高三单元试题十:空间向量(1)
- 格式:doc
- 大小:171.00 KB
- 文档页数:4
高中空间向量练习题及讲解讲解### 高中空间向量练习题及讲解#### 练习题一:空间向量的坐标运算题目:设空间向量\( \vec{a} \)和\( \vec{b} \)的坐标分别为\( (1, 2, 3) \)和\( (4, -1, 2) \),求向量\( \vec{a} + \vec{b} \)的坐标。
解答:向量加法遵循坐标的分量相加原则。
对于向量\( \vec{a} \)和\( \vec{b} \),其坐标分别为\( (a_1, a_2, a_3) \)和\( (b_1,b_2, b_3) \),向量和的坐标为\( (a_1 + b_1, a_2 + b_2, a_3 +b_3) \)。
将给定的向量坐标代入公式,得到:\[ \vec{a} + \vec{b} = (1 + 4, 2 - 1, 3 + 2) = (5, 1, 5) \]#### 练习题二:空间向量的模长题目:已知空间向量\( \vec{c} \)的坐标为\( (2, 3, -1) \),求向量\( \vec{c} \)的模长。
解答:空间向量的模长可以通过以下公式计算:\[ |\vec{c}| = \sqrt{c_1^2 + c_2^2 + c_3^2} \]将向量\( \vec{c} \)的坐标代入公式,得到:\[ |\vec{c}| = \sqrt{2^2 + 3^2 + (-1)^2} = \sqrt{4 + 9 + 1} = \sqrt{14} \]#### 练习题三:空间向量的夹角题目:设空间向量\( \vec{d} \)和\( \vec{e} \)的坐标分别为\( (1, 2, 1) \)和\( (2, 1, 3) \),求向量\( \vec{d} \)和\( \vec{e} \)的夹角。
解答:空间向量\( \vec{d} \)和\( \vec{e} \)的夹角可以通过向量的点积来求得,公式为:\[ \cos \theta = \frac{\vec{d} \cdot \vec{e}}{|\vec{d}||\vec{e}|} \]首先计算点积:\[ \vec{d} \cdot \vec{e} = 1 \times 2 + 2 \times 1 + 1 \times 3 = 2 + 2 + 3 = 7 \]然后计算模长:\[ |\vec{d}| = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6} \]\[ |\vec{e}| = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{14} \]代入公式计算夹角的余弦值:\[ \cos \theta = \frac{7}{\sqrt{6} \times \sqrt{14}} \]最后,通过反余弦函数求得夹角\( \theta \)。
空间向量单元测试题及答案# 空间向量单元测试题及答案一、选择题1. 空间向量\( \overrightarrow{AB} \)与\( \overrightarrow{CD} \)平行,那么\( \overrightarrow{AB} + \overrightarrow{CD} \)与\( \overrightarrow{AB} \)的关系是什么?A. 垂直B. 平行C. 共线D. 无法确定答案:B. 平行2. 已知空间向量\( \overrightarrow{a} = (2, 3, 1) \),\( \overrightarrow{b} = (1, -1, 2) \),求\( \overrightarrow{a} \times \overrightarrow{b} \)的模。
A. 0B. 3C. 5D. 6答案:C. 53. 空间中任意两点A和B,它们之间的向量\( \overrightarrow{AB} \)的模长是两点间的距离,这个说法:A. 正确B. 错误答案:A. 正确二、填空题4. 若空间向量\( \overrightarrow{a} \)与\( \overrightarrow{b} \)的夹角为90°,则\( \overrightarrow{a} \)与\( \overrightarrow{b} \)的点积\( \overrightarrow{a} \cdot\overrightarrow{b} \)等于______。
答案:05. 空间向量\( \overrightarrow{a} = (x, y, z) \),若\( \overrightarrow{a} \)的模长为1,则\( x^2 + y^2 + z^2 =______。
答案:1三、简答题6. 解释空间向量的基本性质,并给出两个例子。
答案:空间向量的基本性质包括:- 向量加法满足交换律和结合律。
- 向量的数乘满足分配律。
高三数学·单元测试卷(十)第十单元 空间向量及运算(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平行六面体ABCD —A 1B 1C 1D 1中,设1123AC xAB yBC zCC =++,则x +y +z 等于A .1B .23C .56D .1162.设a =(x ,4,3),b =(3,2,z ),且a ∥b ,则xz 的值为 A .9B .-9C .4D .6493.已知A (1,2,-1)关于面xoy 的对称点为B ,而B 关于x 轴对称的点为C ,则BC =A .(0,4,2)B .(0,-4,-2)C .(0,4,0)D .(2,0,-2)4.如图,在四面体O —ABC 中,是M 在OA 上,且OM =2MA ,N 为BC 中点,则MN =A .121232OA OB OC -+B .112223OA OB OC +-C .211322OA OB OC -++D .221332OA OB OC +-5.已知a =3i +2j -k ,b =i -j +2k ,则5a 与3b 的数量积等于A .-1B .-3C .-5D .-156.设空间四点O ,A ,B ,P ,满足,OP OA t AB =+其中0<t <1,则有A .点P 在线段AB 上 B .点P 在线段AB 的延长线上C .点P 在线段BA 的延长线上D .点P 不一定在直线AB 上 7.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 等于 A .1B .15C .35D .758.设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0,AB AC AC AD AB AD ⋅=⋅=⋅=则B 、C 、D 三点构成 A .直角三角形B .锐角三角形C .钝角三角形D .形状不能确定9.若向量,,MA MB MC的起点与终点M 、A 、B 、C 互不重合且无三点共线,且满足下列关系(O 为空间任一点),则能使向量,,MA MB MC 成为空间一组基底的关系是 A .111333OM OA OB OC =++B .MA MB MC ≠+C .1233OM OA OB OC =++D .2MA MB MC =-10.已知a =(cos α,1,sin α),b =(sin α,1,cos α),且sin α≠cos α,则向量a +b 与a -b 的夹角是A .0°B .30°C .60°D .90°答题卡题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上. 11.已知a =(2,-1,2),b =(2,2,1),则以a ,b 为邻边的平行四边形的面积为 . 12.与向量a =(2,-1,2)共线,且满足方程a ·x = -18的向量x = .13.若点A 、B 的坐标为A (3cos α,3sin α,1)、B (2cos θ,2sin θ,1)则 ||AB取值范围 . 14.已知G 是△ABC 的重心,O 是空间与G 不重合的任一点,若OA OB OC OG λ++= ,则λ= .15.已知a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),且|a |=5,|b |=6,a ·b =30,则123123a a ab b b ++=++ .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分l2分)已知a =(1,1,0),b =(1,1,1),若b =b 1+b 2,且b 1∥a ,b 2⊥a ,试求b 1,b 2. 17.(本题满分12分)如图,BC =2,原点O 是BC 的中点,点A 的坐标为31(,,0)22,点D 在平面yoz 上,且∠BDC =90°,∠DCB =30°.⑴求向量CD的坐标;⑵求异面直线AD 与BC 所成角的余弦值.18.(本题满分14分)已知a ,b 是非零的空间向量,t 是实数,设u =a +t b . ⑴当|u |取得最小值时,求实数t 的值;⑵当|u |取得最小值时,求证:b ⊥(a +t b ).19.(本题满分14分)如图,已知四面体O —ABC 中,E 、F 分别为AB ,OC 上的点,且AE =13AB ,F 为中点,若AB =3,BC =1,BO =2,且∠ABC =90°,∠OBA =∠OBC =60°,求异面直线OE 与BF 所成角的余弦值.20.