八年级上册第七章 平行线的证明7.4平行线的性质(北师大版)
- 格式:doc
- 大小:40.50 KB
- 文档页数:4
平行线的性质一、教学目标:①运用已学知识推导平行线的性质定理;②应用平行线的性质进行简单的推理和计算;③应用平行线的性质解决相关问题。
二、学习者分析:通过课前推送自主学习任务单,通过云平台收集并分析学生学情数据(包括知识储备和活动经验基础两个方面)三、教学重难点及解决措施:教学重点是探索平行线的性质,并进行简单的推理和计算,教学难点是应用平行线的性质解决问题。
通过自主学习发现问题、小组合作探究解决问题,利用智慧学习环境进行展示交流、小组互评等活动,进而掌握平行线的性质;通过精准测评、分层练习检测学生能否应用平行线的性质进行推理和计算以及解决生活中的实际问题。
四、过程设计第一环节:复习回顾该环节包括阅读理解、作业、提问与理答三个学习活动。
①阅读理解:课前教师通过教育云平台创建并推送学习任务单及检测题,学生通过阅读教材和学习任务单进行自主学习。
②作业:学生完成并提交检测题,教师利用云平台数据分析学生学习效果,精准掌握学生学情。
③提问与理答:教师利用思维导图对学生已学知识进行回顾,通过个别提问,交流学习困惑,进一步了解学情,为后续调整教学提供依据。
第二环节:新知探究该环节通过完成两个探究任务来达成第1个教学目标。
第一个探究任务,主要通过作业、讨论与交流、汇报与成果展示等学习活动完成。
①作业。
教师安排第一个探究活动,学生自主完成任务。
(设计意图:通过自主探究,激发学生探究数学问题的兴趣,通过动手测量获得感性体验,帮助学生得出猜想。
)作业内容:学生利用练习本中的直线或用直尺和三角尺画两条平行线a∥b,再画一条截线 c 与这两条平行线相交,标出图中的八个角。
并完成以下任务:任务1:找出图中的同位角任务2:观察每组同位角之间有什么数量关系?说出你的猜想任务3:再任意画一条截线d,你的猜想还成立吗?②讨论与交流。
自主完成学习任务后,小组合作进行讨论交流,将结果拍照上传至云平台,并浏览其他小组成果。
(设计意图:通过小组合作探究,实现知识的协同建构,同时提升学生的沟通、表达、合作的能力。
7.1 为什么要证明【学习目标】1.初步体会观察、猜测得到的结论不一定正确.2.通过探索,初步了解数字中推理的重要性.3.初步了解要判定一个数学结论正确与否,需要进行有根有据的推理.【学习重点】判断一个结论正确与否需要进行推理.【学习难点】理解数学推理的重要性.学习行为提示:创景设疑,帮助学生知道本节课学什么.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.情景导入生成问题在现实生活中,我们常采用观察的方法来了解世界.在数学学习中,我们通过观察、度量、猜测来得到一些结论.那这样得到的结论都是正确的吗?如果是正确的,那么用什么方法说明它的正确性呢?解:不一定都是正确的,如果正确,需要用推理证明的方法来说明它的正确性.自学互研生成能力知识模块一观察、实验、归纳得到的结论一定正确吗先阅读教材第162页“做一做”之前的内容,然后完成书中设置的两个问题,最后与同伴进行交流.【说明】让学生通过观察、实验、归纳等方法初步体会得到的结论不一定正确.知识模块二启发学生有理有据地推理师生合作共同完成教材第162页“做一做”的学习与探究.【说明】(1)中让学生体会数学教学中从特殊到一般的思想方法;(2)中利用先猜想再验证的方法,培养学生从不同的角度来用不同的数学方法解决实际问题的能力.【归纳结论】实验、观察、归纳得到的结论可能正确,也可能不正确.因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一观察、实验、归纳得到的结论一定正确吗知识模块二启发学生有理有据地推理检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________7.2 定义与命题第1课时定义与命题【学习目标】1.理解定义与命题的概念.2.掌握命题的结构、形式及种类.3.能从具体实例中,了解命题的概念,并会区分真假命题.【学习重点】命题的相关概念.【学习难点】对于命题的条件和结论不十分明显,改写成“如果……那么……”的形式.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.这节课我们就一起研究定义与命题.自学互研生成能力知识模块一定义先阅读教材第165页“议一议”上面的内容,弄清“定义”的概念.【说明】通过思考、归纳得出定义的概念,并利用举例的形式加深对概念的理解与掌握.【归纳结论】证明时,为了交流的方便,必须对某些名称和术语形成共同的认识.为此,就要对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.知识模块二命题阅读教材第165页“议一议”的内容,弄清命题的概念,并与同伴进行交流.【说明】通过讨论、交流让学生对命题形成初步认识,安排不是命题的问题参加,让学生逐步体会一个句子是不是命题的关键是对一件事情是否作出判断.【归纳结论】判断一件事情的句子叫做命题.