第七章平行线的证明
- 格式:ppt
- 大小:3.73 MB
- 文档页数:23
第七章平行线的证明1.为什么要证明一、学生知识状况分析学生的技能基础:在七年级和八年级上学生学习了很多与几何相关的知识,为今天的进一步的学习作好了知识储备,同时,学生也经历了很多验证结论合理性的过程,有了初步的逻辑推理思维,合情推理能力得到了很大的提高,为今天系统的培养学生严谨的逻辑推理能力打下了良好的基础.学生活动经验基础:在以往的几何学习中,学生已经参与了对几何图形的观察、比较、动手操作、猜测、归纳等活动,对今天本节课的分组讨论、自主探究等活动有很大的帮助.二、教学任务分析学生的直观能力是数学教学中要培养的一个方面,但如果学生仅有对图形的直观感受而不能进行推理、论证,有时是会产生错误的结论,本课时安排《你能肯定吗》的教学是让学生的直观感受与实际结果之间产生思维上的碰撞,从而使学生对原有的直观感觉产生怀疑,从而确立对某一事物进行合理论证的必要性。
因此,本课时的教学目标是:1.运用实验验证、举反例验证、推理论证等方法来验证某些问题的结论正确与否.2.经历观察、验证、归纳等过程,使学生对由这些方法所得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识.3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.三、教学过程分析本节课的教学思路为:验证活动(1)——猜想并验证活动(2)——猜想并验证活动(3)——经验总结——学生练习——课堂小结——巩固练习第一环节:验证活动(1) 活动内容:某学习小组发现,当n=0,1,2,3时,代数式n 2-n+11的值都是质数,于是得到结论:对于所有自然数n , n 2-n+11的值都是质数.你认为呢?与同伴交流.参考答案:列表归纳为活动目的:对现在结论进行验证,让学生感受到知识有时具有一定的迷惑性(欺骗性),从而对不完全归纳的合理性产生怀疑,为下一步的学习提供必要的精神准备. 注意事项:学生通过列表归纳,根据自己以往的经验判断,在n=10以前都一直认为n 2-n+11是一个质数,但当n=10时,找到了一个反例,进而发现不能根据少数几个现象轻易肯定某个数学结论的正确性.第二环节:猜想并验证活动(2) 活动内容:如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗?参考答案:设赤道周长为c ,铁丝与地球赤道之间的间隙为 :)(16.021221m c c ≈=-+πππ 它们的间隙不仅能放进一个红枣,而且也能放进一个拳头. 活动目的:通过理性的计算,验证了很难想像到的结论,让学生产生思维上的碰撞,进而对自己的直观感觉产生怀疑,再次为论证的合理性提供素材.注意事项:要充分让学生发表自己的见解,首先让学生对自己的结论确信无疑,再进一步计算,结果与学生的感觉产生矛盾,切忌直接进行计算,把结论告诉学生,这样就达不到预想的要求,不能让学生留下深刻的印象.第三环节:猜想并验证活动(3) 活动内容:如图,四边形ABCD 四边的中点E 、F 、G 、H ,度量四边形EFGH 的边和角,你能发现什么结论?改变四边形ABCD 的形状,还能得到类似的结论吗? 参考答案:连接AC .∵E 、F 、G 、H 分别是四边形ABCD 四边中点, ∴EF ∥AC ,EF=AC ;GH ∥AC ,GH=AC ; ∴EF 平行且等于GH ,∴四边形EFHG 为平行四边形. 活动目的:通过对图形的直观感受得出结论,但要使学生清楚地知道对几何结论的验证,通常是用严谨的逻辑推理来论述. 注意事项:让学生大胆地进行预测,但要让学生说清理由,让学生了解几何证明的必要性.第四环节:归纳与总结 活动内容:① 通过以上三个数学活动,使学生对每一个问题的结论的正确性有了怀疑,从而知道了由观察、猜想等渠道得到的结论还必须经过有效的证明才能对其进行肯定.也即:要判断一个数学结论是正确,仅观察、猜想、实验还不够,必须经过一步一步, 有根有据的推理. ②举例说明“推理意识”与推理方法. 活动目的:ABECDFGH使学生理解仅有对图形的直观感受是不够的,从而帮助学生建立推理意识.注意事项:让学生用自己的语言进行叙述,培养学生的表达能力.第五环节:反馈练习活动内容:1.如图中两条线段a与b的长度相等吗?请你先观察,再度量一下.答案:a与b的长度相等.第1小题图第2小题图2.如图中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再用三角尺验证一下.答案:线段b与线段d在同一直线上.3.