(本题满分14分)已知正方体ABCD—A1B1C1D1的棱长为2,P,Q分别是BC,CD上的动点,且|PQ|=2,建立如图所示的直角坐标系.⑴确定P,Q的位置,使得B1Q⊥D1P;⑵当B1Q⊥D1P时,求二面角C1—PQ—C的正切值.21.(本题满分14分)如图,正三棱柱ABC—A1B1C1的各棱长都是2,M是BC的中点,P是侧棱BB1上一点,且A1P⊥B1M.⑴试求A1P与平面APC所成角的正弦;⑵求点A1到平面APC的距离.第十单元 空间向量及运算参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 D ABCDADBCD二、填空题11.65 12.(-4,2,-4) 13.[1,5] 14.3 15.56三、解答题16.解:∵b 1∥a ,∴令b 1=(λ,λ,0),b 2=b -b 1=(1-λ,1-λ,1),又∵b 2⊥a ,∴a ·b 2=(1,1,0)·(1-λ,1-λ,1)=1-λ+1-λ=2-2λ=0, ∴λ=1,即b 1=(1,1,0),b 2=(0,0,1). 17.解:⑴过D 作DE ⊥BC 于E ,则DE =CD ·sin30°=32,OE =OB -BD cos60°=1-12=12, ∴D 的坐标为(0,-12,32),又∵C (0,1,0),∴33(0,,)22CD =-⑵依题设有A 点坐标为A 31(,,0)22,∴33(,1,),(0,2,0)22AD BC =--=则10cos ,5||||AD BC AD BC AD BC ⋅<>==-⋅.故异面直线AD 与BC 所成角的余弦值为105. 18.解:⑴∵22222222222()||||||2()||||()||||||a b a b u a tb a a b t t b b t a b b ⋅⋅=+=+⋅+=++-, ∴当t =2||a bb ⋅-时,|u |=|a +t b |最小. ⑵∵222()||||()0()||a bb a tb a b t b a b b b a tb b ⋅⋅+=⋅+=⋅+-=∴⊥+. 19.解:∵12(),23BF BO BC OE BA BO =+=-,∴222117||(||||2)(412||||cos60),444BF BO BC BO BC BO BC =++⋅=++︒=222744||;||||||4444,|| 2.293BF OE BA BO BA BO OE ==+-⋅=+-==又212213(||)(241)23322BF OE BA BO BO BC BA BC BO ⋅=⋅-+⋅-⋅=--=- ,∴337cos ,14||||27BF OE BF OE BF OE ⋅-<>===-, 故异面直线OE 与BF 所成的角的余弦值为3714. 20.解:⑴设BP =t ,则222(2),22(2),CQ t DQ t =--=---∴B 1(2,0,2),D 1(0,2,2),P (2,t ,0),Q 2211(22(2),2,0).(2(2),2,2),(2,2,2)t QB t PD t ---=---=--又∵11110BQ D P QB PD ⊥⇔⋅=, ∴2222(2)2(2)220,2(2)t t t t -----+⨯=--=即解得t =1,即P 、Q 分别为中点时,B 1Q ⊥D 1P .⑵由⑴知PQ ∥BD ,且AC ⊥PQ ,设AC ∩PQ =E ,连C 1E ,∵CC 1⊥底面BD ,CE ⊥PQ , ∴C 1E ⊥PQ ,即∠CEC 1为所求二面角O —PQ —C 1的平面角,易得1tan 22CEC ∠=. 21.解:建立如图所示的空间直角坐标系,则相关各点的坐标为A 1(2,0,0),B 1(1,3,0),(1,3,)P z ,13(,,2),(0,0,2),(2,0,2)22M C A由A 1P ⊥B 1M 知110A PB M ⋅=∴13131(1,3,)(,,2)20,,22222z z z -⋅--=-+=∴= 即点P 的坐标为P 1(1,3,)2. ⑴设平面APC的法向量为n =(x ,y ,z ),由20,0,3(0,,).3230,0,2x n CA n z z x y z n CP =⎧⎧⋅=⎪⎪∴=⎨⎨+-=⋅=⎪⎪⎩⎩ 即 取z = -1,则有n =3(0,,1)2--,方向指向平面APC 的左下方,又11(1,3,)2PA =-- ,11188119cos ,119||177PA n PA n PA n ⋅<>===⋅⋅.设直线A 1P 与平面APC 所成角为α,则8119sin 119α=. ⑵1117||1342A P =++= ,设A 1到平面P AC 的距离为d ,则1178447||sin 271777d A P α==⋅==⨯ .。
第一章空间向量与立体几何单元过关基础A 版解析版学校:___________姓名:___________班级:___________考号:___________一、单选题1.空间直角坐标系中,点()2,3,5-关于y 轴对称的点的坐标是( ) A .()2,3,5--- B .()2,3,5 C .()2,3,5-- D .()2,3,5-【答案】A 【解析】 【分析】关于y 轴对称,纵坐标不变,横坐标、竖坐标变为相反数. 【详解】关于y 轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数. 所以点()2,3,5-关于y 轴对称的点的坐标是()2,3,5---. 故选:A . 【点睛】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.2.如图所示,在一个长、宽、高分别为2、3、4的密封的长方体装置2223333DA B C D A B C -中放一个单位正方体礼盒1111DABC D A B C -,现以点D 为坐标原点,2DA 、2DC 、3DD 分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则正确的是( )A .1D 的坐标为(1,0,0)B .1D 的坐标为(0,1,0)C .13B B 293D .13B B 14【答案】D【分析】根据坐标系写出各点的坐标分析即可. 【详解】由所建坐标系可得:1(0,0,1)D ,1(1,1,1)B ,3(2,3,4)B ,13B B ==.故选:D. 【点睛】本题考查空间直角坐标系的应用,考查空间中距离的求法,考查计算能力,属于基础题.3.空间直角坐标系中,已知点()()1,2,3345A B 、,,,则线段AB 的中点坐标为( ) A .()234,, B .()134,, C .()235,, D .()245,, 【答案】A 【解析】点()()1,2,3345A B 、,,, 由中点坐标公式得中得为:132435,,222+++⎛⎫⎪⎝⎭,即()234,,. 故选A.4.已知空间中三点(0,1,0)A ,(2,2,0)B ,(1,3,1)C -,则( ) A .AB 与AC 是共线向量B .AB 的单位向量是⎫⎪⎪⎝⎭C .AB 与BCD .平面ABC 的一个法向量是(1,2,5)- 【答案】D 【分析】根据向量的相关性质判断. 【详解】对于A 项,(2,1,0)AB =,(1,2,1)AC =-,所以AB AC λ≠,则AB 与AC 不是共线向量,所以A 项错误;对于B 项,因为(2,1,0)AB =,所以AB的单位向量为55⎛⎫⎪ ⎪⎝⎭,所以B 项错误; 对于C 项,向量(2,1,0)AB =,(3,1,1)BC =-,所以cos ,11AB BC AB BC AB BC⋅==-⋅,所以C 项错误;对于D 项,设平面ABC 的法向量是(,,)n x y z =,因为(2,1,0)AB =,(1,2,1)AC =-,所以00n AB n AC ⎧⋅=⎨⋅=⎩,则2020x y x y z +=⎧⎨-++=⎩,令1x =,则平面ABC 的一个法向量为(1,2,5)n =-,所以D 项正确. 故选:D. 【点睛】本题考查共线向量的判断,单位向量的求法,夹角的求法,平面法向量的求法,属于空间向量综合题.5.两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,且两平面的一个法向量()1,0,1n =-,则两平面间的距离是()A .32BC D .【答案】B 【解析】两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,()2,1,1OA =,且两平面的一个法向量()1,0,1,n =-∴两平面间的距离22n OA n⋅-+===,故选B. 6.下图是棱长为2的正方体1111ABCD A B C D -木块的直观图,其中,,P Q F 分别是11D C ,BC ,AB 的中点,平面α过点D 且平行于平面PQF ,则该木块在平面α内的正投影面积是( )A .43B .33C .23D 3【答案】A 【分析】先根据题意平面α可以平移至平面11A BC ,即木块在平面α内的正投影即可看成是在平面11A BC 的正投影,根据投影的性质可得投影为正六边形'''111A A BC C D ,最后根据正六边形面积公式可求出投影的面积. 