《实数》易错题和典型题
- 格式:doc
- 大小:254.50 KB
- 文档页数:3
(易错题精选)初中数学实数经典测试题附答案解析一、选择题1.+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 【答案】B【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.2.一个自然数的算术平方根是x ,则它后面一个自然数的算术平方根是( ).A .x +1B .x 2+1C 1 D【答案】D【解析】一个自然数的算术平方根是x ,则这个自然数是2,x 则它后面一个数的算术平方根是.故选D.3的平方根是( )A .2B C .±2 D .【答案】D【解析】【分析】,然后再根据平方根的定义求解即可.【详解】,2的平方根是,.故选D .【点睛】正确化简是解题的关键,本题比较容易出错.4.若a 、b 分别是2a-b 的值是( )A .B .CD .【答案】C【解析】根据无理数的估算,可知34,因此可知-4<-3,即2<3,所以可得a 为2,b 为2a-b=4-(故选C.5.规定用符号[m]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定+1]的值为( )A .3B .4C .5D .6 【答案】B【解析】【分析】【详解】解:根据91016<<,则34<<,即415<<,根据题意可得:14⎤=⎦. 考点:无理数的估算6.在3.14,237,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个. 故选:B.【点睛】 考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.在-2,3.14,5π,这6个数中,无理数共有( ) A .4个B .3个C .2个D .1个【答案】C【解析】-22=, 3.14,3=-是有理数;,5π是无理数; 故选C. 点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,① 等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个).8.1,0( )AB .﹣1C .0D 【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【详解】四个数大小关系为:10-<<<则最小的实数为1-,故选B .【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.9.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4,∴商q=4,∴余数r=a﹣bq=2×4=8,∴q+r=4+8=4.故选:A.【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q即的整数部2分.10.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;=﹣;④0.01的立方根是0.00001,其中正确的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.11.25的算数平方根是A B.±5 C.D.5【答案】D【解析】【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0 负数没有算术平方根,但i的平方是-1,i是一个虚数,是复数的基本单位.【详解】255=, ∴25的算术平方根是:5. 故答案为:5. 【点睛】 本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.12.下列各组数中互为相反数的是( )A .5和2(5)-B .2--和(2)--C .38-和38-D .﹣5和15 【答案】B【解析】【分析】 直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A 、5和()25-=5,两数相等,故此选项错误;B 、-|-2|=-2和-(-2)=2互为相反数,故此选项正确;C 、-38=-2和38-=-2,两数相等,故此选项错误;D 、-5和15,不互为相反数,故此选项错误. 故选B .【点睛】 本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.13.如图,数轴上A ,B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )A .3B .3C .3D .3【答案】A【解析】【分析】由于A ,B 两点表示的数分别为-13OC 的长度,根据C 在原点的左侧,进而可求出C 的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB ,33,∴OC=2+3,而C点在原点左侧,∴C表示的数为:-2-3.故选A.【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.14.如图,数轴上表示实数3的点可能是( )A.点P B.点Q C.点R D.点S【答案】A【解析】【分析】33的点可能是哪个.【详解】∵132,3的点可能是点P.故选A.【点睛】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.15.101的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】<<4,∵310<1<5.∴410故选C.【点睛】<<4是解本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出310题的关键,又利用了不等式的性质.16.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是()A.1 B.3 C.4 D.9【答案】D【解析】∵一正数的两个平方根分别是2a−1与−a+2,∴(2a−1)+(−a+2)=0,解得a=−1.∴−a+2=1+2=3,∴这个正数为32=9.故选:D.17.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是( ).A.0 B.1 C.2 D.3【答案】D【解析】【分析】直接利用数轴结合,A B点位置进而得出答案.【详解】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:2故选:D.【点睛】此题主要考查了实数轴,正确应用数形结合分析是解题关键.18.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.88<2.9,8③段上.故选C考点:实数与数轴的关系19.下列说法正确的是()A.无限小数都是无理数B.1125-没有立方根C.正数的两个平方根互为相反数D.(13)--没有平方根【答案】C【解析】【分析】根据无理数、立方根、平方根的定义解答即可.【详解】A、无限循环小数是有理数,故不符合题意;B、1125-有立方根是15-,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.【点睛】本题考查了无理数、立方根、平方根,掌握无理数、立方根、平方根的定义是解题的关键.20.下列实数中的无理数是()A B C D.22 7【答案】C【解析】【分析】无限不循环小数是无理数,根据定义解答.【详解】=1.1是有理数;,是有理数;是无理数;D. 227是分数,属于有理数,故选:C.【点睛】此题考查无理数的定义,熟记定义是解题的关键.。
(每日一练)七年级数学上册实数重点易错题单选题1、下列计算正确的是()A.√0.09=±0.3B.√414=2√12C.√−273=−3D.−√|−25|=5答案:C解析:根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案.A、原式=0.3,故A不符合题意.B、原式=√174=√172,故B不符合题意.C、原式=﹣3,故C符合题意.D、原式=﹣5,故D不符合题意.故选:C.小提示:本题考查了平方根的性质、立方根的性质以及绝对值的性质,正确进行平方根与立方根的计算是关键,要注意平方根与算术平方根的区别.2、有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4B.√43C.√3D.√23答案:B解析:由图中的程序知:输入x的值后,当√x3是无理数时,y=√x3;若√x3的值是有理数,将3再取立方根,直至输出的结果为无理数,也就求出了y的值.√x3=4, 4是有理数,将4的值代入x中;当x=4时,解: 解:由题意,得:x=64时, √643是无理数.√4故选:B.小提示:本题考查实数的运算,弄清程序的计算方法是解题关键.3、下列命题是真命题的是()A.如果一个数的平方等于这个数本身,那么这个数一定是0B.如果一个数的平方根等于这个数本身,那么这个数一定是0C.如果一个数的算术平方根等于这个数本身,那么这个数定是0D.如果一个数的立方根等于这个数本身,那么这个数定是0答案:B解析:根据平方、平方根、算术平方根、立方根的定义,思考特殊值,即可求出答案.解:A、如果一个数的平方等于这个数本身,那么这个数一定是0或1,故A是假命题;B、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;C、如果一个数的算术平方根等于这个数本身,那么这个数一定是0或1,故C是假命题;D、如果一个数的立方根等于这个数本身,那么这个数是0、1、-1,故D是假命题.故选:B.小提示:此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.