当n为正整数时,n2+3n+1的值一定是质数吗?答案:经验证:当n为正整数时,n2+3n+1的值一定是质数.第六环节:课堂小结活动内容:今天这节课你学到了什么知识?参考答案:①要说明一个数学结论是否正确,无论验证多少个特殊的例子,也无法保证其正确性.②要确定一个数学结论的正确性,必须进行一步一步、有根有据的推理.活动目的:通过学生的总结,使学生对证明的必要性有一个清楚的认识,数学杜绝随意性,数学是严密的科学.注意事项:通过前三个例题的感受以及反馈练习,学生都清楚地知道推理、论证的必要性,了解了数学不是一种直观感受,而是一种严密的科学.第七环节巩固练习课本第217页习题6.1第2,3题.四、教学反思本节课的教学设计是建立在“以学生的发展为本,为学生的终身学习奠定基础”的教育理念上,融入了新课标的思想内涵,尊重学生的直观感觉,并从学生的直观感觉出发逐步将学生的思维引向严密性、逻辑证明等方面,不是一味地强调证明的必要性,而是通过几个事实的说明来让学生意识到证明的必要性,设计中突出体现了学生的主体地位.在教学设计中,力求让学生学会将生活问题数学化,用一个有趣的生活问题:“用一根铁丝将地球赤道围起来”引起学生的兴趣并进行猜测,然后通过计算得出一个令人很意外的结果,同时也培养了学生“用数学”的意识,并且使得学生有一种感受:数学来源于生活,服务于生活,同时也要用数学的眼光看世界,切勿盲信于自己的直观感觉.本节课通过事例让学生体会检验数学结论的常用方法:实验验证、举出反例、推理等.符合学生的认识特点和知识水平。
第七章平行线的证明1.理解证明的必要性和设置基本事实的必要性,体会演绎推理的严谨性和结论的确定性,初步树立步步有据的推理意识,发展推理能力.2.通过具体实例了解定义、命题、定理、推论的含义,会区分命题的条件和结论.3.了解反例的作用,知道利用反例可以判断一个命题是错误的.经历对顶角定理、两直线平行的有关判定定理、两直线平行的有关性质定理、三角形内角和定理及其推论的证明过程,初步掌握综合法证明的格式;能利用这些定理解决简单的问题.初步感受公理化思想,以及公理化方法对数学发展和促进人类文明进步的价值.《标准》在“图形的性质”的有关要求中,比较多地使用了“探索并证明……”的表述,也就是要在一定的情境中,引导学生借助已有的知识和经验,借助图形的直观,通过操作、实验,运用合情推理或图形运动等方法,探索发现图形可能具有的性质,这与用单纯地给出“已知、求证、证明”的方式来研究图形的性质是有区别的,两者相比,前者更有利于学生在获取有关知识的过程中,不断提高研究几何图形性质的能力,发展创新意识和创新能力,为了实现《标准》的这一意图,本套教科书选择了先分“两阶段”(探索阶段和证明阶段)后合二为一(边探索边证明)的处理方式:对与平行线、三角形有关的内容采取了分两个阶段的学习方式;对有关四边形、相似、圆等内容,采取了探索加证明的方式,也就是引导学生通过观察、测量、操作、实验等活动探究结论,同时对这些探究的结论进行严格的论证.这样处理,使得学生在探索阶段通过亲身探究活动,展开合情推理,合情推理能力和探究发现能力得到了很好的发展,主体性也得到了充分的发挥;同时由于把探索阶段的重心放在结论的探究上,几何学习的语言表述等难点得以分解,有利于降低几何入门教学的难度,激发学生的学习兴趣.本章是证明的起始阶段,淡化了先前已经通过观察、测量、实验、操作等活动探究得到了一些几何结论,学生也尝试进行了一些验证和说理,基本认可这些结论,但毕竟不是证明.本章首先要让学生明确认识到:这些探究的结论需要加以证明;同时证明需要一个话语体系,为此就有了所谓的定义、命题等.其次,证明需要确定一些出发点,为此需要梳理有关结论,选择某些结论作为证明的出发点(实际上这就是构建局部的公理体系);有了这些证明的出发点,接着就依次证明一些先前探究得到的定理,在证明过程中,初步掌握证明的要求和格式,认识到证明的严谨性,做到步步有据,发展学生的推理能力.【重点】1.明确证明的必要性和相关的概念.2.平行线的判定和性质.3.三角形内角和定理.【难点】1.准确证明命题或定理.2.平行线的判定定理和性质定理的灵活运用.1.关注对证明必要性的理解和证明意识的建立.要让学生知道数学需要证明,数学之外的其他事物,也应该追究其缘由、问个为什么;初步感受公理化方法在数学和人类文明中的作用,证明的必要性,不仅要从几何的角度加以认识,还要从代数甚至其他学科、实际生活等角度加以认识,让学生认识到说话办事要有根有据,对于猜测、实验、归纳得到的结论一定要给予证明.2.兼顾探索与证明,发展学生的推理能力.推理能力的发展应贯穿于整个数学学习过程中,本章侧重于发展学生的演绎推理能力,但并不意味着不要关注合情推理,在解决问题的过程中,两种推理的功能不同,相辅相成.