【详解】解:根据题意可知平面α过点D 且平行于平面PQF , 则平面α可以平移至平面11A BC ,木块在平面α内的正投影即可看成是在平面11A BC 的正投影, 根据投影的性质可得投影为正六边形'''111A A BC C D 如图所示, 因为正方体1111ABCD A B C D -棱长为2, 所以221222A B =+=则投影面内正六边形的边长为:'1226cos303A A ==根据正六边形面积公式可得投影的面积为:'''111233264323A A BC C D S ⎛=⨯= ⎝⎭故投影面积为:43故选:A【点睛】本题主要考查空间几何体和正投影得概念,考查面积公式是计算,考查空间想象力和推导能力,属于难题.7.如图,已知正方体1111ABCD A B C D -棱长为3,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2||HP 的最小值是( )A .21B .22C .23D .13【答案】D 【分析】建立空间直角坐标系,根据P 在11BCC B 内可设出P 点坐标,作1HM BB ⊥,连接PM ,可得222HP HM MP =+,作1PN CC ⊥,根据空间中两点间距离公式,再根据二次函数的性质,即可求得2HP 的范围. 【详解】根据题意,以D 为原点建立空间直角坐标系如图所示:作1HM BB ⊥交1BB 于M,连接PM ,则HM PM ⊥作1PN CC ⊥交1CC 于N ,则PN 即为点P 到平面11CDD C 距离. 设(),3,P x z ,则()()()1,3,2,3,3,2,0,3,F M N z ()03,03x z ≤≤≤≤ ∵点P 到平面11CDD C 距离等于线段PF 的长 ∴PN PF =由两点间距离公式可得()()2212x x z =-+-化简得()2212x z -=-,则210x -≥解不等式可得12x ≥综上可得132x ≤≤ 则在Rt HMP ∆中222HP HM MP =+()()222332x z =+-+-()223321x x =+-+-()2213x =-+132x ⎛⎫≤≤ ⎪⎝⎭所以213HP ≥(当时2x = 取等) 故选:D 【点睛】本题考查了空间直角坐标系的综合应用,利用空间两点间距离公式及二次函数求最值,属于难题. 8.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =⋅⋅⋅是上底面上其余的八个点,则集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数( )A .1B .2C .4D .8【答案】A 【分析】本题首先可根据图像得出i i AP AB BP =+,然后将i AB AP ⋅转化为2iAB A P B B +⋅,最后根据棱长为1以及i ABBP 即可得出结果.【详解】由图像可知,i i AP AB BP =+,则()2i i i AB BP AB AP AB B AB A P B ⋅==+⋅+, 因为棱长为1,i ABBP ,所以0i AB BP ⋅=,2101i i AB AP AB AB BP ⋅=+=+=⋅, 故集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数为1, 故选:A . 【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想,考查集合中元素的性质,是中档题.二、多选题9.给出下列命题,其中正确的有( ) A .空间任意三个向量都可以作为一组基底B .已知向量//a b ,则a 、b 与任何向量都不能构成空间的一组基底C .A ,B ,M ,N 是空间四点,若BA ,BM ,BN 不能构成空间的一组基底,则A ,B ,M ,N 共面D .已知{,,}a b c 是空间向量的一组基底,若m a c =+,则{,,}a b m 也是空间一组基底 【答案】BCD 【分析】选项A 、B 中,根据空间基底的概念,可判断;选项C 中,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,由此可判断;选项D 中:基向量,a b 与向量m a c =+一定不共面,由此可判断. 【详解】选项A 中,根据空间基底的概念,可得任意三个不共面的向量都可以作为一个空间基底,所以A 不正确;选项B 中,根据空间基底的概念,可得B 正确;选项C 中,由,,BA BM BN 不能构成空间的一个基底,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,所以C 正确;选项D 中:由{},,a b c 是空间的一个基底,则基向量,a b 与向量m a c =+一定不共面,所以可以构成空间另一个基底,所以D 正确. 故选:BCD.10.已知v 为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合),那么下列选项中,正确的是( ) A .1n ∥2n ⇔α∥β B .1n ⊥2n ⇔α⊥β C .v ∥1n ⇔l ∥α D .v ⊥1n ⇔l ∥α【答案】AB 【分析】根据线面直线的位置关系逐一判断即可. 【详解】解:v 为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合), 则1n ∥2n ⇔α∥β,1n ⊥2n ⇔α⊥β,v ∥1n ⇔l ⊥α,v ⊥1n ⇔l ∥α或l ⊂α. 因此AB 正确.故选:AB.11.在长方体ABCD A B C D ''''-中,2AB =,3AD =,1AA '=,以D 为原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则下列说法正确的是( ) A .(3,2,1)BD '=--B .异面直线A D '与BD '所成角的余弦值为35C .平面A CD ''的一个法向量为(2,3,6)-- D .二面角C A D D '''--的余弦值为37【答案】ACD 【分析】由向量法对每一选项进行逐一计算验证,可得答案. 【详解】由题意可得()()()3,0,0,3,2,0,0,2,0A B C ,()()()()0,0,1,3,0,1,0,2,1,3,2,1D A C B '''' 选项A: 所以(3,2,1)BD '=--,则A 正确.选项B:()3,0,1DA '=,(3,2,1)BD '=--,所以,cos ,10DA BDDA BD DA BD ''''==''⋅=所以异面直线A D '与BD '所成角的余弦值为35,则B 不正确. 选项C :设平面A C D ''的一个法向量为(),,n x y z =由()3,0,1DA '=,()0,2,1DC '=,则00n DA n DC ⎧⋅=⎨⋅=⎩'' 所以3020x z y z +=⎧⎨+=⎩ ,取6z =,得()2,3,6n =--,则C 正确.选项D :由上可得平面A C D ''的一个法向量为(2,3,6)n =-- 又平面A DD ''的法向量为()0,1,0m = 则3cos ,17n m n m n m⋅-==⨯⋅ 所以二面角C A D D '''--的余弦值为37,则D 正确. 故选:ACD12.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD 【分析】以1{,,}AB AD AA 为正交基底建立空间直角坐标系,写出各点坐标,计算11B E A B ⋅值即可判断A ;分别求出平面1B CE ,平面1A BD 的法向量,判断它们的法向量是否共线,即可判断B ;利用等体积法,求出三棱锥11-B CC E 的体积即可判断C ;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故求出长方体1111ABCD A B C D -的外接球的表面积即可判断D.【详解】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-,因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径22222462R ++==,所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD. 【点睛】本题主要考查用向量法判断线线垂直、面面平行,等体积法的应用及几何体外接球的表面积.三、填空题13.若直线l 的方向向量为()4,2,m ,平面α的法向量为()2,1,1-,且l α⊥,则m =______. 【答案】2- 【分析】由已知可知,直线l 的方向向量与平面α的法向量平行,根据空间向量平行的充要条件可得到一个关于λ和m 的方程组,解方程组即可得到答案. 【详解】 解:l α⊥,直线l 的方向向量为()4,2,m ,平面α的法向量为()2,1,1-,∴直线l 的方向向量与平面α的法向量平行.则存在实数λ使()4,2,m λ=()2,1,1-,即422m λλλ=⎧⎪=⎨⎪=-⎩,∴2m =-. 故答案为:2-.【点睛】本题考查向量语言表述线面垂直,直线的方向向量与平面的法向量平行是解本题的关键,属于基础题.14.