填空题4、比较下列各数的大小:(1)3√24 ____3√26;(2)−22____-π7答案:<;<解析:(1)根据数轴上表示的两个实数,右边的总比左边的大进行比较;(2)根据两个负数,绝对值大的反而小进行比较.解:(1)∵√24<√26,∴3√24<3√26;≈-3.143,-π≈-3.141,(2)−227∵3.143>3.141∴−22<-π.7故答案为<,<.小提示:本题考查了实数的大小比较,解题的关键是注意:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.5、如果a、b分别是√2的整数部分和小数部分,那么b−a=__________.答案:√2−2解析:√2的整数部分是1,即a是1,小数部分是√2-1,即b是√2-1,再代入代数式计算.解:∵√2的整数部分是1,小数部分是√2-1,∴a=1,b=√2-1,∴b-a=(√2-1)-1=√2-1-1=√2-2.所以答案是:√2-2.小提示:此题考查的估算无理数大小的能力,解答此类题目的关键是先对无理数进行估算,再计算.解答题6、设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y={3x+4y−5(x≥y)4x+3y−5(x<y)(1)求1⊕(−1)的值;(2)若(m−2)⊕(m+3)=2,求m的值.答案:(1)−6;(2)m=67解析:(1)根据新运算中的代数式,将式子进行化简求值即可.(2)分情况进行讨论,当m-2≥m+3时,当m-2<m+3时分别根据新运算的法则进行运算求值即可.解:(1)1⊕(−1)=3×1+4×(−1)−5=3-4-5=−6;(2)∵m-2≥m+3不成立,∴当m-2<m+3时4(m−2)+3(m+3)−5=2,4m−8+3m+9−5=27m=6m=67小提示:本题考查新运算,解决本题的关键是正确理解题意,熟练掌握新运算的运算步骤.。
实数易错题一、填空:1、一组数据–2,0,5,a,2的平均数是1.6,这组数据的中位数是2、一组数据从小到大排列为–1,0,4,x,6,15如果它的中位数是5,则它的众数是3、已知直角三角形的三边长分别为6,8,x,以x为边长的正方形的面积是4、一个正方形的面积是40,它的边长在两个相邻整数与之间。
5、数轴上到原点的距离为2的点表示的数是6、81的平方根是,16= ,38的平方根是7、如果用长为3,x,5的三条线段能围成一个直角三角形看,那么x等于8、一棵树在离地面3米处折断,树的顶部落在离底部2米的地面上,这棵树折断前的高为9、P(-5,2)为直角坐标系中的点,它到原点的距离为10、已知n20是整数,满足条件的最小正整数n为11、已知三角形的三边的长为1,2,3,这个三角形的面积是12、等腰直角三角形一条直角边的长是1,斜边上的高的长为13、2—3的相反数是,3—10的绝对值是,37-的相反数是 ,|2 —3|= ,—2—3的相反数是14、数轴上,点P 与原点的距离是5,点Q 与原点的距离是4,且点Q 在点P 左边,则点P ,Q 之间的距离是15、当m 4时,m -4有意义;当m 时 ,33m -有意义。
16、已知等腰三角形的一条腰长是5,底边长是6,则它的底边上的高是17、若y=1-x +x -1,则x 2008+2008y =18、若x 2=64,则3x =19、已知实数x ,y 满足2-x +(y+1)2=0,则x —y=20、满足—2< x <5的整数x 是 ,21、10在两个连续整数a 和b 之间,那么a 、b 的值分别是22、a 是10的整数部分,b 是10的小数部分,则b (10+a )=23、若一个三角形铁皮余料的三边长分别为12cm ,16 cm ,20 cm ,则这块三角形铁皮余料的面积是24、 如果一个数的平方根是它本身,则这个数是 ,如果一个数的算术平方根是它本身,则这个数是 ,如果一个数的立方根是它本身,则这个数是25、一个梯子AB 长为5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 间的距离为3米,梯子滑动后在DE 的位置上,测得DB 的长为1米,则梯子顶端A 下降了 米。
一、选择题1.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;4±,其中正确的个数有()A.0个B.1个C.2个D.3个C解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2±,故④说法错误;故其中正确的个数有:2个.故选:C.【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.2.下列各式计算正确的是()A B= ±2 C= ±2 D. A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.3.下列说法中错误的有()①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±7=±.A.0个B.1个C.2个D.3个D解析:D【分析】利用实数和数轴的关系,算术平方根,立方根及平方根定义判断即可.【详解】①实数和数轴上的点是一一对应的,正确;②负数有立方根,错误;③算术平方根和立方根均等于其本身的数有0和1,错误;④49的平方根是7±7=,错误.综上,错误的个数有3个.故选:D.【点睛】本题考查了实数和数轴,平方根,算术平方根及立方根,熟练掌握各自的定义是解本题的关键.4.在0、0.536227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是()A.3 B.4 C.5 D.6B 解析:B【分析】根据无理数的定义逐一判断即可.【详解】解:0、0.536、227-是有理数,π,0.1616616661-(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)是无理数,故选:B.【点睛】本题考查无理数的定义,掌握无理数的定义是解题的关键.5.下列实数中,是无理数的为()A.3.14 B.13C D解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.13是分数,属于有理数;3,是整数,属于有理数.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .407D 解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333135153135++=≠,∴A 不是“水仙花数”;∵332216220+=≠,∴B 不是“水仙花数”;∵333345216345++=≠,∴C 不是“水仙花数”;∵3347407+=,∴D 是“水仙花数”;故选D .【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.7.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .10C 解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n 的值.【详解】解:∵<5<6,∴8<<9,∴n =9.故选:C .【点睛】8.0.31,3π,27-12- 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( )A .1B .2C .3D .4C 解析:C【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.【详解】解∵3=2=,∴在所列的83π,1.212 212 221…(每两个1之间依次多一个2)这3个,故选:C .【点睛】 本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键.9.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- D 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.二、填空题11.计算(1)22234x +=;(2)38130125x +=(3)2|12|(2)---; (4)(x +2)2=25.(1);(2)x=;(3);(4)【分析】(1)方程整理后利用平方根定义开方即可求出解;(2)先求出x3的值再根据立方根的定义解答;(3)直接利用绝对值的性质平方根定义和负指数幂的性质分别化简得出答解析:(1)12x x ==-2)x=35;(3)12;(4)123,7x x ==-. 【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)先求出x 3的值,再根据立方根的定义解答;(3)直接利用绝对值的性质、平方根定义和负指数幂的性质分别化简得出答案; (4)依据平方根的定义求解即可.【详解】(1)22234x +=,2x²=32,x²=18,,∴12x x ==-(2)38130125x +=, 327125x =-,x=35; (3)21|12|(2)16----- =1-1144-=311442-= (4)(x +2)2=25,(x+2)=±5,x+2=5,x+2=-5,∴123,7x x ==-.【点睛】本题考查了利用平方根和立方根解方程,绝对值的性质和负指数幂的性质,掌握有关性质是解题的关键.12.计算:3011(2)(20043)22-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(20043)22-+--- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.13.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.