碳纤维复合材料
- 格式:docx
- 大小:26.17 KB
- 文档页数:6
又轻又硬的材料
碳纤维复合材料是一种又轻又硬的材料,它由碳纤维和树脂基
体组成,具有优异的机械性能和轻质化特点。
碳纤维复合材料在航
空航天、汽车工业、体育器材等领域有着广泛的应用,成为现代工
程材料中的瑰宝。
首先,碳纤维复合材料的轻质化特点使其成为理想的替代材料。
碳纤维的比重很小,只有钢铁的四分之一,因此制成的复合材料非
常轻盈。
这种轻质化特点使得碳纤维复合材料在航空航天领域有着
广泛的应用,可以大幅减轻飞机和航天器的重量,提高其燃料效率
和飞行性能。
其次,碳纤维复合材料具有优异的硬度和强度。
碳纤维本身具
有很高的拉伸强度和模量,是常见的金属材料的数倍甚至数十倍。
而且,碳纤维与树脂基体的复合结构使得材料具有很好的抗压性和
抗弯性。
因此,碳纤维复合材料在汽车工业中可以用于制造车身和
零部件,提高汽车的安全性和性能。
此外,碳纤维复合材料还具有优异的耐腐蚀性和耐磨性。
由于
碳纤维本身具有很好的化学稳定性,不易受到酸碱等化学物质的侵
蚀。
同时,碳纤维复合材料的表面可以进行特殊的处理,提高其耐
磨性能,使其在体育器材和工程结构中有着广泛的应用前景。
总的来说,碳纤维复合材料作为一种又轻又硬的材料,具有很
多优异的性能和广阔的应用前景。
随着科技的不断进步,碳纤维复
合材料将会在更多领域展现其独特的魅力,为人类创造更多的奇迹。
碳纤维复合材料的成型工艺一、碳纤维复合材料概述碳纤维复合材料是一种由碳纤维增强体和树脂基体组成的新型高性能材料。
它以其轻质、高强度、高刚度、耐疲劳、耐腐蚀等优异性能,在航空航天、汽车制造、体育器材、建筑结构等领域得到了广泛的应用。
本文将探讨碳纤维复合材料的成型工艺,分析其重要性、挑战以及实现途径。
1.1 碳纤维复合材料的特点碳纤维复合材料的特点主要包括以下几个方面:- 轻质高强:碳纤维具有很高的比强度和比模量,使得复合材料在保持轻质的同时,具有很高的承载能力。
- 高刚度:碳纤维复合材料的刚度远高于传统材料,可以提供更好的结构稳定性。
- 耐疲劳:碳纤维复合材料具有优异的耐疲劳性能,适用于承受反复循环载荷的应用。
- 耐腐蚀:碳纤维复合材料对多种腐蚀性介质具有很好的抵抗力,适用于恶劣环境。
1.2 碳纤维复合材料的应用领域碳纤维复合材料的应用领域非常广泛,包括但不限于以下几个方面:- 航空航天:用于飞机结构、发动机部件等,以减轻重量、提高性能。
- 汽车制造:用于车身、底盘等部件,以提高燃油效率和车辆性能。
- 体育器材:用于自行车、网球拍、高尔夫球杆等,以提供更好的运动性能。
- 建筑结构:用于桥梁、高层建筑等,以提高结构的承载能力和耐久性。
二、碳纤维复合材料的成型工艺碳纤维复合材料的成型工艺是实现其优异性能的关键环节。
不同的成型工艺会影响材料的性能和应用范围。
2.1 预浸料成型工艺预浸料成型工艺是一种常用的碳纤维复合材料成型方法。
该工艺首先将碳纤维与树脂基体预先混合,形成预浸料,然后在模具上铺设预浸料,通过热压或真空袋压等方法固化成型。
预浸料成型工艺具有成型效率高、产品质量好等优点。
2.2 树脂传递模塑成型工艺树脂传递模塑(RTM)成型工艺是一种先进的复合材料成型技术。