若(1,1,0),(1,0,2),a b a b ==-+则与同方向的单位向量是________________【答案】【解析】 试题分析:,与同方向的单位向量是考点:空间向量的坐标运算;15.如图,在正四面体P ABC -中,,M N 分别为,PA BC 的中点,D 是线段MN 上一点,且2ND DM =,若PD xPA yPB zPC =++,则x y z ++的值为_______.【答案】23【分析】利用基向量表示PD ,结合空间向量基本定理可得. 【详解】1111111()2323366PD PM MD PA MN PA PN PM PA PB PC =+=+=+-=++ 所以11,36x y z ===,所以23x y z ++=.【点睛】本题主要考查空间向量的基本定理,把目标向量向基底向量靠拢是求解的主要思路.16.如图所示的正方体是一个三阶魔方(由27个全等的棱长为1的小正方体构成),正方形ABCD 是上底面正中间一个正方形,正方形1111D C B A 是下底面最大的正方形,已知点P 是线段AC 上的动点,点Q 是线段1B D 上的动点,则线段PQ 长度的最小值为_______.334【分析】建立空间直角坐标系,写出点的坐标,求出目标PQ 的表达式,从而可得最小值. 【详解】以1B 为坐标原点,1111,B C B A 所在直线分别为x 轴,y 轴建立空间直角坐标系,则()()()()10,0,0,1,2,3,2,1,3,2,2,3B A C D , 设11B Q B D λ=,AP AC μ=,[],0,1λμ∈.()12,2,3B Q λλλ=,()1111,2,3B P B A AP B A AC μμμ=+=+=+-. ()1112,22,33QP B P B Q μλμλλ=-=+----, ()()()2222122233QP μλμλλ=+-+--+-222215191730221417217234λλμμλμ⎛⎫⎛⎫=-+-+=-+-+ ⎪ ⎪⎝⎭⎝⎭当1517λ=且12μ=时,2QP 取到最小值934,所以线段PQ 长度的最小值为33434. 【点睛】本题主要考查空间向量的应用,利用空间向量求解距离的最值问题时,一般是把目标式表示出来,结合目标式的特征,选择合适的方法求解最值.四、解答题17.如图,已知1111ABCD A B C D -是四棱柱,底面ABCD 是正方形,132AA AB ==,,且1160C CB C CD ︒∠=∠=,设1,,CD C a b B CC c ===.(1)试用,,a b c 表示1AC ; (2)已知O 为对角线1A C 的中点,求CO 的长.【答案】(1)1AC a b c =---;(2)292. 【分析】(1)由11AC A A AD DC =++可表示出来; (2)由21||()4CO a b c =++可计算出. 【详解】(1)11AC A A AD DC =++1AA BC CD =-+- 1CC CB CD c b a a b c =---=---=---;(2)由题意知||2,||2,||3a b c ===,110,233,23322a b a c a b ⋅=⋅=⨯⨯=⋅=⨯⨯=,111()22CO CA a b c ==++,∴21||()4CO a b c =++ ()22212224a b c a b a c b c =+++⋅+⋅+⋅, ()2221292922302323442=⨯++++⨯+⨯==. 【点睛】本题考查空间向量的线性运算,考查利用向量计算长度,属于基础题.18.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 中点,O 为AC 中点,222AD AB AP ===.(1)证明:OE //平面PAB ;(2)异面直线PC 与OE 所成角的余弦值.【答案】(1)见详解; (2)33【分析】(1)连接BD ,得到O 为BD 中点,然后利用中位线定理,可得//OE PB ,根据线面平行的判定定理,可得结果.(2)通过建系,可得,PC OE ,然后利用向量的夹角公式,可得结果. 【详解】(1)证明:连接BD ,则O 为BD 中点, 又E 为PD 中点,∴OE //PB .∵PB ⊂平面PAB ,OE ⊄平面PAB , ∴OE //平面PAB(2)以A 为原点建立空间直角坐标系, 如图,则(0,0,1),(1,2,0),(0,2,0)P C D ,110,1,,,1,022E O ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭∴11(1,2,1),,0,22PC OE ⎛⎫=-=-⎪⎝⎭, ∴3cos ,162PC OE ==⋅即异面直线PC 与OE 3【点睛】本题考查线面平行的判定定理以及建系通过利用向量的方法解决线线角,将几何问题用代数方法来解决,化繁为简,属基础题.19.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,60BAD ∠=,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,2DE =,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M CDE -的体积; (2)求证:DM ⊥平面ACE .【答案】(1)M 到平面DEC 的距离为3,233M CDE V -=;(2)证明见解析. 【分析】 (1)设ACBD O =,以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 且与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系,利用空间向量法可求得点M 到平面DEC 的距离,计算出CDE △的面积,利用锥体的体积公式可计算出三棱锥M CDE -的体积;(2)利用向量法证明出0AC DM ⋅=,0AE DM ⋅=,可得出DM AC ⊥,DM AE ⊥,再利用线面垂直的判定定理可证得DM ⊥平面ACE . 【详解】 (1)设ACBD O =,以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 且与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系,如图所示.易知z 轴在平面BDEF 内,且////BF DE z 轴,则()0,3,0C 、()1,0,0D -、()1,0,2E -、()1,0,1M ,()0,0,2DE ∴=,()1,3,0DC =,()2,0,1DM =,设平面DEC 的一个法向量(),,n x y z =,则2030n DE z n DC x y ⎧⋅==⎪⎨⋅=+=⎪⎩,取3x =,得()3,1,0n =-,M ∴到平面DEC 的距离23331DM n h n⋅===+, 又1122222DECSDE DC =⨯⨯=⨯⨯=, 因此,三棱锥M CDE -的体积112323333M CDE DEC V S h -=⨯⨯=⨯⨯=△; (2)证明:由(1)易知()0,3,0A -,则()0,23,0AC =,()1,3,2AE =-,02230010AC DM ⋅=⨯+⨯+⨯=,1230210AE DM ⋅=-⨯+⨯+⨯=,DM AC ∴⊥,DM AE ⊥,ACAE A =,DM ∴⊥平面ACE .【点睛】本题考查利用空间向量法计算点到平面的距离、三棱锥体积的计算,同时也考查了利用空间向量法证明线面垂直,考查推理能力与计算能力,属于中等题.20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是正方形,侧面PDC 是边长为a 的正三角形,且平面PDC ⊥底面ABCD ,E 为PC 的中点.(1)求异面直线PA 与DE 所成角的余弦值; (2)求直线AP 与平面ABCD 所成角的正弦值. 【答案】(16(26【分析】取CD 的中点O ,连接PO ,证明出PO ⊥平面ABCD ,然后以点O 为坐标原点,OC 、OP 所在的直线分别为y 、z 轴建立空间直角坐标系.(1)写出PA 、DE 的坐标,利用空间向量法可求得异面直线PA 与DE 所成角的余弦值; (2)求得平面ABCD 的一个法向量,并写出PA ,利用空间向量法可求得直线AP 与平面ABCD 所成角的正弦值. 【详解】取DC 的中点O ,连接PO ,PDC △为正三角形,O 为DC 的中点,则PO DC ⊥.又平面PDC ⊥平面ABCD ,平面PDC平面ABCD DC =,PO ⊂平面PDC ,PO ∴⊥平面ABCD .以点O 为坐标原点,OC 、OP 所在的直线分别为y 、z 轴建立如下图所示的空间直角坐标系O xyz -,则30,0,2P a ⎛⎫ ⎪ ⎪⎝⎭、,,02a A a ⎛⎫- ⎪⎝⎭、0,,02a C ⎛⎫ ⎪⎝⎭、0,,02a D ⎛⎫- ⎪⎝⎭.