【分析】根据题意先求出BC 的长度然后求出a 的值即可得到答案【详解】解:根据题意∴∵∴∴∴;故答案为:【点睛】本题考查了数轴上两点之间的距离以及绝对值的意义解题的关键是掌握数轴的定义正确的求出a 的值解析:22+【分析】根据题意,先求出BC 的长度,然后求出a 的值,即可得到答案.【详解】解:根据题意,(1)1BC =-=, ∴1AB BC ==, ∵1AB a =--, ∴11a --=, ∴2a =-∴22a =-=;故答案为:2+【点睛】本题考查了数轴上两点之间的距离,以及绝对值的意义,解题的关键是掌握数轴的定义,正确的求出a 的值.14.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.15.已知290x ,310y +=,求x y +的值.2或4【分析】根据平方根和立方根的性质计算得到x 和y 的值再结合绝对值的性质计算即可得到答案【详解】∵∴∵∴∴当时=当时=【点睛】本题考查了平方根立方根绝对值的知识;解题的关键是熟练掌握平方根立方根绝解析:2或4【分析】根据平方根和立方根的性质计算,得到x 和y 的值,再结合绝对值的性质计算,即可得到答案.【详解】∵290x∴3x =±∵310y +=∴1y =- ∴当3x =,1y =-时,x y +=312-=当3x =-,1y =-时,x y +=314--=.【点睛】本题考查了平方根、立方根、绝对值的知识;解题的关键是熟练掌握平方根、立方根、绝对值的性质,从而完成求解.16.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______【分析】先根据题意求得发现规律即可求解【详解】解:∵a1=3∴∴该数列为每4个数为一周期循环∵∴a2020=故答案为:【点睛】此题主要考查规律的探索解题的关键是根据题意发现规律 解析:43. 【分析】 先根据题意求得2a 、3a 、4a 、5a ,发现规律即可求解.【详解】解:∵a 1=3 ∴22223a ==--,()321222a ==--,4241322a ==-,523423a ==-, ∴该数列为每4个数为一周期循环,∵20204505÷=∴a 2020=443a =. 故答案为:43. 【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.17.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.或【分析】根据题意得出解方程即可求解【详解】依题意得:∵∴或∴或故答案为:或【点睛】本题考查了乘方的意义解一元一次方程熟练掌握乘方的意义是解题的关键 解析:6或2-【分析】根据题意得出()2216x -=,解方程即可求解.【详解】依题意得:()2216x -=,∵2416=,()2416-=,∴24x -=或24x -=-,∴6x =或2x =-,故答案为:6或2-.【点睛】本题考查了乘方的意义,解一元一次方程,熟练掌握乘方的意义是解题的关键. 18.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.19.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______.【分析】根据新运算可得由得到关于x 的一元一次方程求解即可【详解】解:根据新运算可得∵∴解得故答案为:【点睛】本题考查新定义运算解一元一次方程根据题意得出一元一次方程是解题的关键 解析:43- 【分析】根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,由()3*2*2x =-得到关于x 的一元一次方程,求解即可.【详解】解:根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,∵()3*2*2x =-,∴()3340x +=,解得43x =-, 故答案为:43-. 【点睛】本题考查新定义运算、解一元一次方程,根据题意得出一元一次方程是解题的关键. 20.请仔细阅读材料并完成相应的任务.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根(提示:59319是一个整数的立方).华罗庚脱口而出答案,邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?(1)由3101000=,31001000000=,11000593191000000<<______位数;(2)由59319的个位数字是9______;(3)如果划去59319后面的319得到数59,而3327=,3464=上的数是______.(1)两(2)9(3)3【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9据此可判断;(3)<59<据此可判断【详解】解:(1)∵103=10001003=1 000 000解析:(1)两 (2)9 (3)3.【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9,据此可判断;(3)33<59<34,据此可判断.【详解】解:(1)∵103=1000,1003=1 000 000,而1000<59319<1000000,∴10100,因此结果为两位数;故答案是:两;(2)因为只有9的立方的个位数字才是9,因此结果的个位数字为9,故答案是:9;(3)∵33<59<343.故答案为:3.【点睛】考查实数的意义,立方根的意义以及立方的尾数特征等知识,理解题意是关键.三、解答题21.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ (2)1110623⎛⎫÷-⨯⎪⎝⎭ (3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(4+解析:(1)-2;(2)360;(3)4;(4)143. 【分析】(1)先去括号和绝对值,再进行混合运算即可.(2)先将括号内通分运算,再将除法改为乘法,最后计算即可.(3)先去括号,再将除法改为乘法,最后计算即可.(4)分别计算出根式的值,在进行加法运算即可.【详解】(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ 121242424234=-⨯+⨯-⨯ 12166=-+-2=-(2)1110623⎛⎫÷-⨯ ⎪⎝⎭ 61061=÷⨯ 1066=⨯⨯360=(3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭11(3)=-⨯-13=+4=(4+=153=- 143= 【点睛】本题考查实数的混合运算.掌握其运算法则是解答本题的关键.22.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:a b = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =. 解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】 (1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算.【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b ) =4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.23.计算:(12)-+(2解析:(1)-2;(2)【分析】 (1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=2-2=-(2)原式22=+=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.24.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(1)解方程:log x 4=2;(2)求值:log 48;(3)计算:(lg2)2+lg2•1g5+1g5﹣2018解析:(1)x=2;(2)32;(3)-2017【分析】(I)根据对数的定义,得出x2=4,求解即可;(Ⅱ)根据对数的定义求解即可;(Ⅲ)根据log a(M•N)=log a M+log a N求解即可.【详解】解:(I)解:∵log x4=2,∴x2=4,∴x=2或x=-2(舍去)(II)解法一:log48=log4(4×2)=log44+log42=1+12=32;解法二:设log48=x,则4x=8,∴22x=32,∴2x=3,x=32,即log48=32;(Ⅲ)解:(lg2)2+lg2•1g5+1g5﹣2018= lg2•( lg2+1g5) +1g5﹣2018= lg2 +1g5﹣2018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义和运算法则.25.计算下列各题(1)﹣2;(2)﹣(结果保留2位有效数字).解析:(1);(2)2.6【分析】(1)计算立方根、平方根,再合并即可;(2)根据实数的运算法则和顺序计算即可.【详解】(1)(2)100.2=-⨯ 2 1.732 2.23622≈⨯+÷-2.6≈.【点睛】本题考查了平方根和立方根,熟练掌握相关的运算法则是解题的关键.26.解方程:(1)2810x -=;(2)38(1)27x +=.解析:(1)9x =±;(2)12x =. 【分析】 (1)移项,利用平方根的性质解方程;(2)方程两边同时除以8,然后利用立方根的性质解方程.【详解】(1)2810x -=,移项得:281x =,解得:9x =±;(2)()38127x +=,方程两边同时除以8,得:()32718x +=, ∴312x +=, 解得:31122x =-=. 【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的定义与性质是解题关键. 27.计算:(1)2019(1)|2|-(2)[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x解析:(1)1--2)y x --【分析】(1)先根据正整数指数幂、立方根、平方根、去绝对值化简各项,再进行加减运算即可; (2)先去括号,根据完全平方公式和平方差公式计算后合并同类项,再计算除法即可求解.【详解】(1)原式= 1242-+-+1=-(2)原式=22222444422x xy y x y x xy x ⎡⎤-++-⎣⎦÷-+ ()2222xy x x =-÷-y x =--.【点睛】本题主要考查整式的混合运算,解题的关键是掌握立方根、平方根、绝对值及多项式与单项式的除法法则.28.已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.解析:(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =; ∵34<<,c 的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316a b c -+=-+=,16的平方根是4±∴3a b c -+的平方根是4±.【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.。