该工艺通过将树脂注入闭合模具中,使树脂在模具内流动并浸润碳纤维,最终固化成型。
RTM工艺可以实现复杂形状的制品成型,且具有较低的生产成本。
碳纤维及其复合材料碳纤维具有优秀的力学性能,比强度高,比重轻,具有优异的抗拉、抗压和抗弯强度。
它的比强度约为钢铁的10倍,比重则只有钢铁的1/4、这使得碳纤维特别适用于高强度和轻量化要求较高的领域,如航空航天、航空发动机、车辆轻量化等。
此外,碳纤维还具有良好的耐腐蚀性、热稳定性和低热膨胀系数,使其在高温环境下能够保持较好的性能。
碳纤维的制备主要有干法和湿法两种方法。
干法制备主要是通过将聚丙烯腈(PAN)等聚合物纤维进行氧化、碳化处理制成。
湿法制备则是通过炭化纤维进行碳化处理得到碳纤维。
无论是干法还是湿法制备,都需要在高温下进行炭化处理,通常在1000℃以上。
碳纤维的复合材料是将碳纤维与树脂等基体材料复合而成的材料。
碳纤维复合材料综合了碳纤维的高强度和树脂的良好的塑性和可加工性,具有更优越的性能。
常见的碳纤维复合材料有碳纤维增强聚合物复合材料、碳纤维增强陶瓷基复合材料以及碳纤维增强金属基复合材料。
碳纤维复合材料在航空航天领域中的应用广泛。
例如,制造飞机的机身、机翼等部件时,碳纤维复合材料可以替代传统的金属材料,实现减重和提高结构强度的目的。
而在汽车行业,碳纤维复合材料的轻量化优势可以提高汽车的燃油经济性,降低碳排放量。
此外,碳纤维复合材料还广泛应用于体育器材、建筑领域等。
然而,碳纤维及其复合材料也存在一些问题和挑战。
首先,碳纤维复合材料的成本较高。
由于制备工艺的复杂性和原材料的昂贵性,使得碳纤维复合材料的成本较高,限制了其在一些领域的应用。
其次,碳纤维复合材料的环保性仍然是一个问题。
目前,碳纤维的废弃物处理和回收利用仍然存在一定的困难。
综上所述,碳纤维及其复合材料是一种具有优异性能的材料,在航空航天、汽车、体育器材等领域有广泛的应用前景。
随着技术的不断进步,碳纤维复合材料的制备工艺和成本将得到进一步改善,有望在更多领域发挥重要作用。
碳纤维复合材料的分类
以下是 7 条关于碳纤维复合材料分类的内容:
1. 短纤维碳纤维复合材料呀,就好像是一群小士兵紧密地排列在一起执行任务!你想想看,那些汽车的内饰件很多不就是用它来制造的嘛,让车子更轻便又结实。
2. 连续纤维碳纤维复合材料呢,这可牛了,就如同坚韧的绳索一样强大!飞机的某些部件不就是用这个嘛,保证了飞行的安全和高效,厉害吧!
3. 编织碳纤维复合材料呀,这不就像是精心编织的布一样嘛!在高端的体育器材里经常能看到它的身影,让运动员们如虎添翼呀!
4. 颗粒增强碳纤维复合材料,嘿,这就好似给材料里加了一份特别的力量调料!一些耐用的工具上就用了它,能更耐用哦!
5. 层合碳纤维复合材料,哇哦,就好像是一层层叠起来的坚固堡垒!在航天器上经常用到呢,助力探索浩瀚宇宙,这多牛啊!
6. 纳米碳纤维复合材料,听着就很高科技对不对,简直就是微观世界里的小能手啊!某些电子设备可少不了它,让科技更酷炫呢!
7. 混杂碳纤维复合材料,这可有趣了,就像是各种厉害角色的大融合!在一些特殊的工程领域中大展身手呢,起到意想不到的效果呀!
