档题.19.( 14 分)设数列 { a n} 的前 n 项和为 S n,n∈N*.已知 a1=1,a2=,a3=,且当 n≥2 时, 4S n+2+5S n=8S n+1+S n﹣1.( 1)求 a4的值;( 2)证明: { a n+1﹣ a n } 为等比数列;( 3)求数列 { a n} 的通项公式.【剖析】(1)直接在数列递推式中取n=2,求得;(2)由 4S n+2+5S n=8S n+1+S n﹣1(n≥2),变形获得 4a n+2 +a n =4a n+1(n≥2),进一步得到,由此可得数列 {} 是以为首项,公比为的等比数列;(3)由{} 是以为首项,公比为的等比数列,可得.进一步获得,说明{} 是以为首项, 4 为公差的等差数列,由此可得数列{ a n} 的通项公式.【解答】(1)解:当n=2时,4S4+5S2=8S3+S1,即,解得:;(2)证明:∵ 4S n+2+5S n=8S n+1+S n﹣1(n≥ 2),∴ 4S n+2﹣ 4S n+1+S n﹣ S n﹣1=4S n+1﹣4S n (n≥ 2),即 4a n+2+a n=4a n+1( n≥ 2),∵,∴ 4a n+2+a n=4a n+1.∵=.∴数列 {} 是以=1 为首项,公比为的等比数列;( 3)解:由(2)知,{} 是以为首项,公比为的等比数列,∴.即,∴ {} 是以为首项,4为公差的等差数列,∴,即,∴数列 { a n} 的通项公式是.【评论】此题考察了数列递推式,考察了等比关系确实定,考察了等比数列的通项公式,重点是灵巧变形能力,是中档题.20.(14 分)已知过原点的动直线l 与圆 C1:x2+y2﹣ 6x+5=0 订交于不一样的两点A,B.(1)求圆 C1的圆心坐标;(2)求线段 AB 的中点 M 的轨迹 C 的方程;(3)能否存在实数 k,使得直线 L:y=k(x﹣4)与曲线 C 只有一个交点?若存在,求出 k 的取值范围;若不存在,说明原因.【剖析】(1)经过将圆 C1的一般式方程化为标准方程即得结论;(2)设当直线 l 的方程为 y=kx,经过联立直线 l 与圆 C1的方程,利用根的鉴别式大于 0、韦达定理、中点坐标公式及参数方程与一般方程的互相转变,计算即第 18 页(共 21 页)(3)经过联立直线 L 与圆 C1的方程,利用根的鉴别式△ =0 及轨迹 C 的端点与点(4, 0)决定的直线斜率,即得结论.【解答】解:(1)∵圆 C1:x2+y2﹣6x+5=0,22整理,得其标准方程为:(x﹣3) +y =4,( 2)设当直线 l 的方程为 y=kx、A(x1,y1)、B( x2,y2),联立方程组,消去 y 可得:( 1+k2)x2﹣ 6x+5=0,由△ =36﹣4(1+k2)× 5>0,可得 k2<由韦达定理,可得x1+x2=,∴线段 AB 的中点 M 的轨迹 C 的参数方程为,此中﹣<k<,∴线段 AB 的中点 M 的轨迹 C 的方程为:( x﹣)2+y2,此中<≤ ;=x3( 3)结论:当 k∈(﹣,)∪{ ﹣, } 时,直线 L:y=k(x﹣4)与曲线 C 只有一个交点.原因以下:联立方程组,消去 y,可得:( 1+k2)x2﹣( 3+8k2)x+16k2,=0令△ =(3+8k2)2﹣4(1+k2) ?16k2,解得±,=0k=又∵轨迹 C 的端点(,±)与点( 4, 0)决定的直线斜率为±,∴当直线 L: y=k(x﹣ 4)与曲线 C 只有一个交点时,k 的取值范围为 [ ﹣,]∪{﹣, }.【评论】此题考察求轨迹方程、直线与曲线的地点关系问题,注意解题方法的累积,属于难题.21.( 14 分)设 a 为实数,函数f(x)=(x﹣ a)2+| x﹣a| ﹣a(a﹣ 1).(1)若 f (0)≤ 1,求 a 的取值范围;(2)议论 f( x)的单一性;(3)当 a≥2 时,议论 f( x) + 在区间(0,+∞)内的零点个数.【剖析】(1)利用 f( 0)≤ 1,获得 | a|+ a﹣ 1≤ 0,对 a 分类议论求解不等式的解集即可.(2)化简函数 f (x)的分析式,经过当 x< a 时,当 x≥a 时,利用二次函数 f(x)的对称轴求解函数的单一区间即可.( 3)化简 F( x) =f(x) +,求出函数的导数,利用导函数的符号,经过 a 的议论判断函数的单一性,而后议论函数的零点的个数.【解答】解:(1)若 f( 0)≤ 1,即:a2+| a| ﹣a( a﹣ 1)≤1.可得 | a|+ a﹣ 1≤ 0,当 a≥0 时, a,可得a∈[ 0,] .当 a<0 时, | a|+ a﹣1≤0,恒成立.综上 a.∴ a 的取值范围:;( 2)函数f( x)==,当 x<a 时,函数 f (x)的对称轴为: x==a+>a,y=f(x)在(﹣∞, a)时是减函数,当 x≥a 时,函数 f (x)的对称轴为: x==a﹣<a,y=f(x)在( a, +∞)时是增函数,( 3) F(x)=f( x) + =,当 x<a 时,=因此,函数 F(x)在( 0, a)上是减函数.,,当 x≥a 时,由于 a≥ 2,因此,F(′x)=═,因此,函数 F(x)在( a, +∞)上是增函数.F(a)=a﹣ a2+.当a=2时,F(2)=0,此时F(x)有一个零点,当a> 2 时,F(a)=a﹣ a2+,F′( a)=1﹣2a==.因此 F(ah)在( 2,+∞)上是减函数,因此 F(a)<,即F(a)<0,当 x>0 且 x→0时, F(x)→+∞;当 x→+∞时, F( x)→+∞,因此函数 F(x)有两个零点.综上所述,当 a=2 时, F(x)有一个零点, a>2 时 F(x)有两个零点.【评论】此题考察的知识点比许多,包含绝对值不等式的解法,函数的零点,函数的导数以及导数与函数的单一性的关系,考察分类议论思想的应用,函数与方程的思想,转变思想的应用,也考察化归思想的应用.。