第04讲实数易错易混淆专题集训一.实数与数轴1.若实数a、b、c在数轴上对应点的位置如图所示,则|c﹣a|﹣|b+a|+|b﹣c|等于()A.﹣2c B.﹣a+2b C.﹣a﹣b D.a﹣2b【分析】根据数轴得出a,b,c的符号并判断它们的绝对值大小,从而根据绝对值的意义可得答案.【解答】解:由图知,c<b<0<a,|b|<|a|,∴|c﹣a|﹣|b+a|+|b﹣c|=a﹣c﹣(a+b)+b﹣c=a﹣c﹣a﹣b+b﹣c=﹣2c.故选:A.2.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a>﹣2B.|a|>b C.a+b>0D.a⋅b>0【分析】利用数轴比较有理数的大小,绝对值的含义,有理数的加法与乘法的符号确定,利用以上知识逐一分析判断即可.【解答】解:∵﹣3<a<﹣2<0<b<1,|a|>|b|,∴a+b<0,ab<0,∴A,C,D不符合题意,B符合题意.故选:B.3.如图,正方形的边长为1,在正方形的4个顶点处标上字母A,B,C,D,先让正方形上的顶点A与数轴上的数﹣2所对应的点重合,再让正方形沿着数轴按顺时针方向滚动,那么数轴上的数2020将与正方形上的哪个字母重合()A.字母A B.字母B C.字母C D.字母D【分析】正方形滚动一周的长度为4,从﹣2到2020共滚动2022,由2022÷4=505......2,即可作出判断.【解答】解:∵正方形的边长为1,∴正方形的周长为4,∴正方形滚动一周的长度为4,∵正方形的起点在﹣2处,∴2020﹣(﹣2)=2022,∵2022÷4=505......2,∴数轴上的数2020将与正方形上的点C重合,故选:C.4.已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.1<|a|<b B.1<﹣a<b C.|a|<1<|b|D.﹣b<a<﹣1【分析】根据相反数的意义,绝对值的性质,有理数的大小比较,可得答案.【解答】解:由题意,得1<|a|<b,1<﹣a<b,﹣b<a<﹣1,故C符合题意;故选:C.5.一个正数x的两个不同的平方根分别是2a﹣2和a﹣7.如图,在数轴上表示实数的点是()A.点P B.点Q C.点M D.点N【分析】根据一个正数x的两个不同的平方根互为相反数及平方根的定义,可得2a﹣2+a﹣7=0,x=(2a ﹣2)2,得出a=3,x=16表示出的值,再利用夹逼法进行无理数的估算即可.【解答】解:∵一个正数x的两个不同的平方根分别是2a﹣2和a﹣7,∴2a﹣2+a﹣7=0,x=(2a﹣2)2,解得a=3,x=16,∴,∵23=8,33=27,∴,即,故选:B.6.如图,数轴上,点A为线段BC的中点,A,B两点对应的实数分别是和﹣1,则点C所对应的实数是()A.B.C.D.【分析】根据数轴中绝对值的几何意义,得出线段AB的长度,根据题意点A为线段BC的中点,得出线段AC的长度,求出点C对应的实数.【解答】解:由题可知:AB=﹣(﹣1)=+1,∵点A 为线段BC 的中点,∴AC =AB =+1,∵A 对应的实数是,∴C 点对应的实数是2+1.故选:D .7.如图,面积为5的正方形ABCD 的顶点A 在数轴上,且表示的数为1,若点E 在数轴上,(点E 在点A 的右侧)且AB =AE ,则E 点所表示的数为()A .B .C .D .【分析】根据正方形的边长是面积的算术平方根得AD =AE =,结合A 点所表示的数及AE 间距离可得点E 所表示的数.【解答】解:∵正方形ABCD 的面积为5,且AD =AE ,∴AD =AE =,∵点A 表示的数是1,且点E 在点A 右侧,∴点E 表示的数为1+.故选:B .8.如图,面积为2的正方形ABCD 的顶点A 在数轴上,以A 为圆心,AB 为半径画弧交数轴于点E ,点E 表示的数为,则点A 表示的数是()A .﹣B .C .D .【分析】根据正方形的面积是2,先求出边长AE 的长度,再在数轴上求出点A 对应的数.【解答】解:AB 2=2,所以AB =,AB =﹣(舍去),点A 对应的数为:.故选:D .9.点A,B在数轴上,以AB为边作正方形,该正方形的面积是10.若点A对应的数是﹣2,则点B对应的数是﹣2.【分析】先求出AB的长,再设B点表示的数为x,根据数轴上两点间的距离公式求出x的值即可.【解答】解:∵正方形的面积是10,∴AB=.设B点表示的数为x,∵点A对应的数是﹣2,∴x+2=,解得x=﹣2.∴点B对应的数是﹣2.故答案为:﹣2.10.如图,半径为2个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O到达点O′,则点O′所对应的数是()A.π+4B.2π+4C.3πD.3π+2【分析】点O′所对应的数应为半圆的周长,据此即可求得答案.【解答】解:根据题意可知,点O′所对应的数应为半圆的周长,可得.故选:B.11.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2022次后,数轴上数2023所对应的点是()A.点A B.点B C.点C D.点D【分析】正确根据题意找到规律:1对应的数是A,2对应的数是B,3对应的数是C,4对应的数是D,每4次翻折为一循环,根据规律就、分析即可.【解答】解:在翻转过程中,1对应的数是A,2对应的数是B,3对应的数是C,4对应的数是D,…依此类推,可知每4次翻折为一循环,∵2023÷4=505…3,∴2023所对应的点是C,故选:C.12.正方形ABCD在数轴上的位置如图所示,点A、B对应的数分别是0、1,若正方形ABCD绕顶点沿逆时针方向连续翻转,第一次翻转后点D所对应的数为﹣1,第二次翻转后点C所对应的数为﹣2,则翻转2023次后点C所对应的数是()A.﹣2021B.﹣2022C.﹣2023D.﹣2024【分析】根据翻转规律以及在数轴上所对应的数进行解答即可.【解答】解:由于2023÷4=505…3,根据翻折规律以及所对应的数可得以下规律:所以第2023次翻转后,落在数轴最左侧的点是点B,此时点C在点B的右侧,因此点C所对应的数是﹣2022,故选:B.二.实数大小比较13.实数a、b的相反数分别为c、d,在数轴上点A、B、C、D分别表示数a、b、c、d,我们把A、D间的距离记为AD,B、C间的距离记为BC,则AD、BC的大小关系为()A.AD<BC B.AD=BC C.AD>BC D.不能确定【分析】两点之间的距离的综合应用,根据题意得出c=﹣a,b=﹣d,AD=|a﹣d|,BC=|b﹣c|,把c=﹣a,b=﹣d代入整理即可得出答案.【解答】解:∵实数a、b的相反数分别为c、d,∴c=﹣a,b=﹣d,∵在数轴上点A、B、C、D分别表示数a、b、c、d,A、D间的距离记为AD,B、C间的距离记为BC,∴AD=|a﹣d|,BC=|b﹣c|,∴BC=|b﹣c|=|﹣d+a|=|a﹣d|,∴AD=BC.故选:B.14.若实数a,b,c,d满足,则a,b,c,d这四个实数中最大的是()A.a B.b C.c D.d【分析】根据题目所给等式进行依次变形,然后进行比较即可得出答案.【解答】解:∵a﹣1=b﹣,∴b=a﹣1+,即b>a,∵a﹣1=c+1,∴a=c+2,∴a>c,∵c+1=d+2,∴c=d+1,即c>d,∴b>a>c>d,∴b最大.故选:B.15.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列,正确的是()A.﹣b<﹣a<a<b B.﹣b<a<﹣a<b C.﹣a<﹣b<a<b D.﹣b<b<﹣a<a【分析】根据图示,可得:a<0<b,且﹣a<b,据此把a,﹣a,b,﹣b按照从小到大的顺序排列即可.【解答】解:∵a<0<b,且﹣a<b,∴﹣a>0,﹣b<0,∵﹣a<b,∴﹣b<a,∴﹣b<a<﹣a<b.故选:B.16.a,b是有理数,它们在数轴上的位置如图所示.把a,b,﹣a,﹣b按照从小到大的顺序排列,正确的是()A.b<a<﹣a<﹣b B.﹣a<b<﹣b<a C.b<﹣a<a<﹣b D.﹣b<﹣a<a<b【分析】先根据a,b两点在数轴上的位置判断出其符号,进而可得出结论.【解答】解:∵由图可知,b<0<a,|a|<|b|,∴0<a<﹣b,b<﹣a<0,∴b<﹣a<a<﹣b.故选:C.17.比较,和的大小,正确的是()A.B.C.D.【分析】先根据算术平方根的定义,立方根的定义,得,,再直接分别将与5和4比较大小,进而得出答案.【解答】解:,,∵,故.故选:D.三.估算无理数的大小18.已知,且a,b是两个连续的整数,则a+b等于()A.5B.6C.7D.8【分析】先根据夹逼原则得到,则a=3,b=4,据此代值计算即可.