我觉得碳纤维复合材料的这些分类真的是各有千秋,都为我们的生活和科技发展带来了巨大的助力呀!。
碳纤维复合材料碳纤维复合材料是一种由碳纤维和树脂基体组成的高性能材料,具有轻质、高强度、耐腐蚀和耐磨损等优点,被广泛应用于航空航天、汽车制造、船舶建造、体育器材等领域。
本文将从碳纤维复合材料的制备工艺、性能特点及应用领域等方面进行介绍。
首先,碳纤维复合材料的制备工艺包括预浸料制备、层叠成型、固化和后处理等步骤。
预浸料是将碳纤维与树脂预先混合,形成一种浸渍了树脂的碳纤维布,以便于后续的成型加工。
层叠成型是将预浸料铺在模具中,按照设计要求依次叠加,形成所需的复合材料结构。
固化是通过加热或加压等方式使树脂固化,使碳纤维与树脂基体充分结合。
最后进行后处理,包括修整、表面处理等工艺,以提高复合材料的表面质量和性能。
其次,碳纤维复合材料具有轻质、高强度、耐腐蚀和耐磨损等优点。
碳纤维的比强度和比模量都很高,比重却很低,因此碳纤维复合材料具有很高的强度和刚度,同时又非常轻便。
此外,树脂基体的耐腐蚀性能和碳纤维的耐磨损性能也使得碳纤维复合材料在恶劣环境下有着良好的表现。
因此,碳纤维复合材料被广泛应用于航空航天领域,用于制造飞机机身、机翼等部件,以减轻飞机重量,提高飞行性能。
同时,汽车制造业也将碳纤维复合材料应用于汽车车身、悬挂系统等部件,以提高汽车的安全性和燃油经济性。
在船舶建造领域,碳纤维复合材料可以用于制造船体结构、船舶内部装饰等部件,以提高船舶的航行性能和舒适性。
此外,碳纤维复合材料还被广泛应用于体育器材制造,如高尔夫球杆、自行车车架等,以提高器材的性能和使用寿命。
综上所述,碳纤维复合材料具有制备工艺简单、性能优异、应用广泛等特点,是一种具有很高发展潜力和广阔市场前景的材料。
随着科技的不断进步和人们对轻质高强材料需求的增加,碳纤维复合材料必将在未来得到更广泛的应用和发展。
碳纤维复合材料论文导言碳纤维复合材料(CFRP)是一种由碳纤维和树脂基体组成的高性能材料。
随着科技的进步,CFRP在航空航天、汽车工业、体育用品等领域中得到了广泛的应用。
本论文将就CFRP的制备方法、性能特点以及应用前景进行详细探讨。
1. CFRP的制备方法CFRP的制备方法通常包括纺丝、预浸料、固化和成型四个步骤。
1.1 碳纤维纺丝碳纤维是由多个碳纤维丝束组成的。
纺丝过程中,先将碳纤维丝束在高温下拉伸,然后进行表面处理,以增加纤维与树脂的粘合性能。
1.2 预浸料制备预浸料是将纺丝得到的碳纤维与树脂基体进行浸渍得到的材料。
树脂基体一般采用环氧树脂。
预浸料制备过程中需要控制纤维的含量、纤维间的排列方式以及树脂的渗透性。
1.3 固化固化是指通过加热或加压将树脂基体中的单体或低分子量聚合物转变为高分子量聚合物的过程。
固化可以提高CFRP的强度和刚度。
1.4 成型成型是将固化后的预浸料经过特定形状的模具加热或加压成型,得到最终的CFRP产品。
2. CFRP的性能特点CFRP具有许多优良的性能特点,使其成为许多领域的首选材料。
2.1 高强度和高刚度相比于传统的金属材料,CFRP具有更高的强度和刚度。
其拉伸强度可以达到2000 MPa,弹性模量可以达到150 GPa以上。
2.2 轻质CFRP的密度大约为1.6 g/cm³,相比于钢材(7.8 g/cm³)和铝材(2.7g/cm³),CFRP具有更轻的重量优势。
2.3 抗腐蚀性由于CFRP的主要组成部分是碳纤维和树脂基体,它具有优良的抗腐蚀性能,不易受潮湿环境、化学物质和气候变化的影响。
2.4 热稳定性CFRP具有较高的热稳定性,可以在高温环境下长期使用而不发生形变或脆化。