如果一个句子没有对某件事情作出任何判断,那么它就不是命题.知识模块三命题的组成阅读教材第166页“想一想”部分的内容.弄清一个命题的组成,并与同伴进行交流.【说明】学生通过观察、思考得出命题是由两部分组成的,并掌握它们各自的概念,进一步加深对命题的理解.【归纳结论】一般地,每个命题都由条件和结论两部分组成.条件是已知的事项,结论是由已知事项推出的事项.命题通常可以写成“如果……那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.知识模块四命题的分类仿例:下列命题是真命题的是( D)A.若a2=b2,则a=bB.若a2>b2,则a>bC.若|a|>|b|,则a>bD.若a3=b3,则a=b学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.阅读教材第166页“做一做”的内容,然后与同伴进行交流.【说明】进一步加深对命题组成的理解,同时学会利用自学的知识对命题作出正确的判断.【归纳结论】正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一定义知识模块二命题知识模块三命题的组成知识模块四命题的分类检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________第2课时命题的证明【学习目标】1.理解公理和定理的意义,并能对公理与定理加以区别.2.理解证明命题的思路、书写的格式,能对推理论证有初步的认识.【学习重点】命题证明的一般步骤.【学习难点】探索命题证明的思路及思维方向.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.情景导入生成问题我们知道,举一个反例就可以证明一个命题是假命题,那么如何证实一个命题是真命题呢?用以前学过的观察、实验、验证特例等方法来证明可靠吗?能不能根据已经知道的真命题证实呢?那已经知道的真命题又是如何证实的?【说明】提出一系列的问题启发思考,体会证明的必要性,让学生明白采用什么样的方式作为证实其他命题的出发点和依据.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.自学互研生成能力知识模块一公理、定理的概念阅读教材第168页和第169页例题前面部分的内容,然后解答下列问题:问题1什么是公理?什么是定理?问题2我们已经学习了哪几条基本事实作为证明的出发点和依据?【说明】给出概念,直入主题.回顾所学知识,加深对概念的理解,同时也让学生明白如何区分公理和定理.【归纳结论】除了上面几条可以作为证明的依据外,数与式的运算律和运算法则、等式的有关性质以及反映大小关系的有关性质都可以作为证明的依据.知识模块二定理的证明师生合作完成下面问题的学习与探究.问题3什么叫证明?如何来证明一个命题或定理的正确性?【说明】让学生明白证明的概念,并且为后面书写过程有个心理准备.例:已知:如图,直线AB与直线CD相交于点O,∠AOC与∠BOD是对顶角.求证:∠AOC=∠BOD.由于证明过程是学生刚刚接触的,比较陌生,教师可以引导学生帮助分析,展示如下:证明:∵直线AB与直线CD相交于点O,∴∠AOB和∠COD都是平角(平角的定义).∴∠AOC和∠BOD都是∠AOD的补角(补角的定义).∴∠AOC=∠BOD(同角的补角相等).定理:对顶角相等.注:对于符号“∵”“∴”表示的意思教师要作出解释;由于刚学证明,力求注明理由,证明过程要符合逻辑思维,不能因果不相匹配.仿例:如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足是D,求证:∠1=∠A,∠2=∠B.证明:∵CD⊥AB,∴∠ADC=∠BDC=90°,∵∠ACB=90°,∴∠1+∠2=90°,又∵∠1+∠B=90°,∴∠2=∠B,同理可证:∠1=∠A.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一公理、定理的概念知识模块二定理的证明检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________7.3 平行线的判定【学习目标】1.会用“同位角相等,两直线平行”证明“内错角相等,两直线平行”及“同旁内角互补,两直线平行”的正确性.2.会用平行线的三个判定定理解决问题.【学习重点】平行线的三个判定定理.【学习难点】灵活应用平行线的三个判定定理解决问题.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题前面我们探索过两直线平行的哪些判别条件?利用“同位角相等,两直线平行”这个基本事实,你能证明它们吗?试试看.【说明】通过复习旧知识,为本节课进一步学习直线平行的条件做准备.两条直线被第三条直线所截,形成的角中,有同位角、内错角和同旁内角.同位角相等,两直线平行,那么利用内错角、同旁内角的关系,能否判定两直线平行?【说明】这个问题的提出,直截了当地切入本节课的中心内容,通过学生的猜想、讨论,引起学生的探究欲望.