2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)2,是偶函数;4.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()y=y=,解得,5.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=(),cosA=×6.(5分)(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任件的取法为8.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()利用椭圆+椭圆=19.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()==∴10.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为(﹣4,1).(用区间表示)12.(5分)(2015•广东)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11.的平均数为均值的均值为:13.(5分)(2015•广东)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=1.,2∴坐标系与参数方程选做题14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).,把的参数方程为,解得,几何证明选讲选做题15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=3.,可得∴∴三、解答题(共6小题,满分80分)16.(12分)(2015•广东)已知tanα=2.(1)求tan(α+)的值;(2)求的值.+=====117.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220.240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220.240)的用户中应抽取多少户?)月平均用电量的众数是=×18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.PE==.h==的距离是.19.(14分)(2015•广东)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4S n+2+5S n=8S n+1+S n﹣1.(1)求a4的值;(2)证明:{a n+1﹣a n}为等比数列;(3)求数列{a n}的通项公式.,求得为首项,公比为{为首项,公比为{为首项,,∵∵{是以为首项,公比为的等比数列;{是以为首项,公比为的等比数列,∴为首项,∴,即的通项公式是20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.联立方程组,,其中﹣<)=,其中<,﹣,联立方程组,±,的端点(,±±的取值范围为(﹣,}21.(14分)(2015•广东)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.+a,a.,x==a+=a﹣=时,=═,.当,=.,即。
绝密★启用前 试卷类型:B 2015年普通高等学校招生全国统一考试(广东卷)数 学(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、座位号、填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4. 作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合M =|-1, 1|,N =|-2, 1, 0|,则M ∩N = A .|0, -1| B .|0| C .|1| D .|-1, 1| 2.已知i 是虚数单位,则复数(1+i )2= A .-2 B .2 C .-2i D .2i 3.下列函数中,既不是奇函数,也不是偶函数的是 A .2sin y x x =+ B .2cos y x x =-C .D .sin 2y x x =+4.若变量x ,y 满足约束条件,则23z x y =+的最大值为 A .10 B .8C .5D .25.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,23c =,,且b <c ,则b =A .B .2C .D .36.若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是A .l 至少与l 1,l 2中的一条相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 与l 1,l 2都不相交7.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为 A .0.4 B .0.6 C .0.8 D .18.已知椭圆 (0m >)的左焦点为()1F 4,0-,则m = A .9 B .4 C .3 D .2 9.在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,,,则 A .2 B .3 C .4 D .510.若集合E =|(p , q , r , s )| 0≤p <s ≤4,0≤q <s ≤4,0≤r <s ≤4且p , q , r , s ∈N |,F =|(t , u , v , w )| 0≤t <u ≤4,0≤v <w ≤4且t , u , v , w ∈N |,用card(X )表示集合X 中的元素个数,则card(E )+ card(F )=A .50B .100C .150D .200 【答案】1~5: CDACB 6~10: ABCDD1.C 【解析】考查集合的交集运算。
一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 若集合,,则()
A.B.C.D.