2.5 高耐疲劳性由于CFRP的高强度和高刚度,它具有出色的耐疲劳性能,适用于长期受到重复加载的应用场景。
3. CFRP的应用前景随着CFRP技术的不断发展,其在各个领域的应用前景十分广阔。
碳纤维复合材料加工
碳纤维复合材料是一种由碳纤维和树脂基体组成的高强度、轻质材料,具有优
异的机械性能和耐腐蚀性能,因此在航空航天、汽车、船舶、体育器材等领域得到广泛应用。
碳纤维复合材料加工是指对碳纤维布料进行裁剪、预浸树脂、成型、固化等一系列工艺过程。
本文将介绍碳纤维复合材料加工的相关知识和技术要点。
首先,碳纤维复合材料加工的第一步是对碳纤维布料进行裁剪。
在裁剪过程中,需要根据零件的形状和尺寸,利用模具或者数控切割机对碳纤维布料进行精确的裁剪。
裁剪时要注意布料的方向,以保证零件在使用时具有良好的力学性能。
接下来是预浸树脂。
预浸树脂是指事先浸渍好树脂的碳纤维布料,其目的是为
了提高树脂与碳纤维之间的结合强度。
预浸树脂的制备需要控制树脂的浸渍量和固化剂的添加量,以确保树脂的固化度和性能稳定。
然后是成型工艺。
碳纤维复合材料的成型工艺有手工成型、压缩成型、注塑成
型等多种方式。
在成型过程中,需要根据零件的结构和要求,选择合适的成型工艺,并严格控制成型温度、压力和时间,以保证成型零件的质量。
最后是固化工艺。
固化是指树脂在一定温度下发生化学反应,形成坚固的结构。
在固化过程中,需要控制固化温度和时间,以确保树脂充分固化,同时避免产生气泡和裂纹。
总之,碳纤维复合材料加工是一项复杂的工艺过程,需要严格控制各个环节,
以确保最终产品具有优异的性能和质量。
希望本文的介绍能够对碳纤维复合材料加工有所帮助,也希望读者能够在实际操作中加以参考和运用。
碳纤维复合材料的制备工艺及其应用一、碳纤维复合材料概述碳纤维复合材料是一种由碳纤维和树脂基体组成的材料,具有轻质、高强、高模量、耐腐蚀、耐高温、耐磨损等优点,是目前运用广泛的一种高性能材料。
碳纤维复合材料被广泛应用于航空航天、汽车、体育器材、建筑结构等领域。
如今,其中最为流行的应用就是在制造高档化、高速度、高精度单体器和新颖双翼飞行器上。
二、碳纤维复合材料的制备工艺碳纤维复合材料的制备过程是由多个工艺环节组成的,下面将针对每个环节逐一介绍。
1.纤维预处理碳纤维预处理是将原始碳纤维进行表面处理的过程,主要是增加碳纤维与树脂基体间的结合力。
预处理方法主要有物理法、化学法和物化结合法等。
2. 纤维束成型纤维束成型过程即是对碳纤维进行方向、密度、弯曲等要求的布放,旨在保障最终制品的力学性能和外观质量。
这个过程是全过程中最主要的工艺点。
3. 预浸胶(浸渍)预浸胶过程即是将干燥的碳纤维通过浸渍机进行一遍遍地浸润预浸膜,以保障纤维与树脂基体的结合质量和防止气泡的存在。
浸前要在浸润池内先提前进行啊溶剂和树脂的混合溶解,提高浸渍的成效。
4.层叠成形层叠成形过程即是替代传统的钣金模具来进行原料成型工艺,具有工艺灵活、生产效益高的特点。
一般有人工贴放和机器封装成型两种方法。
一个部位若是需要多层叠放,需对第一个和最后一个层间进行封闭处理。
5. 热固化热固化是将层叠成型后的半成品传送至热压机进行加压热处理,达成树脂基体固化硬化的工艺过程,这个过程也是碳纤维复合材料制品性能优良的重要原因。
三、碳纤维复合材料的应用碳纤维复合材料的优异性能,使得其在许多工业领域得以广泛应用,下面将对其主要应用领域进行介绍。
1. 航空航天领域碳纤维复合材料在航空航天领域中得到了广泛应用,如飞机翼、机身、尾翼等部位以及航空发动机的结构件等。
其优秀的轻重比使得飞机自身质量大大减轻,節省燃油成本以及大幅减少大气污染。
2. 汽车领域碳纤维复合材料在汽车领域中的应用也越来越广泛,碳纤维车身、内饰、动力传输部件以及刹车片等等都是一个个优秀的代表。