(1)设异面直线PA 与DE 所成的角为θ,E 为PC 的中点,30,4a E ⎛⎫∴ ⎪ ⎪⎝⎭,330,4DE a ⎛⎫∴= ⎪ ⎪⎝⎭,3,,2a PA a ⎛⎫=- ⎪ ⎪⎝⎭, 233330244a a PA DE a a ∴⋅=⨯-⨯=-,2PA a =,32DE =,2364cos cos ,4322a PA DE PA DE PA DEa a θ⋅=<>===⋅⨯, 因此,异面直线PA 与DE 6 (2)设直线AP 与平面ABCD 所成的角为α,易知平面ABCD 的一个法向量为()0,0,1n =,362cos ,421aPA n PA n a PA n-⋅<>===-⨯⋅. 因此,直线AP 与平面ABCD 所成角的正弦值为64. 【点睛】本题考查利用空间向量法计算异面直线所成角的余弦值以及线面角的正弦值,考查计算能力,属于中等题.21.如图,四棱锥P ABCD -中,PA ⊥平面ABCD 、底面ABCD 为菱形,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1,120PA BAD ︒=∠=,菱形ABCD 的面积为23D AE C --的余弦值. 【答案】(1)证明见解析;(2)14. 【分析】(1)连接BD 交AC 于点O ,连接OE ,则//PB OE ,利用线面平行的判定定理,即可得证; (2)根据题意,求得菱形ABCD 的边长,取BC 中点M ,可证AM BC ⊥,如图建系,求得点坐标及,AE AC 坐标,即可求得平面ACE 的法向量,根据AM ⊥平面P AD ,可求得面ADE 的法向量,利用空间向量的夹角公式,即可求得答案. 【详解】(1)连接BD 交AC 于点O ,连接OE ,则O 、E 分别为,AB ACAM PAD AE AC =⊥、PD 的中点,所以//PB OE , 又OE ⊂平面,ACE PB ⊄平面ACE 所以//PB 平面ACE(2)由菱形ABCD 的面积为23,120BAD ︒∠=,易得菱形边长为2, 取BC 中点M ,连接AM ,因为AB AC =,所以AM BC ⊥,以点A 为原点,以AM 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立如图所示坐标系.则()())10,2,0,0,0,0,0,1,,3,1,02D A E C⎛⎫ ⎪⎝⎭所以()10,1,,3,1,02AE AC ⎛⎫== ⎪⎝⎭设平面ACE 的法向量()1,,n x y z =,由11,n AE n AC ⊥⊥得10230y z x y ⎧+=⎪⎪+=⎩,令3x =3,6y z =-= 所以一个法向量()13,3,6n =-,因为AM AD ⊥,AM PA ⊥,所以AM ⊥平面P AD , 所以平面ADE 的一个法向量()21,0,0n = 所以12121231cos ,43936n n n n n n ⋅<>===++,又二面角D AE C --为锐二面角,所以二面角D AE C --的余弦值为14【点睛】解题的关键是熟练掌握证明平行的定理,证明线面平行时,常用中位线法和平行四边形法来证明;利用空间向量求解二面角为常考题型,步骤为建系、求点坐标、求所需向量坐标、求法向量、利用夹角公式求解,属基础题.22.如图,在四棱锥M ABCD -中,//AB CD ,90ADC BM C ∠=∠=,M B M C =,122AD DC AB ===,平面BCM ⊥平面ABCD .(1)求证://CD 平面ABM ; (2)求证:AC ⊥平面BCM ;(3)在棱AM 上是否存在一点E ,使得二面角E BC M --的大小为4π?若存在,求出AEAM 的值;若不存在,请说明理由.【答案】(1)证明见解析(2)证明见解析(3)存在;23AE AM=【分析】(1)由线面平行判定定理证明即可;(2)由勾股定理得出2BC =,进而得AC BC ⊥,再由面面垂直的性质定理即可证明AC ⊥平面BCM ;(3)建立空间直角坐标系,利用向量法求解即可. 【详解】证明:(1)因为AB CD ∥,AB 平面ABM ,CD ⊄平面ABM ,所以CD ∥平面ABM .(2)取AB 的中点N ,连接CN . 在直角梯形ABCD 中, 易知2AN BN CD ===CN AB ⊥.在Rt CNB △中,由勾股定理得2BC =. 在ACB △中,由勾股定理逆定理可知AC BC ⊥. 又因为平面BCM ⊥平面ABCD , 且平面BCM平面ABCD BC =,所以AC ⊥平面BCM .(3)取BC 的中点O ,连接OM ,ON . 所以ON AC ∥, 因为AC ⊥平面BCM , 所以ON ⊥平面BCM . 因为BM MC =, 所以OM BC ⊥.如图建立空间直角坐标系O xyz -,则()0,0,1M ,()0,1,0B ,()0,1,0C -,()2,1,0A -,()2,1,1AM =-,()0,2,0BC =-,()2,2,0BA =-.易知平面BCM 的一个法向量为()1,0,0m =.假设在棱AM 上存在一点E ,使得二面角E BC M --的大小为4π.不妨设AE AM λ=(01λ≤≤), 所以()22,2,BE BA AE λλλ=+=--, 设(),,n x y z =为平面BCE 的一个法向量,则0,0,n BC n BE ⎧⋅=⎪⎨⋅=⎪⎩ 即()20,220,y x z λλ-=⎧⎨-+=⎩令x λ=,22z λ=-,所以(),0,22n λλ=-.从而2cos ,2m n m nm n ⋅==⋅.解得23λ=或2λ=. 因为01λ≤≤,所以23λ=. 由题知二面角E BC M --为锐二面角.所以在棱AM 上存在一点E ,使得二面角E BC M --的大小为4π, 此时23AE AM=.【点睛】本题主要考查了证明线面平行,线面垂直以及由面面角求其他量,属于中档题.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
一、选择题1.已知正三棱锥P ABC -的侧面PAB 上动点Q 的轨迹是以P 为焦点,AB 为准线的抛物线,若点Q 到底面ABC 的距离为d ,且2PQ d =,点H 为棱PC 的中点,则直线BH 与AC 所成角的余弦值为( ) A .8585B .21 C .38585D .3212.在棱长为1的正方体1111ABCD A B C D -中,,M N 分别为111,BD B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥,则下列说法正确的是( )A .点P 可以是棱1BB 的中点 B .线段MP 的最大值为32C .点P 的轨迹是正方形D .点P 轨迹的长度为2+53.设O ABC -是正三棱锥,1G 是ABC 的重心,G 是1OG 上的一点,且13OG GG =,若OG xOA yOB zOC =++,则x y z ++=( ).A .14B .12C .34D .14.在棱长为2的正四面体ABCD 中,E ,F 分别是BC ,AD 的中点,则(AE CF ⋅= ) A .0B .2-C .2D .3-5.设,,,A B C D 是空间不共面的四点,且满足AB AC 0⋅=,AB AD 0⋅=,AC AD 0⋅=,则BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .等边三角形6.正方体1111ABCD A B C D -中,动点M 在线段1A C 上,E ,F 分别为1DD ,AD 的中点.若异面直线EF 与BM 所成的角为θ,则θ的取值范围为( ) A .[,]63ππB .[,]43ππC .[,]62ππD .[,]42ππ7.已知()1,1,2P -,()23,1,0P 、()30,1,3P ,则向量12PP 与13PP 的夹角是( )A .30B .45C .60D .908.平行六面体(底面为平行四边形的四棱柱)1111ABCD A B C D -所有棱长都为1,且1160,45,A AD A AB DAB ︒∠=∠=∠=︒则1BD =( )A .31-B .21-C .32-D .32-9.在底面为锐角三角形的直三棱柱111ABC A B C -中,D 是棱BC 的中点,记直线1B D 与直线AC 所成角为1θ,直线1B D 与平面111A B C 所成角为2θ,二面角111C A B D --的平面角为3θ,则( ) A .2123,θθθθ<<B .2123 ,θθθθ><C .2123 ,θθθθD .2123 ,θθθθ>>10.已知二面角l αβ--的两个半平面α与β的法向量分别为,a b ,且,a b 6π<>=,则二面角l αβ--的大小为( ) A .6πB .56π C .6π或56πD .6π或3π11.在正三棱柱(底面是正三角形的直三棱柱)111ABC A B C -中,2AB =,E ,F 分别为11A C 和11A B 的中点,当AE 和BF 所成角的余弦值为14时,AE 与平面11BCC B 所成角的正弦值为( ) A .62B .64C .104D .10212.如图所示,直三棱柱111ABC A B C -的侧棱长为3,底面边长11111A C B C ==,且11190A C B ∠=,D 点在棱1AA 上且12AD DA =,P 点在棱1C C 上,则1PD PB ⋅的最小值为( )A .52B .14-C .14D .52-13.如图四边形ABCD 中,2AB BD DA ===,2BC CD ==,现将ABD △沿BD折起,当二面角A BD C --的大小为56π时,直线AB 与CD 所成角的余弦值是( )A .528B .328C .324D .24二、填空题14.