合情推理用于探索思路、发现结论;演绎推理用于证明结论.数学中关注这两种能力的发展,在关注证明的同时,也应尽可能创设探究活动、实践活动,在活动中发展学生的合情推理能力.3.关注证明的依据和规范性.由于本章的多数结论之前已经探究过,因此在证明过程中难免会出现一些循环论证的现象.教学中,在证明一个命题时,要注意引导学生区分哪些结论可以作为证明的依据,哪些结论不可以作为证明的依据;提醒学生,只有作为证明的出发点的基本事实和前面已经证明过的定理才能作为证明的依据.在今后学习完“三角形的证明”之后,所有前面已经得到的结论都可以作为证明的依据.因此,学生出现了循环论证的情况,加以引导即可,不必过于担心,更不要给学生过大的压力,避免因压力过大造成学生兴趣的流失.1为什么要证明1课时2定义与命题2课时3平行线的判定1课时4平行线的性质1课时5三角形内角和定理2课时回顾与思考1课时1为什么要证明体会检验数学结论的常用方法:实验验证、举出反例、推理等,发展学生的推理能力.经历观察、验证、归纳等过程,使学生对由这些方法所得的结论产生怀疑,以此激发学生的好奇心理,从而认识证明的必要性,培养学生的推理意识.通过积极参与,获取正确的数学推理方法,理解数学的严密性,并培养与他人合作的意识.【重点】要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须一步一步、有理有据地进行推理.【难点】通过对一些规律的探讨和分析,养成动脑思考问题的习惯.【教师准备】教材图7 - 1、图7 - 2、图7 - 3的投影图片.【学生准备】有刻度的直尺.导入一:师:同学们,请你们用学过的数学知识解决下面的问题。
第七章平行线的证明回顾与思考教学目标1.复习本章的知识点,了解各知识点之间的关系,巩固所学的知识,并能用这些知识解决一些问题。
2.经历知识的总结过程,回顾知识点,发展形成知识结构的能力。
教学重点进一步理解和掌握本章的公理及定理,掌握证明的步骤与格式,在证明过程中发展初步的演绎推理能力。
教学难点掌握证明的方法及应用定理解决问题。
教学方法自主反思,归纳总结.教学教具直尺,三角板,量角器教学过程本节课设计了五个教学环节:知识回顾——做一做——想一想——试一试——反馈练习.第一环节知识回顾活动内容:1.什么是定义?什么是命题?命题由哪两部分组成?举例说明!2.平行线的性质定理与判定定理分别是什么?3.三角形内角和定理是什么?4.与三角形的外角相关有哪些性质?5.证明题的基本步骤是什么?活动目的:通过学生的回顾与思考,使学生对平行线的性质定理与判定定理,三角形内角和定理及三角形的外角的性质有一个更深层次的认识,为下一步的简易的逻辑推理作好知识准备. 注意事项:由于学生对于上述概念都有较长时间的学习,但知识点是零散的,因此有必要在学生头脑中形成一个清晰的知识网络,如:}⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⇒⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⇒⎩⎨⎧⇒⇒⇒⇒⇒⇒结论题设部分条件结构反例假命题公理外角推论内角和定理三角形性质判定平行线应用证明推论定理真命题分类命题证明)()(第二环节 做一做 活动内容:1.下列语句是命题的有( )(1)两点之间线段最短;(2)向雷锋同志学习;(3)对顶角相等;(4)花儿在春天开放;(4)对应角相等的两个三角形是全等三角形;2.下列命题,哪些是真命题?哪些是假命题?如果是真命题,请写出条件与结论,如果是假命题,请举出反例.(1)同角的补角相等;(2)同位角相等,两直线平行;(3)若|a |=|b |,则a =b .3. 如图,AD 、BE 、CF 为△ABC 的三条角平分线,则:∠1+∠2+∠3=________.4. 用两个全等的等腰直角三角尺拼成四边形,则此四边形一定是_____。
达州耀华育才学校八年级上册数学 第七章平行线的证明备课组集体备课教案1. 经历观察、归纳、验证等活动过程,在活动中体会到观察、实验、归纳所得到的结论未必可靠,初步感受证明的必要性。
2. 发展学生的推理意识。
二、学习重点:体会观察、实验、归纳所得到的结论未必可靠,初步感受证明的必要性。
三、学习难点:初步感受证明的必要性。
四、学习过程:(一)自主预习: 预习课本162—163页内容 (二)预习检测:1AB 与线段 2、图中AB 是直线还是折线?3、线段d 与 在一条直线上,先猜测,再用直尺验证。