碳纤维复合材料标准碳纤维复合材料是一种具有轻质、高强度、耐腐蚀等优异性能的材料,广泛应用于航空航天、汽车制造、体育器材等领域。
为了保证碳纤维复合材料的质量和安全性,制定了一系列的标准来规范其生产、加工和使用。
本文将介绍碳纤维复合材料标准的相关内容,以便读者更加全面地了解这一材料。
首先,碳纤维复合材料的标准主要包括材料的基本性能、加工工艺、质量检测和使用规范等方面。
在材料的基本性能方面,标准规定了碳纤维复合材料的密度、强度、弹性模量、热膨胀系数等物理和力学性能指标,以及其在不同温度、湿度下的性能要求。
这些基本性能的标准化可以帮助生产厂家和用户更好地选择和使用碳纤维复合材料,提高材料的可靠性和稳定性。
其次,在加工工艺方面,碳纤维复合材料的标准规定了材料的成型、固化、表面处理等工艺要求,以及加工过程中的质量控制和检测方法。
这些标准化的加工工艺可以保证碳纤维复合材料在生产过程中的质量稳定性和一致性,提高生产效率和降低生产成本。
此外,质量检测是保证碳纤维复合材料质量的关键环节。
标准规定了碳纤维复合材料的质量检测方法和标准样品的制备要求,以及对材料表面缺陷、内部缺陷、化学成分等方面的检测要求。
这些质量检测标准可以保证生产出的碳纤维复合材料符合规定的质量标准,确保其在使用过程中不会出现安全隐患。
最后,标准还规定了碳纤维复合材料的使用规范,包括材料的存储、运输、安装和维护等方面的要求。
这些使用规范可以帮助用户正确地选择和使用碳纤维复合材料,延长材料的使用寿命,减少因使用不当而导致的损坏和事故。
综上所述,碳纤维复合材料标准的制定对于保障碳纤维复合材料的质量和安全性具有重要意义。
通过遵守这些标准,可以帮助生产厂家提高产品质量,帮助用户选择和使用合格的碳纤维复合材料,促进碳纤维复合材料行业的健康发展。
希望本文对读者对碳纤维复合材料标准有所帮助,谢谢阅读。
碳纤维及其复合材料讲解引言碳纤维是近年来广泛应用于各个领域的一种先进材料,它具有低密度、高强度、高模量、耐热性等优异的性能,在航空航天、汽车、体育器材等领域有着重要的应用。
本文将对碳纤维及其复合材料进行深入讲解,介绍其结构、特性以及应用领域。
碳纤维的结构和制备方法碳纤维是由碳元素组成的纤维状材料,其结构由纯净的碳元素构成,具有高度有序的晶体结构。
碳纤维的制备方法主要包括聚丙烯纤维炭化法、聚丙烯纤维长丝法和聚丙烯纤维溶胶纺丝法等。
其中,聚丙烯纤维炭化法是最常用的方法,它通过将聚丙烯纤维经过预处理后进行高温炭化,得到纯净的碳纤维。
碳纤维复合材料的制备及特性碳纤维复合材料是将碳纤维与树脂基体进行复合制备而成的一种材料。
它具有轻质、高强度、高模量、耐腐蚀等多种特性。
碳纤维复合材料的制备工艺主要包括预浸法、自动定型法和预浸层叠法等。
其中,预浸法是最常用的方法,它通过将碳纤维预先浸渍于树脂中,然后进行固化和压制,最终得到具有预定形状和性能的复合材料。
碳纤维复合材料具有优异的力学性能,其强度和刚度远远超过许多传统材料。
它还具有良好的耐热性和耐腐蚀性能,在高温和恶劣环境下能够保持较好的性能。
此外,碳纤维复合材料还具有良好的阻尼性能,能够吸收和分散冲击能量,提高结构的抗震能力。
碳纤维及其复合材料的应用领域碳纤维及其复合材料在各个领域都有广泛的应用。
在航空航天领域,碳纤维复合材料被广泛应用于飞机、卫星等结构中,以减轻重量并提高飞行性能。
在汽车领域,碳纤维复合材料能够替代传统金属材料,减少车身重量,提高燃油经济性。
在体育器材领域,碳纤维复合材料制成的高尔夫球杆、网球拍等器材具有轻盈、刚性等优势,提高了运动员的表现。