若面α的法向量(1,,1)n λ=,面β的法向量(2,1,2)m =--,两面夹角的正弦值为346,则λ=________. 15.如图所示,长方体1111ABCD A B C D -中,2AB BC ==,14CC =,点E 是线段1CC 的中点,点F 是正方形ABCD 的中心,则直线1A E 与直线1B F 所成角的余弦值为___16.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点,给出如下命题:①直线PB 与直线CE 所成的角中最小的角为45︒;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定值;④CE PE +的最小值为22,其中正确命题的序号是__________.(将你认为正确的命题序号都填上)17.若向量()1,,1a λ=,()2,1,2b =-,且a 与b 夹角的余弦值为13,则λ=__________. 18.已知正方体1111ABCD A B C D -的棱长为2,O 是面ABCD 的中心,点P 在棱11C D 上移动,则OP 的最小值时,直线OP 与对角面11A ACC 所成的线面角正切值为__________.19.已知A(1,2,0),B(0,1,-1),P 是x 轴上的动点,当0AP BP ⋅=取最小值时,点P 的坐标为__________.20.在三棱锥O-ABC 中,OA 、OB 、OC 两两垂直,3OA =,4OB =,5OC =,D 是AB 的中点,则CD 与平面OAB 所成的角的正切值为___________.21.在直三棱柱111ABC A B C -中,90BAC ∠=︒,14AA AB AC ===,点E 为棱1CC 上一点,且异面直线1A B 与AE 所成角的余弦值为130130,则CE 的长为______. 22.已知非零向量n b 、及平面α,向量n 是平面α的一个法向量,则0n b ⋅=是“向量b 所在直线在平面α内”的____________条件.23.如图,平行六面体1111ABCD A B C D -的所有棱长均为1,113BAD A AD A AB π∠=∠=∠=,E 为1CC 的中点,则AE 的长度是________.24.在正方体1111ABCD A B C D -中,M ,N 分别为1B B ,CD 的中点,有以下命题: ①//MN 平面1A BD ;②1MN CD ⊥;③平面1A MN ⊥平面1A AC , 则正确命题的序号为______.25.已知三棱锥 A BCD -每条棱长都为1,点E ,G 分别是AB ,DC 的中点,则GE AC ⋅=__________.26.平行六面体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,12AA 11120A AD A AB ∠=∠=︒,则对角线1BD 的长度为___.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】建立空间直角坐标系,用向量法求直线BH 与AC 所成角的余弦值 【详解】设△ABC 的中心为O ,如图示:以OA 为x 轴,过O 平行于BC 的Oy 为y 轴,OP 为z 轴建立空间直角坐标系,不妨设|BC |=2,则有:()23330,0,0,,,1,0,,1,0333O A B C ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭过Q 作QD ⊥底面ABC 于D ,QE ⊥AB 于E ,由抛物线的定义知:|QE |=|PD |=2d ,|QD |=d . 在Rt △QDE 中,∠QDE =90°,所以°s 1in ,302QD QDE QDE QE ∠==∴∠=, 即侧面于底面所成的二面角为30°. 设()0,0,P z 则有31333z ==, 所以()311331,,,,,3,1,0,626626H BH AC ⎛⎫⎛⎫--=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设直线BH 与AC 所成角为θ,则||cos |cos ,|||||BH AC BH AC BH AC θ==⨯(()()()()22222233|310|331310626⎛⎫+-⨯-+ ⎪⎝⎭=⎛⎫⎛⎫⎛⎫+-+⨯-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭38585= 即直线BH 与AC 所成角的余弦值为38585故选:C 【点睛】向量法解决立体几何问题的关键: (1)建立合适的坐标系; (2)把要用到的向量正确表示;(3)利用向量法证明或计算.2.D解析:D 【分析】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,根据MP CN ⊥,确定点P 的轨迹,在逐项判断,即可得出结果. 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系, 因为该正方体的棱长为1,,M N 分别为111,BD B C 的中点, 则()0,0,0D ,111,,222M ⎛⎫ ⎪⎝⎭,1,1,12N ⎛⎫⎪⎝⎭,()0,1,0C , 所以1,0,12CN ⎛⎫=⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,因为MP CN ⊥, 所以1110222x z ⎛⎫-+-= ⎪⎝⎭,2430x z +-=,当1x =时,14z =;当0x =时,34z =; 取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭, 连接EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭,所以四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=,即EF CN ⊥,EH CN ⊥, 又EFEH E =,且EF ⊂平面EFGH ,EH ⊂平面EFGH ,所以CN ⊥平面EFGH ,又111,,224EM ⎛⎫=-⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,所以M 为EG 中点,则M ∈平面EFGH ,所以,为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体的表面上运动, 所以点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,即A 错; 又1EF GH ==,52EH FG ==,所以EF EH ≠,则点P 的轨迹不是正方形;且矩形EFGH 的周长为222+=+C 错,D 正确; 因为点M 为EG 中点,则点M 为矩形EFGH 的对角线交点,所以点M 到点E 和点G的距离相等,且最大,所以线段MP ,故B 错. 故选:D. 【点睛】关键点点睛:求解本题的关键在于建立适当的空间直角坐标系,利用空间向量的方法,由MP CN ⊥,求出动点轨迹图形,即可求解.3.C解析:C 【分析】利用空间向量的基本定理可计算得出1111333OG OA OB OC =++,由已知条件可得出134OG OG =,进而可求得x 、y 、z 的值,由此可求得结果.【详解】如下图所示,连接1AG 并延长交BC 于点D ,则点D 为BC 的中点,1G 为ABC 的重心,可得123AG AD =, 而()()111222OD OB BD OB BC OB OC OB OB OC =+=+=+-=+, ()1122123333OG OA AG OA AD OA OD OA OA OD =+=+=+-=+ ()()12113323OA OB OC OA OB OC =+⋅+=++,所以,13311111144333444OG OG OA OB OC OA OB OC ⎛⎫==++=++ ⎪⎝⎭, 所以,14x y z ===,因此,34x y z ++=. 故选:C. 【点睛】方法点睛:对于空间向量的基底分解的问题,一般需要利用向量的加减法法则进行处理,也可以借助一些相应的结论对运算进行简化.4.B解析:B 【分析】根据题意画出图形,结合图形,利用向量加法的运算法,分别用AB AC 、与CA CD 、表示出向量AE 与CF ,利用数量积的运算法则求解即可求. 【详解】如图所示,棱长为2的正四面体ABCD 中, 因为,E F 分别是,BC AD 的中点, 所以()()1122AE CF AB AC CA CD ⋅=+⋅+ ()14AB CA AB CD AC CA AC CD =⋅+⋅+⋅+⋅ ()122cos12022cos9022cos18022cos1204=⨯⨯+⨯⨯+⨯⨯+⨯⨯ 2=-,故选B .【点睛】本题考查了空间向量的线性运算与数量积的运算法则,是基础题.向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =. 