自学互研生成能力知识模块一内错角相等,两直线平行先阅读教材第172页定理1的内容及其证明过程,然后完成下面的问题.问题1如右图,∠1与∠2是什么位置关系?问题2当∠1=∠2时,直线a、b有什么关系?为什么?【说明】通过观察、思考、讨论培养学生分析图形的能力,感受转化的思想.由未知转化为已知,把已知条件转化为以前学过的旧知识,从而达到解决问题的目的.为了给学生一个清晰的证明过程,教师展示如下:证明:∵∠1=∠2(已知),∠1=∠3(对顶角相等).∴∠3=∠2(等量代换).∴a∥b(同位角相等,两直线平行).知识模块二同旁内角互补,两直线平行先阅读教材第172页定理2的内容及证明过程,然后完成下面的问题.问题3如下图,∠2与∠3是什么位置关系?学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.问题4当∠2+∠3=180°时,直线a、b有什么关系?为什么?【说明】让学生自己口述,培养学生的口语表达能力和推理论证的能力.在思考探究的过程中,体会判断两条直线平行的条件.这个证明的过程,老师可以引导学生自己书写.【归纳结论】已给的基本事实、定义和已经证明的定理以后都可以作为依据,用来证明新的结论.仿例:如图所示,一个合格的弯形管道经两次拐弯后,如果∠C=68°,∠B=112°,则AB与CD的位置关系是__平行__,理由是__同旁内角互补,两直线平行__.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一内错角相等,两直线平行知识模块二同旁内角互补,两直线平行检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________7.4 平行线的性质【学习目标】1.初步掌握平行线的性质,并能用性质进行简单的推理和证明.2.进一步理解和总结证明的步骤、格式、方法.【学习重点】平行线的性质的探索及性质的应用.【学习难点】运用平行线的性质和判定去解决问题.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.情景导入生成问题现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?【说明】了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课程的学习做准备.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.自学互研生成能力知识模块一两直线平行,同位角相等师生合作共同完成教材第175页性质定理1的证明及探究过程.【说明】给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的.此题的证明可以让学生感受反证法.知识模块二两直线平行,内错角相等和两直线平行,同旁内角互补阅读教材第176页平行线性质定理2和性质定理3的内容及证明过程,然后自己完成定理的证明.【说明】培养学生逻辑思维能力以及严谨的治学态度,逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心.知识模块三平行于同一条直线的两条直线平行先阅读教材第176页例题及证明过程,然后完成下面的问题.例:已知:如图,b∥a,c∥a,∠1,∠2,∠3是直线a、b、c被直线d截出的同位角.求证:b∥c.【说明】利用平行线的性质进行有关的证明,逐步培养学生的推理论证能力.发展他们的数学思维和空间观念.【归纳结论】平行于同一条直线的两条直线平行.讨论:完成一个命题的证明,需要哪些主要环节?与同学们交流.【说明】通过与学生交流、讨论,帮助他们形成知识体系,为以后的证明提供了很好的方法.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一两直线平行,同位角相等知识模块二两直线平行,内错角相等和两直线平行,同旁内角互补知识模块三平行于同一条直线的两条直线平行检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________7.5 三角形内角和定理第1课时三角形内角和定理【学习目标】1.会证明三角形的内角和定理,并能运用三角形内角和定理解题.2.初步学会利用辅助线证题.【学习重点】三角形内角和定理的证明和应用.【学习难点】用不同方法证明三角形内角和定理.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题我们知道,任意一个三角形的内角和等于180°,怎样证明这个结论的正确性呢?小学中我们通过测量的方法进行过验证,但我们不可能对所有的三角形进行验证,有没有一种能证明任意三角形的内角和等于180°的方法呢?【说明】通过问题引入,激发学生的学习兴趣,同时使学生认识到,测量的方法只能进行有限次的验证,并不能对所有三角形进行验证,所以必须寻找一种能说明所有三角形的内角和是180°的方法,为后面的证明做准备.自学互研生成能力知识模块一三角形内角和定理的证明先阅读教材第178页的内容,再完成下面的思考.