4、小明在学习根式时,从乘法满足分配律ac ab c b a +=+)(,类比得到)(c b a +=ac ab +,试举例说明这个结论是否正确?5.思考 :观察,实验,归纳和类比是我们发现规律,获取结论的重要方法,用这些方法得到的结论一定正确吗? 答:( )(二)合作交流:A合作探究一: 代数式112+-n n 的值是质数吗?取n=0,1,2,3,4,5试一试,你能否由此得到结论:对于所有自然数n ,112+-n n 得知都是质数吗?与同伴进行交流。
合作探究二:如课本162页图7-4,做一做(2)。
(三)点拨提高:如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球 赤道之间的间隙能有多大?(地球看成球形) 能放进一个红枣吗?能放进一个拳(四)反馈练习:1、 如图,甲沿着ACB 由A 到B ,乙沿着ADEFB 由A 到B , 同时出发,速度相等则( ) A 甲先到B 、乙先到,C 、甲乙同时到, D 、不确定、2、某公园计划砌一个如图(2)的喷水池,有人改为图乙的形状,若外圆的直径不变,水池边沿的宽度和高度不变,你认为砌水池边沿( ) A 、甲需要的材料多 B 、乙需要的材料多 C 、一样多 D 、不确定3、习题7.1中1、2、3题。
达州耀华育才学校八年级上册数学第八章平行线的证明备课组集体备课教案主备人:李继平备课教师:喻茂伦胡金全一、学习目标:1、了解定义、命题、真命题、假命题的含义。
AB E P DC F平行线的证明知识点复习知识点1:命题(1)判断一件事情的句子,叫_____________. _______的命题是真命题,不正确的命题是___________.(2)公认的真命题称为____________,经过证明的真命题称为_____________.典型练习:1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:①.若a>b ,则ba 11 . ②.两个锐角的和是锐角.③.同位角相等,两直线平行. ④.一个角的邻补角大于这个角. ⑤.两个负数的差一定是负数.2.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.” 乙说:“是丙闯的祸.”丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )A.甲B. 乙C.丙D.丁知识点2:平行线(1).平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行.判定定理2:_______________,两直线平行. 定理:平行于同一直线的两直线___________.(2).平行线的性质公理:两直线平行,同位角___________. 性质定理1:两直线平行,内错角_________.性质定理2:两直线平行,同旁内角__________.典型练习:1、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD2.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。
3、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零 件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗?4.如图,某湖上风景区有两个观望点A,C和两个度假村B,D.度假村D在C的正西方向,度假村B在C的南偏东30°方向,度假村B到两个观望点的距离都等于2km.(1)求道路CD与CB的夹角;(2)如果度假村D到C是直公路,长为1km,D到A是环湖路,度假村B到两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的长;(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC∥AB.5.与平行线有关的探究题(1)、利用平行线的性质探究:如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.当动点P落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD三个角的数量关系时,利用图1,过点P 作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题:(1)当动点P落在第②部分时,在图2中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系;(2)当动点P落在第③、第○4部分时,在图3、图4中画出图形,探究∠PAC、∠APB、∠PBD之间的数量关系,写出结论并选择其中一种情形加以证明.