5.B解析:B 【分析】由0AB AC ⋅=,0AB AD ⋅=,0AC AD ⋅=,可得()()20BC BD AC AB AD AB AB ⋅=--=>,B ∠是锐角,同理可得D ∠,C ∠都是锐角,从而可得结果. 【详解】因为0AB AC ⋅=,0AB AD ⋅=,0AC AD ⋅=, 所以()()220BC BD AC AB AD AB AC AD AC AB AB AD AB AB ⋅=--=⋅-⋅-⋅+=>,cos 0BC BD B BC BD⋅∴=>⋅,故B ∠是锐角,同理0CB CD ⋅>,0DC DB ⋅>,可得D ∠,C ∠都是锐角, 故BCD 是锐角三角形,故选B . 【点睛】本题主要考查向量的数量积的运算以及向量运算的三角形法则,属于中档题.判断三角形的形状有两种基本的方法:①看三角形的角;②看三角形的边.6.A解析:A 【详解】以D 点为原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 如图设DA 2=,易得()1,0,1EF=-,设()()()12,2,20122,2,2CM CA BM λλλλλλλλ==-≤≤=--,, 则cos θcos ,?BM EF =, 即())222201122321222823()33cos θλλλλλλ===≤≤-+-+-+.当13λ=时,cos θ31λ=时,cos θ取到最小值12,所以θ的取值范围为,63ππ⎡⎤⎢⎥⎣⎦. 故选:A.点睛:本题主要考查异面直线所成的角,属于难题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.7.D解析:D 【分析】设向量12PP 与13PP 的夹角为θ,计算出向量12PP 与13PP 的坐标,然后由12131213cos PP PP PP PP θ⋅=⋅计算出cos θ的值,可得出θ的值.【详解】设向量12PP 与13PP 的夹角为θ,()()()123,1,01,1,22,2,2PP =--=-,()()()130,1,31,1,21,2,1PP =--=-,则12131213cos 0PP PP PP PP θ⋅==⋅,所以,90θ=,故选D.【点睛】本题考查空间向量的坐标运算,考查利用向量的坐标计算向量的夹角,考查计算能力,属于中等题.8.C解析:C 【分析】由11,BD AD AB AA =-+平方,根据向量的数量积运算法则及性质可求出1||BD . 【详解】 如图:由11,BD AD AB AA =-+2211()BD AD AB AA ∴=-+222111222AB AD AA AB AD AB AA AD AA =++-⋅-⋅+⋅21111211cos 45cos60c 12161os 0︒︒︒-⨯⨯=⨯+++-⨯⨯⨯⨯⨯⨯ 32=-,13||2BD ∴=-故选:C 【点睛】本题主要考查了向量的加法法则、向量数量积运算性质、向量模的计算公式,考查了推理能力与计算能力,属于中档题.9.A解析:A 【分析】以A 为坐标原点,建立空间直角坐标系,写出点的坐标,分别求出直线的方向向量以及平面的法向量,通过向量法即可求得各个角度的余弦值,再结合余弦函数的单调性即可判断. 【详解】由题可知,直三棱柱111ABC A B C -的底面为锐角三角形,D 是棱BC 的中点, 设三棱柱111ABC A B C -是棱长为2的正三棱柱,以A 为原点,在平面ABC 中,过A 作AC 的垂线为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则1(0,0,2)A ,1(3,1,2)B ,(0,2,0)C ,33,022D ⎛⎫⎪ ⎪⎝⎭,(0,0,0)A , (0,2,0)AC =,131,22B D ⎛⎫=- ⎪ ⎪⎝⎭,11(3,1,0)A B =,因为直线1B D 与直线AC 所成的角为1θ,10,2πθ⎛⎤∈ ⎥⎝⎦,111||cos ||||25θ⋅∴==⋅B D AC B D AC ,因为直线1B D 与平面111A B C 所成的角为2θ,20,2πθ⎡⎤∈⎢⎥⎣⎦, 平面111A B C 的法向量()0,0,1n =,121||sin ||5∣θ⋅∴==⋅B D n B D n ,222cos 155θ⎛⎫∴=-= ⎪⎝⎭, 设平面11A B D 的法向量(,,)m a b c =,则11130312022m A B a b m B D a b c ⎧⋅=+=⎪⎨⋅=-+-=⎪⎩, 取3a =33,3,2m ⎛⎫=-- ⎪⎝⎭, 因为二面角111C A B D --的平面角为3θ, 由图可知,其为锐角,33||12cos||575749m n m n θ⋅∴===⋅∣,231cos cos cos θθθ>>, 由于cos y θ=在区间(0,)π上单调递减,故231θθθ<<, 则2123,θθθθ<<. 故选:A . 【点睛】本题考查利用向量法研究空间中的线面角以及二面角,属综合基础题.10.C解析:C 【分析】由于方向量的方向性,平面的法向量有正向量或负向量;当a 、b 为异号向量,二面角为π减去两法向量夹角;当a 、b 为同号向量,二面角即为两法向量的夹角,由此即可求得二面角l αβ-- 【详解】两个半平面α与β的法向量分别为,a b ,且,a b 6π<>=由于向量的方向性,法向量与平面有两种情况 当a 、b 为异号向量,如下图示:,a b 6π<>=∴有二面角l αβ--为56π 当a 、b 为同号向量,如下图示:,a b 6π<>=∴有二面角l αβ--为6π综上,有二面角l αβ--为6π或56π 故选:C 【点睛】本题考查了二面角与平面法向量夹角的关系,依据法向量的夹角判断平面所成二面角的大小,注意法向量的方向性,讨论在不同情况下二面角的大小11.B解析:B 【分析】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,由AE 和BF 所成角的余弦值为14,求出t 的值,由此能求出AE 与平面11BCC B 所成角的正弦值.【详解】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则)3,1,0A,()0,0,0B , ()0,2,0C ,33,22E t ⎛⎫⎪ ⎪⎝⎭,31,22F t ⎛⎫⎪ ⎪⎝⎭ , 31,22AE t ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BF t ⎛⎫= ⎪ ⎪⎝⎭,因为AE 和BF BF 所成角的余弦值为14, 所以222112cos ,411t AE BF AE BF AE BFt t -⋅===++, 解得:1t =所以31,,12 AE⎛⎫=-⎪⎪⎝⎭,平面11BCC B的法向量()1,0,0n=,所以AE与平面11BCC B所成角的正弦值为362sin421AE nAE nα⋅===⨯故选:B【点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面的位置关系等基础知识,属于中档题.12.B解析:B【分析】由题易知1,,AC BC CC两两垂直,以C为坐标原点,建立如图所示的空间直角坐标系,设()03PC a a=≤≤,可知()0,0,P a,进而可得1,PD PB的坐标,然后求得1PD PB⋅的表达式,求出最小值即可.【详解】由题意可知,1,,AC BC CC两两垂直,以C为坐标原点,建立如图所示的空间直角坐标系,则()10,1,3B,()1,0,2D,设()03PC a a=≤≤,则()0,0,P a,所以()1,0,2P aD=-,()10,1,3aPB=-,则()()2151002324a a aPD PB⎛⎫=++--=--⎪⎝⋅⎭,当52a=时,1PD PB⋅取得最小值14-.故选:B.【点睛】本题考查两个向量的数量积的应用,考查向量的坐标运算,考查学生的计算求解能力,属于中档题.13.A解析:A 【分析】取BD 中点O ,连结AO ,CO ,以O 为原点,OC 为x 轴,OD 为y 轴,过点O 作平面BCD 的垂线为z 轴,建立空间直角坐标系,利用向量法能求出直线AB 与CD 所成角的余弦值. 【详解】解:取BD 中点O ,连结AO ,CO ,2AB BD DA ===.2BC CD ==,CO BD ∴⊥,AO BD ⊥,且1CO =,3AO =,AOC ∴∠是二面角A BD C --的平面角,因为二面角A BD C --的平面角为56π, 56AOC π∴∠=以O 为原点,OC 为x 轴,OD 为y 轴,过点O 作平面BCD 的垂线为z 轴,建立空间直角坐标系, 则(0B ,1-,0),(1C ,0,0),(0D ,1,0),33(,0,)2A -,∴33(,1,)2BA =-,(1,1,0)CD =-,设AB 、CD 的夹角为α, 则3|1|||522cos 8||||22AB CD AB CD α+===, 故选:A .【点睛】本题考查异面直线所成角的取值范围的求法,是中档题,解题时要认真审题,注意向量法的合理运用.二、填空题14.【分析】设平面的夹角为利用空间向量夹角公式得:由已知知建立关于的方程解方程即可得到答案【详解】设平面的夹角为又面的法向量面的法向量则利用空间向量夹角公式得:由已知得故故即解得:故答案为:【点睛】结论解析:【分析】设平面,αβ的夹角为θ,利用空间向量夹角公式得:cos 3⋅==m n m nλθλ,由已知sin 6=θ,知21cos 18=θ,建立关于λ的方程,解方程即可得到答案.