此外,碳纤维复合材料还广泛应用于建筑、能源、电子等领域。
在建筑领域,碳纤维复合材料能够替代传统的钢筋混凝土,提高结构的抗震性能。
在能源领域,碳纤维复合材料被用于制造风力发电叶片、太阳能电池等设备,提高能源转换效率。
别具特色的碳纤维复合材料如何提高复合材料的强度一直是科技工作者努力探索的方向。
在复合材料大家族中,纤维增强材料一直是人们关注的焦点。
自玻璃纤维与有机树脂复合的玻璃钢问世以来,碳纤维、陶瓷纤维以及硼纤维增强的复合材料相继研制成功,性能不断得到改进,使复合材料领域呈现出一派勃勃生机。
下面让我们来了解一下别具特色的碳纤维复合材料。
碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。
碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。
碳纤维比重小,因此有很高的比强度。
碳纤维是由含碳量较高,在热处理过程中不熔融的人造化学纤维,经热稳定氧化处理、碳化处理及石墨化等工艺制成的。
碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,做成结构材料。
碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的(见图6?/FONT>1)。
在强度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。
碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,现在还广泛应用于体育器械、纺织、化工机械及医学领域。
随着尖端技术对新材料技术性能的要求日益苛刻,促使科技工作者不断努力研究,碳纤维的性能也不断完善和提高。
80年代初期,高性能及超高性能的碳纤维相继出现,这在技术上是又一次飞跃,同时也标志着碳纤维的研究和生产已进入一个高级阶段。
由碳纤维和环氧树脂结合而成的复合材料,由于其比重小、刚性好和强度高而成为一种先进的航空航天材料。
因为航天飞行器的重量每减少1公斤,就可使运载火箭减轻500公斤。
同样,飞机重量的减轻也可以节省油耗,提高航速。
所以,在航空航天工业中争相采用先进复合材料。
有一种垂直起落战斗机,它所用的碳纤维复合材料已占全机重量的1/4,占机翼重量的1/3。
据报道,美国航天飞机上3只火箭推进器的关键部件棗喷嘴以及先进的MX导弹发射管等,都是用先进的碳纤维复合材料制成的。
摘自《绚丽多彩的新材料》院士寄望碳纤维复合材料有突破相关专题:表面活性剂时间:2010-09-29 11:04 来源:中国表面活性剂网——高端材料尚难撑起大飞机项目上周在华东理工大学华昌聚和物公司举办的2010材料科学与防腐蚀技术国际论坛上,中国工程院院士杜善义提出,中国大飞机项目已经起步,其中复合材料用量至少须占25%。
国内亟待加快开发碳维纤复合材料应用设计和技术解决方案,让高端碳纤维上规模、提性能、降成本。
现任中国复合材料学会理事长、中国商用飞机有限公司专家咨询组成员的杜善义建议,集中科技优势力量组织攻关T800级碳纤,合理部署高端碳纤原材料的国内布点,防止低水平碳纤厂一哄而上;鼓励复合材料设计创新,做到合理高效设计;在部件制造方面,适当购买国外先进设备,攻克关键设备国产化,与下游单位合作,积极开发新工艺、新应用。
记者了解到,中国复合材料集团、中复神鹰等一批企业已与科研单位、高校开展合作,在高端碳纤的自主研发和产业化上取得了突破。
杜善义分析说,我国复合材料在航空领域的应用已有一定基础,拥有原材料的优势。
在树脂基复合材料的两大原材料树脂和纤维中,树脂方面我国与国外差距不大,而碳纤维研发尚存四大难题。