【解答】解:∵9<12<16,∴,即,∵,且a,b是两个连续的整数,∴a=3,b=4,∴a+b=3+4=7,故选:C.19.正整数a、b分别满足,,则b a=()A.16B.9C.8D.4【分析】结合已知条件,利用无理数的估算分别求得a,b的值,然后代入b a中计算即可.【解答】解:∵53<64<98,2<4<7,∴<4<,<2<,∴a=4,b=2,∴b a=24=16,故选:A.20.估计实数介于整数()A.0与1之间B.1与2之间C.2与3之间D.3与4之间【分析】利用无理数的估算即可求得答案.【解答】解:∵9<11<16,∴3<<4,∴2<﹣1<3,即﹣1介于整数2与3之间,故选:C.21.实数在两个相邻的整数m与m+1之间,则整数m是()A.5B.6C.7D.8【分析】由,即,易得,即可求得m.【解答】解:∵,∴,则,∴m=5.故选:A.22.已知a是的整数部分,b是它的小数部分,则(﹣a)3+(b+3)2=﹣12.【分析】由于3<<4,由此可得的整数部分和小数部分,再进一步代入求得数值即可.【解答】解:∵3<<4,∴的整数部分=3,小数部分为﹣3,则(﹣a)3+(b+3)2=(﹣3)3+(﹣3+3)2=﹣27+15=﹣12.故答案为:﹣12.23.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】估算出的大小即可.【解答】解:∵3<<4,∴5<+2<6,∴+2在5和6之间.故选:D.24.估计的值()A.4到5之间B.3到4之间C.2到3之间D.1到2之间【分析】先估算出2的值的范围,从而估算出1+2的值的范围,即可解答.【解答】解:∵9<12<16,∴3<2<4,∴4<1+2<5,∴估计的值在4到5之间,故选:A.25.介于和之间的整数是3.【分析】由题意易得,然后问题可求解.【解答】解:∵,∴,∴介于和之间的整数是3;故答案为:3.26.若6﹣的整数部分为x,小数部分为y,则(2x+)y的值为3【分析】直接利用二次根式的性质得出x,y的值,进而估算的取值范围,进而得出答案.【解答】解:∵3<<4,∴2<6﹣<3∴6﹣的整数部分为x为:2,小数部分为y=6﹣﹣2=4﹣,故(2x+)y=(4+)×(4﹣=3.故答案为:3.四.实数的运算27.在实数范围内定义运算“⊗”:a⊗b=2a﹣b,例如:3⊗2=2×3﹣2=4.若代数式1﹣4b+2a的值是17,则b⊗a的值为()A.2B.4C.8D.﹣8【分析】首先根据a⊗b=2a﹣b,可得:b⊗a=2b﹣a;然后根据1﹣4b+2a=17,求出2b﹣a的值即可.【解答】解:∵a⊗b=2a﹣b,∴b⊗a=2b﹣a,∵代数式1﹣4b+2a的值是17,∴1﹣4b+2a=17,∴4b﹣2a=1﹣17=﹣16,∴2b﹣a=﹣8,∴b⊗a=2b﹣a=﹣8.故选:D.28.设x,y是有理数,且x,y满足等式,则的平方根是()A.±1B.±2C.±3D.±4【分析】根据合并同类项法则列出关于x与y的方程组,求解方程组得到x=25,y=﹣4,代入计算即可求出的平方根.【解答】解:x,y是有理数,且x,y满足等式,∴,解得:,∴,∴的平方根是±1,故选:A.29.在实数范围内定义一种新运算“*”,其规则是a*b=a2﹣b2,如果(x+2)*5=(x﹣5)(5+x),那么x 的值是()A.x=﹣1B.x=1C.x=46D.x=﹣46【分析】按照定义的新运算可得(x+2)2﹣25=x2﹣25,然后进行计算即可解答.【解答】解:由题意得:(x+2)*5=(x﹣5)(5+x),(x+2)2﹣25=x2﹣25,x2+4x+4﹣25=x2﹣25,x2+4x﹣x2=﹣25+25﹣4,4x=﹣4,x=﹣1,故选:A.30.对于实数a、b,定义一种运算:a*b=(a﹣b)2.给出三个推断:①a*b=b*a;②(a*b)2=a2*b2;③(﹣a)*b=a*(﹣b);其中正确的推断个数是()A.0B.1C.2D.3【分析】根据新定义运算分别进行计算,从而作出判断.【解答】解:a*b=(a﹣b)2,b*a=(b﹣a)2,∵(a﹣b)2=(b﹣a)2,∴a*b=b*a,故①推断正确,符合题意;(a*b)2=[(a﹣b)2]2=(a﹣b)4,a2*b2=(a2﹣b2)2=(a+b)2(a﹣b)2,∵(a﹣b)4与(a+b)2(a﹣b)2不一定相等,∴(a*b)2与a2*b2不一定相等,故②推断错误,不符合题意;(﹣a)*b=(﹣a﹣b)2=[﹣(a+b)]2=(a+b)2,a*(﹣b)=[a﹣(﹣b)]2=(a+b)2,∴(﹣a)*b=a*(﹣b);故③推断正确,符合题意;正确的推断共2个,故选:C.。
实数易错题汇编附解析一、选择题1.估算101+的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∵310<<4,∴410+<1<5.故选C.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出310<<4是解题的关键,又利用了不等式的性质.2.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示15﹣1的点是()A.点M B.点N C.点P D.点Q【答案】D【解析】【分析】15151的范围,即可得出答案.【详解】解:∵3.5154<<,∴2.51513<<,151的点是Q点,故选D.【点睛】本题考查估算无理数的大小,实数与数轴.一般用夹逼法估算无理数.3.在3.14,237,2-327π这几个数中,无理数有()A.1个B.2个C.3个D.4个【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个. 故选:B.【点睛】 考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.已知,x y 为实数且10x +=,则2012x y ⎛⎫ ⎪⎝⎭的值为( ) A .0B .1C .-1D .2012 【答案】B【解析】【分析】利用非负数的性质求出x 、y ,然后代入所求式子进行计算即可.【详解】由题意,得x+1=0,y-1=0,解得:x=-1,y=1, 所以2012x y ⎛⎫ ⎪⎝⎭=(-1)2012=1, 故选B.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.5.1,0( )AB .﹣1C .0D 【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.四个数大小关系为:1025-<<<,则最小的实数为1-,故选B .【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.6.设,a b 是不相等的实数,定义W 的一种运算;()()()2a b a b a b a b =+-+-W ,下面给出了关于这种运算的四个结论:①()6318-=-W ;②a b b a =W W ;③若0a b =W ,则0b =或0a b +=;④()a b c a b a c +=+WW W ,其中正确的是 ( ) A .②④B .②③C .①④D .①③ 【答案】D【解析】【分析】先化简()()()2a b a b a b +-+-,然后各式利用题中的新定义化简得到结果,即可作出判断.【详解】解:()()()222222222=+-+-=++-+=+a b a b a b a b a ab b a b ab b W , ①()2632(6)323361818-=⨯-⨯+⨯=-+=-W ,故①正确; ②∵222=+b a ba a W ,当a b ¹时,≠a b b a WW ,故②错误; ③∵0a b =W ,即2222()0+=+=ab b b a b ,∴2b =0或a +b =0,即0b =或0a b +=,故③正确;④∵()2222()2()22242a b c a b c b c ab ac b bc c +=+++=++++W 222222222222+=+++=+++a b a c ab b ac c ab ac b c W W∴()+≠+a b c a b a c W WW ,故④错误; 故选:D .【点睛】本题考查了整式的混合运算和定义新运算,理解定义新运算并根据运算法则进行计算是解题的关键.7.估计的值在( ) A .0到1之间B .1到2之间C .2到3之间D .3到4之间【答案】B【解析】【分析】利用“夹逼法”估算无理数的大小.【详解】 =﹣2.因为9<11<16,所以3<<4. 所以1<﹣2<2. 所以估计的值在1到2之间. 故选:B .【点睛】本题考查估算无理数的大小.估算无理数大小要用逼近法.8.下列各式中,正确的是( )A ()233-=-B 42=±C 164=D 393=【答案】C【解析】【分析】对每个选项进行计算,即可得出答案.【详解】 ()233-=,原选项错误,不符合题意;42=,原选项错误,不符合题意;164=,原选项正确,符合题意;D. 393≠,原选项错误,不符合题意.故选:C【点睛】本题考查平方根、算术平方根、立方根的计算,重点是掌握平方根、算术平方根、立方根的性质.9.下列各数中最小的数是( )A .1-B .0C .3-D .2-【答案】D【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据实数比较大小的方法,可得-2<3--1<0,∴各数中,最小的数是-2.故选D.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.10的算术平方根为()A.B C.2±D.2【答案】B【解析】的值,再继续求所求数的算术平方根即可.=2,而2,,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.11.的值是在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【答案】B【解析】解:由于16<19<25,所以4<5,因此6<7.故选B.