知识点三:三角形的内角和外角(1)三角形内角和定理:三角形的内角和等于__________.(2) 定理:三角形的一个外角等于和它不相邻的____________________.(3) 定理:三角形的一个外角大于任何一个和它____________________.典型练习:1.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E;(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?说明你的结论的正确性;(3)把图(2)中的点C向上移到BD上时,如图(3)所示,五个角的和(即∠CAD+∠B+ ∠ACE+∠D+∠E)有无变化?说明你的结论的正确性.2..认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠AB C 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC =90°+21∠A,理由如下: ∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=21∠ABC ,∠2=21∠ACB ∴∠1+∠2=21(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°—∠A∴∠1+∠2=21(180°—∠A )=90°—21∠A ∴∠BOC=180°—(∠1+∠2)=180°—(90°—21∠A ) ∴∠BOC=90°+21∠A 探究2:如图2,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 请说明理由.探究3:如图3,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(只写结论,不需证明)综合测试题:一、填空题1.如上图,AD ∥BC ,AC 与BD 相交于O ,则图中相等的角有_____对.2.如上右图,已知AB ∥CD ,∠1=100°,∠2=120°,则∠α=_____.3.如右图,DAE 是一条直线,DE ∥BC ,则∠BAC =_____.4.“一次函数y=kx-2,当k>0时,y 随x 的增大而增大”是一个_______命题(填“真”或“假”)二、选择题1.下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交 ,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行2.两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交3. 下列句子中,不是命题的是( )A.三角形的内角和等于180度;B.对顶角相等;C.过一点作已知直线的平行线;D.两点确定一条直线.4.如右图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A.AD ∥BCB.∠B =∠CC.∠2+∠B =180°D.AB ∥CD5.如右图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°三、解答题1.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.2.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?3.如图,如图,在三角形ABC中,∠C=70°,∠B=38°,AE是∠BAC的平分线,AD⊥BC于D.(1)求∠DAE的度数;(2)判定AD是∠EAC的平分线吗?说明理由.(3)若∠C=α°,∠B=β°,试猜想∠DAE与∠C—∠B有何关系,并证明你的猜想.∠DAE的度数.(∠C>∠B)4.如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB 于点M、N.(1)如图1,MN⊥y轴吗?为什么?(2)如图2,当点P在y轴的负半轴上运动到AB与y轴的交点处,其他条件都不变时,等式∠APM=(∠OBA﹣∠A)是否成立?为什么?(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.。