【答案】C
【解析】
试题分析:,故选C.
考点:集合的交集运算.
2. 已知是虚数单位,则复数()
A.B.C.D.【答案】D
考点:复数的乘法运算.
3. 下列函数中,既不是奇函数,也不是偶函数的是()
A.B.C.
D.
【答案】A
【解析】
试题分析:函数的定义域为,关于原点对称,因为,,所以函数既不是奇函数,也不是偶函数;函数
的定义域为,关于原点对称,因为
,所以函数是偶函数;
函数的定义域为,关于原点对称,因为
,所以函数是偶函数;函数
的定义域为,关于原点对称,因为
,所以函数是奇函数.故选A.
考点:函数的奇偶性.
4.若变量,满足约束条件,则的最大值为()
A.B.C.D.【答案】C
考点:线性规划.
5.设的内角,,的对边分别为,,.若,,,且,则()
A.B.C.
D.
【答案】B
【解析】
试题分析:由余弦定理得:,所以
,即,解得:或,因为,所以,故选B.
考点:余弦定理.
6. 若直线和是异面直线,在平面内,在平面内,是平面与平面的交线,则下列命题正确的是()
A.至少与,中的一条相交B.与,都相交
C.至多与,中的一条相交D.与,都不相交
【答案】A
考点:空间点、线、面的位置关系.
7.已知件产品中有件次品,其余为合格品.现从这件产品中任取件,恰有一件次品的概率为()
A.B.C.D.【答案】B
【解析】
试题分析:件产品中有件次品,记为,,有件合格品,记为,,,从这件
产品中任取件,有种,分别是,,,,,,,
,,,恰有一件次品,有种,分别是,,,,,,设事件“恰有一件次品”,则,故选B.
考点:古典概型.
8.已知椭圆()的左焦点为,则()
A.B.C.D.
【答案】C
【解析】
试题分析:由题意得:,因为,所以,故选C.
考点:椭圆的简单几何性质.
9.在平面直角坐标系中,已知四边形是平行四边形,,
,则()
A.B.C.D.【答案】D
【解析】
试题分析:因为四边形是平行四边形,所以
,所以,故选D.考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算.
10.若集合,
,用表示集合中的
元素个数,则
()
A.B.C.
D.
【答案】D
考点:推理与证明.
二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(11~13题)
11.不等式的解集为.(用区间表示)
【答案】
【解析】
试题分析:由得:,所以不等式的解集为,所以答案应填:.
考点:一元二次不等式.
12.已知样本数据,,,的均值,则样本数据,,,
的均值为.
【答案】
考点:均值的性质.
13.若三个正数,,成等比数列,其中,,则.
【答案】
【解析】
试题分析:因为三个正数,,成等比数列,所以,因为,所以,所以答案应填:.
考点:等比中项.
(二)选做题(14、15题,考生只能从中选作一题)
14.(坐标系与参数方程选做题)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为,曲线的参数方程为(为参数),则与交点的直角坐标为.
【答案】
【解析】
试题分析:曲线的直角坐标方程为,曲线的普通方程为,由得:,所以与交点的直角坐标为,所以答案应填:.考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点.15.(几何证明选讲选做题)如图,为圆的直径,为的延长线上一点,过
作圆的切线,切点为,过作直线的垂线,垂足为.若,,则.
【答案】
考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.
三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)
16、(本小题满分12分)已知.
求的值;
求的值.
【答案】(1);(2).
考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同
角三角函数的基本关系.
17、(本小题满分12分)某城市户居民的月平均用电量(单位:度),以,
,,,,,分组的频率分布直方图如图.
求直方图中的值;
求月平均用电量的众数和中位数;
在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?【答案】(1);(2),;(3).
【解析】
试题解析:(1)由得:,所以直方图中的值是
考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.
18、(本小题满分14分)如图,三角形所在的平面与长方形所在的平面垂直,
,,.
证明:平面;
证明:;
求点到平面的距离.
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】
试题解析:(1)因为四边形是长方形,所以,因为平面,
平面,所以平面
(2)因为四边形是长方形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以
(3)取的中点,连结和,因为,所以,在中,
,因为平面平面,平面平面,
平面,所以平面,由(2)知:平面,由(1)知:,所以平面,因为平面,所以,设点到平面的距离为,因为,所以,即
,所以点到平面的距离是
考点:1、线面平行;2、线线垂直;3、点到平面的距离.
19、(本小题满分14分)设数列的前项和为,.已知,,,
且当时,.
求的值;
证明:为等比数列;
求数列的通项公式.
【答案】(1);(2)证明见解析;(3).
考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.。