思考:(1)如图,如果我们只把∠A移到∠1的位置,你能证明这个结论吗?如果不移动∠A,那么你还有什么方法可以达到同样的效果?(2)根据前面给出的基本事实和定理,你能用自己的语言说说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同学们交流.【说明】使学生从对三角形内角和的感性认识上升到理性认识,由于学生刚刚接触证明,并且还需添加辅助线,所以教师必须要有规范的示范,通过讲练结合,使学生逐步掌握推理的方法步骤.【归纳结论】三角形的内角和等于180°.思考:(1)你还能用其他方法证明三角形内角和定理吗?(2)如果把三角形三个角“凑”到A处,过点A作直线PQ∥BC(如图),这样的想法可行吗?如果可行,你能写出证明过程吗?与同学们交流.【说明】让学生尝试模仿用另外的方法证明三角形内角和是180°,从而培养学生多角度分析问题和解决问题的能力,学生的推理和证明方法再次得到深化.知识模块二三角形内角和定理的应用先独立完成下面问题的解答,然后再对照教材第179页例1的规范格式自评自纠.例:如图,在△ABC中,∠B=38°,∠C=62°,AD是△ABC的角平分线,求∠ADB的度数.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.【说明】通过例题,要让学生体会三角形内角和定理在角的求值问题中的应用.注意向学生分析解决问题的思路和方法.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一三角形内角和定理的证明知识模块二三角形内角和定理的应用检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________第2课时三角形外角的定理【学习目标】1.了解三角形的外角定义,掌握三角形外角的两个定理.2.能综合运用三角形内角和定理及外角的两个定理进行几何证明与计算.【学习重点】三角形外角的性质定理.【学习难点】运用三角形外角性质定理进行有关计算时能准确地推理.学习行为提示:每组抽一位学生上黑板做,其余学生在座位上完成,组长检查每组完成情况,最后老师给每组评分.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题旧知回顾:1在△ABC中,若∠A+∠B=∠C,则△ABC的形状是直角三角形.2.一个三角形的三个内角中,至少有( B)A.一个锐角B.两个锐角C.一个钝角D.一个直角3.如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为( C)A.50°B.55°C.60°D.65°自学互研生成能力知识模块一三角形外角的定理先阅读教材第181页例2上面的内容,然后完成下面的问题:△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.如图,∠1是△ABC的外角.学习行为提示:教师结合各组反馈的疑难问题分配展示任务,各组展示过程中,教师引导其他组进行补充、纠错,最后进行总结评分.展示目标:通过知识模块一的展示掌握证明三角形外角定理的方法;通过对知识模块二的展示,总结运用三角形外角的定理进行几何证明和计算的一般方法和步骤.问题1你能在图中画出△ABC的其他外角吗?∠1与其他角有什么关系?能证明你的结论吗?【说明】结合图形,学生通过观察、思考、讨论等一系列活动,既巩固了对概念的理解,又让学生进行证明,培养了学生的推理论证能力.【归纳结论】三角形内角和定理的推论:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角.知识模块二运用三角形外角的定理进行证明你能运用所学的知识解决下面的问题吗?问题2(1)已知:在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.第(1)题图第(2)题图(2)已知如图,P是△ABC内一点,连接PB、PC.求证:∠BPC>∠A.你们的证明方法一样吗?与大家共同交流.【说明】学生的讨论、交流、解决问题的过程,也是一个培养学生发散思维与创新能力的过程,它不受教师点拨的思维定式的影响,可以提高学生的思维灵活性.仿例:如图D是△ABC中∠ACB的外角的平分线与BA的延长线的交点.求证:∠BAC>∠B+∠D.证明:∵CD平分∠ACE,∴∠ACD=∠ECD,∵∠ECD=∠B+∠D,∴∠ACD=∠B+∠D,∵∠BAC>∠ACD,∴∠BAC>∠B+∠D.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一三角形外角的定理知识模块二运用三角形外角的定理进行证明检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。
第七章平行线的证明
§7.4平行线的性质
一、学生知识状况分析
学生技能基础:在学习本课之前,学生对平行线的性质已经比较熟悉,也有了初步的逻辑推理能力,特别是上一节课的学习,使学生对简单的证明步骤有了更为清楚的认识,这为今天的学习奠定了一个良好的基础.