第一,高端碳纤维产业落后。
国产碳纤维目前规模虽达万吨级,产量也有数千吨,但只能用在飞机非承力件和次承力件上,而飞机最关键的承力件所需T800级碳纤还停留在实验室数十千克的水平,大飞机应用尚需依靠进口。
国内碳纤维应用技术和解决方案与国外相比差距较大,比如碳纤维设计载荷的合理取法落后,不能体现碳纤维特性。
第二,碳纤维复合材料部件的一体化成型技术相对落后,难以制造大尺寸部件。
第三,我国自动化工艺如自动铺丝技术等更为落后。
第四,国产高性能碳纤维因设备靠进口、生产效率低而价格高企。
他强调,国内化工企业要以配套大飞机为突破口,合力解决这四大问题。
他告诉记者:“大型飞机突出强调安全性、经济性、舒适性和环保性,这决定了对复合材料需求的迫切性和必然性。
复合材料技术已跃升大飞机项目三大关键技术之一。
”他认为,复合材料的意义不仅体现在大飞机项目,而是通过复合材料在航空领域的应用,推动其在汽车等其他领域应用水平的全面提高。
料是先进复合材料的典型代表,作为结构、功能或结构/功能一体化构件材料,在军机、导弹、运载火箭、卫星飞行器以及风力发电叶片上发挥着不可替代的作用。
现在,复合材料的用量已成为衡量飞行器先进性的重要指标之一,机体结构复合材料化程度也已成为飞机先进性的重要标志。
在“神七”飞船所用材料中,复合材料的比例已达到65%左右。
前不久针对我国启动的大飞机攻关项目,专家明确提出,复合材料用量应至少达到25%。
但由于技术原因,碳纤维这种重要增强材料的工业化进展一直不快,碳纤维生产一直由美国和日本两国主导,我国碳纤维原料及其复合材料一直严重依赖进口。
碳纤维材料长期受制于人,进口价格令人难以接受,原料基础差已成为碳纤维复合材料应用推广的最大“瓶颈”。
碳纤维是含碳量高于90%的无机高分子纤维,具有轻质、高强、耐高温、耐疲劳、抗腐蚀、导热、导电等特性。
除土木建筑、航空航天、汽车、体育休闲用品、能源以及医疗卫生领域外,碳纤维在电子通信、石油开采、基础设施建设等领域也有着广泛的应用。
虽然当前世界经济发展面临重重挑战,但全球范围内的碳纤维需求仍在升温。
汽车、风力涡轮叶片及压力容器等碳纤维新市场正在兴起。
东丽、东邦、三菱丽阳、西格里等主要碳纤维生产商纷纷加大投资力度,加速市场规模的进一步扩张。
中国碳纤维研制工作始于20世纪60年代,已经取得重大进展。
随着我国整体实力的不断提升,对碳纤维的需求量也与日俱增,而我国碳纤维产能严重不足,而且主要是低性能产品,没有形成规模化产业。
现阶段,我国碳纤维用量的90%以上靠进口,价格非常昂贵,自主发展碳纤维产业已经成为工业经济发展的迫切要求。
为全面掌握碳纤维核心技术,国内企业注重自主创新,某些关键设备的研发已取得突破性成果,而且原材料供应充足。
我国碳纤维产业技术特点十分明显,技术多元化越来越受到重视。
在我国完整的碳纤维研发链条下的碳纤维工程化研发呈现出快速发展势头,吉林、山东、江苏、山西、辽宁、安徽是我国传统的碳纤维工程化研发的基地。
近年来,河北、上海、陕西逐步成为新兴的碳纤维工程化研发基地,同时,北京、广东、浙江、江苏等地也积极参与碳纤维的产业化建设。
随着应用研究的进一步深入,未来碳纤维产品将趋向于高性能化,民用、工业用量将继续保持大幅增长趋势。
国际碳纤维市场发展迅速,需求量的不断增长也给中国碳纤维行业提供了难得的发展机遇。
我国碳纤维产业链日趋完善,生产企业投资热情高涨,技术研发成果接连涌现。
受益于庞大的内需市场,我国碳纤维复合材料市场潜力巨大,碳纤维产业发展前景广阔。
中投顾问发布的《2010-2015年中国碳纤维市场投资分析及前景预测报告》共八章。