点睛:本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.若x2=16,则5-x的算术平方根是()A.±1 B.±3 C.1或9 D.1或3【答案】D【解析】【分析】根据平方根和算术平方根的定义求解即可.【详解】∵x2=16,∴x=±4,∴5-x=1或5-x=9,∴5-x的算术平方根是1或3,故答案为:D.【点睛】本题考查了平方根和算术平方根的定义,解题的关键是要弄清楚算术平方根的概念与平方根的概念的区别.13.下列说法中,正确的是()A.-2是-4的平方根B.1的立方根是1和-1C.-2是(-2)2的算术平方根D.2是(-2)2的算术平方根【答案】D【解析】【分析】根据平方根、算术平方根、立方根的定义进行解答即可.【详解】A.-4没有平方根,故A错误;B. 1的立方根是1,故B错误;C. (-2)2的算术平方根是2,故C错误;D. 2是(-2)2的算术平方根,故D正确故选:D【点睛】本题主要考查的是算术平方根与平方根\立方根,掌握算术平方根与平方根\立方根的定义是解题的关键.14.若x使(x﹣1)2=4成立,则x的值是( )A.3 B.﹣1 C.3或﹣1 D.±2【答案】C【解析】试题解析:∵(x-1)2=4成立,∴x-1=±2,解得:x1=3,x2=-1.故选C.15.计算2|=()A. 1 B.1﹣C.﹣1 D.3【答案】D【解析】【分析】根据绝对值的性质去掉绝对值的符号后进行合并即可.【详解】原式=1+3+2﹣3=3,故选D .【点睛】本题考查了实数的运算,熟练掌握绝对值的性质是解本题的关键.16.如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是( ).A .0B .1C .2D .3【答案】D【解析】【分析】直接利用数轴结合,A B 点位置进而得出答案.【详解】解:∵数轴的单位长度为1,如果点A 表示的数是-1,∴点B 表示的数是:2故选:D .【点睛】此题主要考查了实数轴,正确应用数形结合分析是解题关键.17.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.18.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .或1B .1或﹣1C .1或1D .或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.【详解】解:①当x ≥﹣x ,即x ≥0时,∵max {x ,﹣x }=x 2﹣x ﹣1,∴x =x 2﹣x ﹣1,解得:x =(1<0,不符合舍去);②当﹣x >x ,即x <0时,﹣x =x 2﹣x ﹣1,解得:x =﹣1(1>0,不符合舍去),即方程max {x ,﹣x }=x 2﹣x ﹣1的解为或﹣1,故选:D .【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.19.实数a 、b +4a 2+4ab+b 2=0,则b a 的值为( )A .2B .12C .﹣2D .﹣12 【答案】B【解析】【分析】【详解】+(2a+b )2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2, 所以,b a =2﹣1=12. 故选:B .【点睛】本题考查非负数的性质.20.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.。
八年级数学上册 第二章 实数知识点+易错题精选一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数概念:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= —b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|= -a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算 逐步逼近法的正确使用 三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a”,读作“正、负根号a ”。
(易错题精选)初中数学实数图文答案一、选择题1.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D【答案】B【解析】【分析】-≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.3 1.732【详解】3 1.732-≈-,()---≈,1.7323 1.268()---≈,1.73220.268()---≈,1.73210.732因为0.268<0.732<1.268,-表示的点与点B最接近,所以3故选B.2.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示15﹣1的点是()A.点M B.点N C.点P D.点Q【答案】D【解析】【分析】15151的范围,即可得出答案.【详解】<<,解:∵3.5154<<,∴2.51513151的点是Q点,故选D.【点睛】本题考查估算无理数的大小,实数与数轴.一般用夹逼法估算无理数.3.在-3.5,227,0,2π,0.161161116…(相邻两个6之间依次多一个1)中,无理数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【详解】∵-3.5是有限小数,,∴-3.5、 ∵227=22÷7=3.142857&&是循环小数, ∴227是有理数; ∵0是整数,∴0是有理数;∵2π,,0.161161116…都是无限不循环小数,∴2π,,0.161161116…都是无理数,∴无理数有3个:2π,,0.161161116…. 故选C .【点睛】 此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.4.估计65的立方根大小在( )A .8与9之间B .3与4之间C .4与5之间D .5与6之间 【答案】C【解析】【分析】先确定65介于64、125这两个立方数之间,从而可以得到45<<,即可求得答案.【详解】解:∵3464=,35125=∴6465125<<∴45<<.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.5.在3.14,237,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个. 故选:B.【点睛】 考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.下列各式中,正确的是( )A 3=-B 2=±C 4=D 3=【答案】C【解析】【分析】对每个选项进行计算,即可得出答案.【详解】3=,原选项错误,不符合题意;2=,原选项错误,不符合题意;4=,原选项正确,符合题意;D. 3≠,原选项错误,不符合题意.故选:C本题考查平方根、算术平方根、立方根的计算,重点是掌握平方根、算术平方根、立方根的性质.7.对于实数a 、b 定义运算“※”:22()()a ab a b a b ab b a b ⎧-≥=⎨-<⎩※,例如2424428=-⨯=※,若x ,y 是方程组33814x y x y -=⎧⎨-=⎩的解,则y ※x 等于( ) A .3B .3-C .1-D .6- 【答案】D【解析】【分析】先根据方程组解出x 和y 的值,代入新定义计算即可得出答案.【详解】解:∵33814x y x y -=⎧⎨-=⎩ ∴21x y =⎧⎨=-⎩ 所以()()2y x=-12=-12-2=-2-4=-6⨯※※.故选:D .【点睛】本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③2a 的算术平方根是a ;④算术平方根不可能是负数;⑤()24π-的算术平方根是4π-,其中不正确的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据算术平方根的定义判断即可.【详解】负数没有算术平方根,①错误;0的算术平方根是0,②错误;2a 的算术平方根是a ,③错误;算术平方根不可能是负数,④正确;()24π-的算术平方根是4-π,⑤正确.所以不正确的个数为3个,选B .掌握算术平方根的定义.注意:0的算术平方根是0、负数没有算术平方根.9.4的平方根是( ) A .2 B .2 C .±2 D .±2【答案】D【解析】【分析】先化简4,然后再根据平方根的定义求解即可.【详解】 ∵4=2,2的平方根是±2,∴4的平方根是±2.故选D .【点睛】本题考查了平方根的定义以及算术平方根,先把4正确化简是解题的关键,本题比较容易出错.10.如图,数轴上的点P 表示的数可能是( )A .5B .5-C .-3.8D .10-【答案】B【解析】【分析】【详解】解:因为5 2.2≈,所以P 点表示的数是5-.11.如图,表示8的点在数轴上表示时,所在哪两个字母之间( )A .C 与DB .A 与BC .A 与CD .B 与C【答案】A【解析】【分析】确定出88的范围,即可得到结果.【详解】解:∵6.25<8<9,∴2.53<<的点在数轴上表示时,所在C 和D 两个字母之间.故选:A .【点睛】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.12.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.13.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.14.