活动经验基础:在以往的几何学习中,学生对动手操作、猜想、说理、讨论等活动形式比较熟悉,本节课主要采取学生分组交流、讨论等学习方式,学生已经具备必要的基础.
二、教学任务分析
在以前的几何学习中,主要是针对几何概念、运算以及几何的初步证明(说理),在学生的头脑中还没有形成一个比较系统的几何证明体系,上一节课安排的《为什么它们平行》和本节课安排的《如果两条直线平行》旨在让学生从简单的几何证明(平行线的判定与性质)入手,逐步形成一个更为清晰的证明思路,为此,本课时的教学目标是:
1.认识平行线的三条性质。
2.能熟练运用这三条性质证明几何题。
3.进一步理解和总结证明的步骤、格式、方法.
4.了解两定理在条件和结构上的区别,体会正逆的思维过程.
5. 进一步发展学生的合情推理能力,培养学生的逻辑思维能力。
三、教学过程分析
本节课的设计分为四个环节:情境引入——探索与应用——反馈练习——反思与小结
第一环节:情境引入
活动内容:
一条公路两次拐弯后,和原来的方向相同,第一次拐的角
∠B是130°,第二次拐的角∠C是多少度?
说明:这是一个实际问题,要求出∠C的度数,需要我们研究与判定相反的问题,即已知两
条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.
第二环节:探索与应用
活动内容:
①画出直线AB的平行线CD,结合画图过程思考画出的平行线,被第三条直线所截的同位角的关系是怎样的?
②平行公理:两直线平行同位角相等.
③两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?
∵a∥b(已知),
∴∠1=∠2(两条直线平行,同位角相等)
∵∠1=∠3(对顶角相等),
∴∠2=∠3(等量代换).
师:由此我们又得到了平行线有怎样的性质呢?
学生活动:同学们积极举手回答问题.
教师根据学生叙述,给出板书:两条平行线被第三条直线所截,内错角相等.
师:下面请同学们自己推导同旁内角是互补的.并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程并写出第三条性质,形成正确板书.
∵a∥b(已知)
∴∠1=∠2(两直线平行,同位角相等)
∵∠1+∠4=180°(邻补角定义)
∴∠2+∠4=180°(等量代换)
即:两条平行线被第三条直线所截,同旁内角互补,简单说成,两直线平行,同旁内角互补师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:
∵a∥b,
∴∠1=∠2(两直线平行,同位角相等).
∵a∥b(已知),
∴∠2=∠3(两直线平行,内错角相等).
∵a∥b(已知),
∴∠2+∠4=180°.(两直线平行,同旁内角互补)
(板书在三条性质对应位置上)
第三环节:课堂练习
活动内容:
①已知平行线AB、CD被直线AE所截
(1)若∠1=110°,可以知道∠2是多少度吗?为什么?
(2)若∠1=110°,可以知道∠3是多少度吗?为什么?
(3)若∠1=110°,可以知道∠4是多少度吗,为什么?
②变式训练:如图是梯形有上底的一部分,已知量得∠
A=115°,∠D=100°,梯形另外两个角各是多少度?
解:∵AD∥BC(梯形定义),
∴∠A+∠B=180°.∠C+∠D=180°(两直线平行,同旁内角互补),∴∠B=180°-∠A=180°-115°=65°.
∴∠C=180°-∠D=180°-100°=80°.
③变式练习:如图,已知直线DE经过点A,DE∥BC,∠B=44°,∠C=57°
(1)∠DAB等于多少度?为什么?
(2)∠EAC等于多少度?为什么?
(3)∠BAC、∠BAC+∠B+∠C各等于多
少度?
④如图,A、B、C、D在同一直线上,AD∥EF.
(1)∠E=78°时,∠1、∠2各等于多少度?为什么?
(2)∠F=58°时,∠3、∠4各等于多少度?为什么?
第四环节:课堂反思与小结
活动内容:
①归纳两直线平行的判定与性质
②总结证明的一般思路及步骤。