首先介绍了碳纤维的定义、分类、应用领域及生产工艺等方面内容,接着全面阐述了国际碳纤维产业的总体概况及中国碳纤维产业所面临的发展环境。
然后深入透析了中国碳纤维行业的发展状况,并对碳纤维在复合导线、建筑加固、飞机制造等领域的应用状况进行介绍。
最后,报告分析了中国碳纤维行业的投资机遇、投资热点及投资风险,对碳纤维行业的发展前景做出科学预测。
您若想对中国碳纤维行业有个系统的了解或者想投资碳纤维相关行业,本报告是您不可或缺的重要工具。
碳纤维复合材料知识普及时间:2009-12-29 09:34来源: 作者:河北圣佳电子科技点击: 113次碳纤维,又称碳化纤维,泛指一些以碳纤维编织或多层复合而成的材料。
因为它又轻又坚硬,所以它的用途很广泛。
每一根碳纤维由数千条更微小的碳纤维所组成,直径大约5至8微米。
碳纤维,又称碳化纤维,泛指一些以碳纤维编织或多层复合而成的材料。
因为它又轻又坚硬,所以它的用途很广泛。
每一根碳纤维由数千条更微小的碳纤维所组成,直径大约5至8微米。
在原子层面的碳纤维跟石墨很相近,是由一层层以六角型排列的碳原子所构成。
两者差别在于层与层之间的连结。
石墨是晶体结构,它的层间连结松散,而碳纤维不是晶体结构,层间连结是不规则的。
这样便防止滑移增强物质强度。
一般碳纤维的密度为1750 kg/m3。
导热能力高但传电能力低,碳纤维的比热容量亦比铜低。
当加热的时候,碳纤维会变厚而短。
虽然碳纤维的天然颜色是黑色,但科学家可以把它染上不同的颜色。
它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。
与传统的玻璃纤维(GF)相比,杨氏模量是其3 倍多;它与凯芙拉纤维(KF-49)相比,不仅杨氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。
有学者在1981年将PAN 基CF浸泡在强碱NaOH 溶液中,时间已过去20多年,它至今仍保持纤维形态。
碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。
因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。
材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大,从这个意义上已预示了碳纤维在工程的广阔应用前景,综观多种新兴的复合材料(如高分子复合材料、金属基复合材料、陶瓷基复合材料)的优异性能,不少人预料,人类在材料应用上正从钢铁时代进入到一个复合材料广泛应用的时代。
碳纤维是含碳量高于90%的无机高分子纤维。
其中含碳量高于99%的称石墨纤维。
碳纤维的轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。
但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。
因此,碳纤维在使用前须进行表面处理。
碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得;按状态分为长丝、短纤维和短切纤维;按力学性能分为通用型和高性能型。
通用型碳纤维强度为1000兆帕(MPa)、模量为100GPa左右。
高性能型碳纤维又分为高强型(强度2000MPa、模量250GPa)和高模型(模量300GPa以上)。
强度大于4000MPa的又称为超高强型;模量大于450GPa的称为超高模型。
随着航天和航空工业的发展,还出现了高强高伸型碳纤维,其延伸率大于2%。
用量最大的是聚丙烯腈PAN基碳纤维。