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a 为实数,则0a <是不可能事件;④16的平方根是4±4=±;其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是4±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.15.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.∵225a=,|b|=3,∴a=±5,b=±3,∵a>b,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D.【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.16.若x使(x﹣1)2=4成立,则x的值是( )A.3 B.﹣1 C.3或﹣1 D.±2【答案】C【解析】试题解析:∵(x-1)2=4成立,∴x-1=±2,解得:x1=3,x2=-1.故选C.17.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.88<2.9,8③段上.故选C考点:实数与数轴的关系18.下列说法正确的是()A.无限小数都是无理数B.1125-没有立方根C.正数的两个平方根互为相反数D.(13)--没有平方根【解析】【分析】根据无理数、立方根、平方根的定义解答即可.【详解】A、无限循环小数是有理数,故不符合题意;B、1125-有立方根是15-,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.【点睛】本题考查了无理数、立方根、平方根,掌握无理数、立方根、平方根的定义是解题的关键.19.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20.如图,数轴上的点可近似表示(4630-)6÷的值是()A.点A B.点B C.点C D.点D【答案】A【解析】【分析】先化简原式得45-5545【详解】原式=45-由于25<<3,∴1<45-<2.故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.。
第2章《实数》易错题集(03):2.2 平方根选择题1. √16的算术平方根是()A.2B.±2C.16D.±162. √81的算术平方根是()A.±81B.±9C.9D.33. √25的平方根是()A.5B.±5C.−5D.±√54. √9的平方根是( )A.3B.±3C.√3D.±√35. 下列运算中,错误的有()①√1−25144=1512,②√(−4)2=±4,③√−22=−√22=−2,④√116+125=14+15=920.A.4个B.3个C.2个D.1个6. √(−3)2的平方根是()A.±√3B.±3C.√3D.37. √(x2+4)2的算术平方根是()A.(x2+4)4B.(x2+4)2C.x2+4D.√x2+48. √49的平方根是()A.±7B.−7C.±√7D.√79. 对于有理数x,√2009−x+√x−2009+1x=()A.0B.2009C.−2009D.1200910. √64的算术平方根与2的相反数的倒数的积是()A.−4B.−16C.−√2D.−2√211. 下列化简正确的是()A.√3a⋅√a=3aB.√=(−2)×(−4)=8C.√412b2=212b D.√(−2)2×3=√3×√4=2√312. 已知√54.03=7.35,则0.005403的算术平方根是()A.0.735B.0.0735C.0.00735D.0.00073513. 算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±114. √256的算术平方根是()A.±16B.16C.±4D.415. 下列说法:①负数没有平方根;②任何一个数的平方根都有2个,它们互为相反数;③√a无意义;④√9的平方根是3;其中错误的有()A.1个B.2个C.3个D.4个16. 观察下列式子:①(−5)0=1;②(22)3=64;③√(−4)2=−4;④52⋅62=302.其中成立的有()A.1个B.2个C.3个D.4个17. −3的相反数的倒数的算术平方根是()A.√3B.±√33C.√33D.−√3318. 如果(1−√2)2=3−2√2,那么3−2√2的算术平方根是()A.±(1−√2)B.1−√2C.√2−1D.3+2√219. 已知√a+2+|b−1|=0,那么(a+b)2008的值为()A.−1B.1C.−32008D.3200820. 下列计算结果正确的是()A.(−2)2=4B.2−2=−4C.(−2)0=0D.√9=±3填空题若一个正数的两个平方根是2a−1和−a+2,则a=________,这个正数是________.若√x2=5,则x=________,若x2=(−2)2,则x=________,若(x−1)2=9,则x=________,________.设a是9的平方根,b=(√3)2,则a与b的关系是________.若2a−4与3a−1是同一个数的平方根,则a的值为________.如果√a的平方根等于±2,那么a=________.若a的一个平方根是b,那么它的另一个平方根是________,若a的一个平方根是b,则a的平方根是________.如果一个正数的平方根为2a−1和4−a,则a=________;这个正数为________.若5a+1和a−19是数m的平方根,则m=________.已知m+1和m−3都是某数的平方根,则这个数为________.已知(−x)2=25,则x=________;√x2=7,则x=________.参考答案与试题解析第2章《实数》易错题集(03):2.2 平方根选择题1.【答案】A【考点】算术平方根【解析】首先化简√16,然后利用算术平方根的定义求解.【解答】解:∵√16=4,故√16的算术平方根是√4=2.故选A.2.【答案】D【考点】算术平方根【解析】首先求出√81的结果,然后利用算术平方根的定义即可解决问题.【解答】解:∵√81=9,而9的算术平方根是3,∴√81的算术平方根是3.故选D.3.【答案】D【考点】算术平方根平方根【解析】平方根的定义:如果一个数的平方等于a,那么这个数叫a的平方根,算术平方根:一个数正的平方根叫这个数的算术平方根.据平方根及算术平方根的定义即可解答.【解答】解:∵√25=5,而5的平方根等于±√5,∴√25的平方根是±√5.故选D.4. 【答案】D【考点】算术平方根平方根【解析】首先根据平方根概念求出√9=3,然后求3的平方根即可.【解答】解:∵√9=3,3的平方根是±√3,∴√9的平方根是±√3.故选D.5.【答案】A【考点】算术平方根【解析】①②③④分别利用平方根和算术平方根的定义计算即可判定.【解答】解:①√1−25144=√119144=√11912,故错误;②√(−4)2=√16=4,故错误;③∵−22=−4,负数没有平方根,故错误;④√116+125=√41400=√4120,故错误,所以这4个都是错的.故选A.6.【答案】A【考点】算术平方根平方根【解析】首先根据算术平方根的定义求出√(−3)2的值,再根据平方根的定义求它的平方根即可.【解答】∵√(−3)2=3,∴3的平方根为±√3.7.【答案】D【考点】算术平方根【解析】根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得x 2=a ,则x 就是a 的平方根.我们把正的平方根叫a 的算术平方根,由此即可求出√(x 2+4)2的算术平方根. 【解答】∵ √(x 2+4)2=x 2+4,∴ √(x 2+4)2的算术平方根是√x 2+4. 8. 【答案】 C【考点】 平方根 算术平方根 【解析】首先根据算术平方根的定义求出√49的结果,然后利用平方根的定义求解即可. 【解答】∵ √49=7,∴ √49=7的平方根是±√7. 9.【答案】 D【考点】 算术平方根 【解析】根据二次根式的意义,被开方数为非负数,由此得出x 的求值,再计算算式. 【解答】解:根据二次根式的意义, 得{2009−x ≥0x −2009≥0, 解得x =2009,∴ √2009−x +√x −2009+1x =12009. 故选D . 10. 【答案】 C【考点】 算术平方根 【解析】首先根据算术平方根的定义求出√64的值,然后利用相反数、倒数的定义即可求出结果. 【解答】解:∵ √64的算术平方根2√2,2的相反数的倒数−12,∴ √64的算术平方根与2的相反数的倒数的积是−12×2√2=−√2.故选C . 11.【答案】 D【考点】 算术平方根 【解析】A 、根据二次根式的乘法法则计算即可判定;B 、根据算术平方根的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据二次根式的乘法法则计算即可判定. 【解答】解:A 、√3a ⋅√a =√3a ,故选项错误;B 、√(−4)×(−16)=√64=8,故选项错误;C 、√412b 2=3√22|b|,故选项错误 D 、√(−2)2×3=√3×√4=2√3,故选项正确. 故选D . 12.【答案】 B【考点】 算术平方根 【解析】由于所求已知数0.005403的小数点比54.03向左移动了四位,那么则它的平方根就向左移动两位,由此即可得到结果. 【解答】解:∵ √54.03=7.35∴ 0.005403的算术平方根是0.0735. 故选B . 13. 【答案】 A【考点】 算术平方根 相反数【解析】由于算术平方根只能是非负数,而算术平方根等于它相反数,由此得到它是非正数,由此即可得到结果. 【解答】解:∵ 算术平方根只能是非负数,而算术平方根等于它相反数, ∴ 算术平方根等于它相反数的数是非正数, ∴ 算术平方根等于它相反数的数是0. 故选A . 14.【答案】D【考点】算术平方根【解析】首先根据算术平方根的定义求出√256的结果,然后再求结果的平方根.【解答】解:∵√256=16,又∵(±4)2=16,∴16的平方根为±4,则16的算术平方根为4.故选D.15.【答案】C【考点】算术平方根平方根【解析】①根据平方根的性质即可判定;②根据平方根的性质即可判定;③根据算术平方根的定义即可判定;④根据平方根、算术平方根的性质即可判定判断.【解答】解:①负数没有平方根,故正确;②任何一个非负数的平方根都有2个,它们互为相反数,故错误;③√a不一定有意义,故错误;④√9的平方根是±√3,故错误.∴错误的有3个.故选C.16.【答案】C【考点】算术平方根【解析】①根据0次幂的定义即可判定;②根据幂的乘方计算即可判定;③根据算术平方根的性质化简即可判定;④根据积的乘方法则计算即可判定;【解答】解:①(−5)0=1,故正确;②(22)3=43=64,故正确;③√(−4)2=−4,故错误;④52⋅62=25×36=302,故正确.故选C.17.【答案】C【考点】算术平方根【解析】根据相反数,倒数,算术平方根的概念即可求解.【解答】解:∵3的相反数是3,3的倒数是13,而13的算术平方根是√13=√33,∴−3的相反数的倒数的算术平方根是√33.故选C.18.【答案】C【考点】算术平方根【解析】平方根的定义:求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:(1−√2)2=3−2√2,∴3−2√2的平方根为±(√2−1),∴3−2√2的算术平方根为(√2−1).故答案:C.19.【答案】B【考点】非负数的性质:算术平方根非负数的性质:绝对值【解析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a、b的值,再代入原式即可.【解答】解:依题意得:a+2=0,b−1=0,a=−2,b=1,(a+b)2008=(−1)2008=1.故选B.20.【答案】A【考点】负整数指数幂有理数的乘方算术平方根零指数幂、负整数指数幂【解析】根据有理数的乘方的运算法则及负指数幂、0指数幂及算术平方根的意义得出.【解答】解:A、正确;B、原式=14,错误;C、原式=1,错误;D、原式=3,错误.故选A.填空题【答案】−1,9【考点】平方根【解析】由于一个正数的平方根有两个,且它们互为相反数,由此即可列出方程求解.【解答】解:依题意得,2a−1+(−a+2)=0,解得:a=−1.则这个数是(2a−1)2=(−3)2=9.故答案为:−1,9【答案】±5,±2,4,−2【考点】平方根【解析】分别根据平方根和算术平方根的定义计算结果即可.注意直接开平方时结果有两种情况.【解答】解:∵√x2=5,∴|x|=5,∴x=±5;∵x2=(−2)2=4,∴x=±2,∵(x−1)2=9,即x−1=±3,∴x=4或−2.【答案】a=b或a=−b.【考点】平方根【解析】首先根据平方根的定义求出a,然后利用平方运算求出b的值,再进行比较即可.【解答】解:∵a是9的平方根,∴a=±3,又∵b=(√3)2,∴b=3,∴a=b或a=−b.【答案】1或−3【考点】平方根【解析】由于一个正数有两个平方根,它们互为相反数,由此即可列出关于a的方程,解方程即可解决问题.【解答】解:依题意可知:2a−4+(3a−1)=0,或2a−4=3a−1,解得:a=1或a−3.故答案为:1或−3.【答案】16【考点】平方根【解析】首先根据平方根的定义,可以求得√a的值,再利用算术平方根的定义即可求出a的值.【解答】解:∵(±2)2=4,∴√a=4,∴a=(√a)2=16.故答案为:16.【答案】−b,±b【考点】平方根【解析】由于一个正数有两个平方根,且它们互为相反数,由此可求解决问题.【解答】解:若a的一个平方根是b,那么它的另一个平方根是−b;若a的一个平方根是b,则a的平方根是±b.故答案为:−b,±b.【答案】−3,49【考点】平方根【解析】由于一个正数的平方根有两个,它们互为相反数,由此即可得到关于a 的方程,解方程即可解决问题. 【解答】解:∵ 正数的平方根为2a −1和4−a , ∴ 2a −1+4−a =0, 解这个方程得a =−3.当a =−3时,2a −1=−7,4−a =7, ∴ 这个正数为49. 故答案为:−3,49. 【答案】 256【考点】 平方根 【解析】一个非负数的平方根有2个,它们互为相反数.依此列式计算即可,但有两种情况. 【解答】解:当5a +1+a −19=0时, 解得a =3,∴ 5a +1=16,a −19=−16, ∴ m =(±16)2=256;当{5a +1=0a −19=0时,无解, 故答案为256. 【答案】 4【考点】 平方根 【解析】一个正数的两个平方根互为相反数,据此即可求得m 的值.进而就可求得这个数. 【解答】解:根据题意得:(m +1)+(m −3)=0 解得m =1;或m +1=m −3,m 不存在, 则这个数是(1+1)2=4. 故答案为:4. 【答案】 ±5,±7 【考点】 平方根 【解析】根据平方根的定义,求得a 的平方根,也就是求一个数x ,使得x 2=a ,则x 就是a 的平方根.分别根据平方根和算术平方根的定义计算结果即可. 【解答】解:∵ (−x)2=25,则x =±5;∵ √x 2=7,则x =±7. 故答案为:±5,±7.。
《实数》易错题和典型题
一、平方根、算术平方根、立方根的基本概念和区别
1.25的平方根是±5的数学表达式是( ) A.525±= B.525= C.525±=± D.525-=
2.81的算数平方根是 ;16的平方根是 ,=338- ,64-的立方根是 。
3.如果x 是23-)
(的算数平方根,y 是16的算数平方根,则1xy x 2++= 。
4.若2x =729,则x= ;若2x =2
4-)(,则x= 。
5.已知2x-1的负的平方根是-3,3x+y-1的算数平方根是4,求x+2y 的平方根。
6.一个数的平方根等于这个数,那么这个数是 。
7.下列语句及写成的式子正确的是( )
A.8是64的平方根,即864=
B.864648=±的平方根,即是
C.864648±=±的平方根,即是
D.88-8-822=)(的算数平方根,即)是( 9.已知有理数m 的两个平方根是方程4x+2y=6的一组解,则m= 。
10.已知=±x 11-x 232,则的平方根是)( 。
二、对21-a )
( 的化简:去绝对值符号 1.化解=22-1)( ;=23-2)
( ;=22-3)( 。
2.如果4m 2=,则m= ;如果1-a 1-a 2=)(,则a 的取值范围是 。
3.已知b a a -b b -a 10b 6a 2
+===,则且,= 。
4.实数a ,b ,c 在数轴上的对应点如图所示,化解23
3c -a b a -b -c a )()(+++
三、被开方数的小数位移动与结果的关系
1.已知==200414.12,那么 ;=0
2.0 。
2.已知==23604858.0236.0,那么( )
A.4858
B.485.8
C.48.58
D.4.858
3.若===x 68.28x 868.26.233,3,那么, 。
4.已知853.32.57,788.172.58301.0572.033,3===,,,则=357200 ;=300572.0 ;
=35720 ;3572 。
四、平方根有意义的条件
1.若a >a ,则a 的取值范围是 。
2.当x 时,x -有意义;当x 时,2x -)(有意义;当x 时,+x x -有
意义;当x 时,22-x -)(有意义;
3.化解=a 1
-a ;32a 1
-a = 。
4.已知m 满足m 2011-m m -1=+,则m= 。
五、利用开方解一元二次方程
已知的值。
,求)(x 102-1-x 234
2=
六、实数比大小:无理数的整数部分和小数部分
1.已知a 是20的整数部分,b 是10的小数部分,则a+b= 。
2.已知的算术平方根。
,求的小数部分分别是与5b 3-a 3-,a 11-9119++b
3.如果a 的整数部分是3,那么a 的取值范围是 。
4.现有四个无理数,,,,8765其中在实数之间的数有与1312++( )
A.1个
B.2个
C.3个
D.4个
5.大于2020-但不大于的所有实数的和等于 。
6.已知a+b=10+3,如a 是整数,且0<b<1,则a-b 的相反数是 。
七、被开方数的分解
1.若果===1000b a b 50a 5的代数式表示,,用含, 。
2.如果m m 90003负整数是一个整数,则最大的的值为 。
3.已知y=3x 320-,求使y 有最大负整数的x 的最小整数值。
八、绝对值的几何意义
1.点p 在数轴上与原点相距7个单位长度,则点p 表示的实数是 。
2.已知数轴上点A 表示-2,点B 在数轴上,且AB=5,则点B 表示的数是 。
九、实数有关概念:
1.下列判断正确的是( )
A.若b a b a ==,则
B.若a>b ,则2a >2b
C.若b a b a 33==,则
D.若b a b a 2==,则)(
2.下列各组书中表示相同的一组的是( )
A.a 与2a
B.a 与2a -)(
C.-a 与33a -
D.-a 与-33a -
3.如果a ,b 表示两个不同的实数,若a+b<0,ab>0,则a ,b 取值正确的是( )
A.a>0,b>0
B.a<0,b<0
C.a>0,b<0,且a >b
D.a>0,b<0,且a <b
4.下列说法正确的是( )
A.带根号的数是无理数
B.不带根号的数不是无理数
C.开方开不尽的数是无理数
D.无理数是开方开不尽的数
十、有理数和无理数的加减运算
1.a ,b 是有理数,且32-5-3a b =+,则a= ,b= 。
2.已知x ,y 均为有理数,且满足23-10y 2y 2x 2=++,则x+y= 。
3.已知a ,b 都是有理数,且满足a -33
2b 2a 3-5+=,则a= ,b= 。
4.已知x ,y 是有理数,且24-21y 2-y -x 2=,则x+y 的平方根为 。
十一、综合运用:找规律、解根式方程
1.已知的立方根。
成立,求ab 2a 2
1-11-a 21b ++= 2.观察:31231434311=⨯==+,41341949412=⨯==+,5145116516513=⨯==+
,......请将上述规律用含自然数n (n ≥1)的等式表示出来。