【详解】设平面,αβ的夹角为θ,又面α的法向量(1,,1)n λ=,面β的法向量(2,1,2)m =--,则利用空间向量夹角公式得:cos 1⋅===+m n m nθ由已知得sin =θ,故22221cos 1sin 116618⎛⎛⎫=-=-=-=⎪ ⎪⎝⎭⎝⎭θθ 故2118=,即2222119(2)1822=⇒=++λλλλ,解得:λ=故答案为: 【点睛】结论点睛:本题考查利用空间向量求立体几何常考查的夹角:设直线,l m 的方向向量分别为,a b ,平面,αβ的法向量分别为,u v ,则 ①两直线,l m 所成的角为θ(02πθ<≤),cos a b a bθ⋅=;②直线l 与平面α所成的角为θ(02πθ≤≤),sin a u a uθ⋅=;③二面角l αβ--的大小为θ(0θπ≤≤),cos .u v u vθ⋅=15.【分析】以点为坐标原点所在直线分别为轴建立空间直角坐标系写出向量的坐标利用空间向量法可求得直线与直线所成角的余弦值【详解】如下图所示以点为坐标原点所在直线分别为轴建立空间直角坐标系则点因此直线与直线解析:26【分析】以点D为坐标原点,DA、DC、1DD所在直线分别为x、y、z轴建立空间直角坐标系,写出向量1A E、1B F的坐标,利用空间向量法可求得直线1A E与直线1B F所成角的余弦值.【详解】如下图所示,以点D为坐标原点,DA、DC、1DD所在直线分别为x、y、z轴建立空间直角坐标系D xyz-,则点()12,0,4A、()12,2,4B、()0,2,2E、()1,1,0F,()12,2,2A E=--,()11,1,4B F=---,11111126cos,92332A EB FA EB FA EB F⋅<>===⨯⋅,因此,直线1A E与直线1B F所成角的余弦值为269.26.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.①③④【分析】由三垂直可采用以为轴建立空间直角坐标系①中通过异面直线的夹角公式和不等式性质即可判断正确;②中结合向量数量积公式可判断错误;③采用补形法将四棱锥还原为长方体再结合等体积法即可求解三棱锥解析:①③④ 【分析】由,,AB AD AP 三垂直,可采用以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,①中通过异面直线的夹角公式和不等式性质即可判断正确;②中结合向量数量积公式可判断错误;③采用补形法将四棱锥还原为长方体,再结合等体积法即可求解三棱锥E BCO -的体积为定值;④中将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D ,结合两点间直线最短即可判断正确 【详解】如图所示:以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,则(0,0,1)P ,()1,0,0B ,(1,2,0)C ,设(0,,0)E y ,[]0,2y ∈,则(1,0,1)BP =-,(1,2,0)CE y =--, 2||2cos ,||||21(2)BP CE BP CE BP CE y ⋅〈〉==≤⋅⋅+-,当2y =时等号成立, 此时,4BP CE π〈〉=,故直线PB 与直线CE 所成的角中最小的角为45︒,①正确;(1,,0)(1,2,1)21BE PC y y ⋅=-⋅-=-,当12y =时,BE PC ⊥,②错误; 将四棱锥放入对应的长方体中,则球心为体对角线交点, 1111112323226BCE E BCO O BCE AP V V S --==⨯⨯=⨯⨯⨯⨯=△,③正确;如图所示:将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D , 则22''2222CE PE C E PE PC +=+≥=+=,当'PEC 共线时等号成立,④正确.故答案为:①③④.【点睛】本题考查向量法在立体几何中的实际应用,合理建系,学会将所求问题有效转化是解决问题的关键,如本题求线线角的最小值转化为求线线夹角的余弦值,求两直线垂直转化为数量积为0,求三棱锥体积的补形法和等体积法,利用旋转将异面直线的距离转化为共面直线的距离,属于中档题17.【分析】根据条件可求出再根据夹角的余弦为即可求出解出即可【详解】解:又夹角的余弦值为解得故答案为:【点睛】本题考查空间向量数量积的坐标运算根据向量坐标求向量长度的方法向量数量积的计算公式解析:74【分析】根据条件可求出2||2,||3a b λ=+=,224a b λλ=-+=-,再根据,a b 夹角的余弦为134λ-,解出λ即可. 【详解】解:2||2,||3a b λ=+=, 224a b λλ=-+=-,又,a b 夹角的余弦值为13, ∴2||||cos ,24a b a b a b λλ=<>=+=-,解得74λ=. 故答案为:74. 【点睛】本题考查空间向量数量积的坐标运算,根据向量坐标求向量长度的方法,向量数量积的计算公式.18.【分析】由题意以为坐标原点为轴轴轴正方向建立空间直角坐标系求得以当即为中点时求得和平面的一个法向量为利用向量的夹角公式即可求解【详解】由题意以为坐标原点为轴轴轴正方向建立空间直角坐标系则设则所以当即解析:13【分析】由题意,以A 为坐标原点,AB ,AD ,1AA 为x 轴,y 轴,z 轴正方向建立空间直角坐标系,求得以当1x =,即P 为11C D 中点时,求得(0,1,2)OP =和平面11A ACC 的一个法向量为BD ,利用向量的夹角公式,即可求解. 【详解】由题意,以A 为坐标原点,AB ,AD ,1AA 为x 轴,y 轴,z 轴正方向建立空间直角坐标系, 则()1,1,0O ,设()(),2,202P x x ≤≤.则2222(1)(12)(02)(1)5OP x x =-+-+-=-+, 所以当1x =,即P 为11C D 中点时,OP 取最小值5, 此时点(1,2,2)P ,所以(0,1,2)OP =, 又由BD ⊥平面11A ACC ,且(2,2,0)BD =-, 即平面11A ACC 的一个法向量为(2,2,0)BD =-, 设OP 与平面11A ACC 所成的角为θ, 由线面角的公式可得21sin cos ,21010OP BD OP BD OP BDθ⋅====⋅, 因为(0,)2πθ∈,由三角函数的基本关系式,可得1tan 3θ=.【点睛】本题主要考查了空间向量在空间角的求解中的应用,其中解答中建立适当的空间直角坐标系,确定出点P 的位置,再利用向量的夹角公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.19.(00)【分析】设P(x00)求出·=x(x -1)+2=(x -)2+再利用二次函数求出函数的最小值和此时点P 的坐标【详解】设P(x00)则=(x -1-20)=(x -11)·=x(x -1)+2=(x -解析:(12,0,0) 【分析】设P (x,0,0),求出·=x (x -1)+2=(x -)2+,再利用二次函数求出函数的最小值和此时点P 的坐标. 【详解】 设P (x,0,0),则=(x -1,-2,0),=(x ,-1,1),·=x (x -1)+2=(x -)2+, ∴当x =时,·取最小值,此时点P 的坐标为(,0,0).故答案为(12,0,0) 【点睛】(1)本题主要考查空间向量的坐标表示和数量积的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 111222121212(,,),(,,),a x y z b x y z a b x x y y z z ==⋅=++.20.2【分析】由已知建立空间直角坐标系求出的坐标和平面的法向量由数量积公式可得与平面所成的角的正弦值再由三角函数平方关系和商数关系可得答案【详解】因为两两垂直所以以为原点分别为轴的正半轴建立如图所示空间解析:2 【分析】由已知建立空间直角坐标系,求出CD 的坐标和平面OAB 的法向量,由数量积公式可得CD 与平面OAB 所成的角的正弦值,再由三角函数平方关系和商数关系可得答案. 【详解】 因为OC OA OB 、、两两垂直, 所以以O 为原点,OA OB OC 、、分别为x y 、、z 轴的正半轴建立如图所示空间直角坐标系,连接CD ,所以()3,0,0A ,()0,4,0B ,()0,0,5C ,3,2,02D ⎛⎫⎪⎝⎭,3,2,52CD ⎛⎫=- ⎪⎝⎭,由于CO ⊥底面OAB ,所以CO 是底面OAB 的法向量,且()0,0,5CO =-,设CD 与平面OAB 所成的角为0,2πθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭, 所以sin cos ,9554254CO CD CO CD CO CDθ⋅====⋅⨯++所以2cos 1sin 5θθ=-=,所以sin tan 2cos θθθ==. 即CD 与平面OAB 所成的角正切值为2. 故答案为:2.【点睛】本题考查了线面角的求法,解题关键点是建立空间直角坐标系利用向量的数量积公式求解,考查了学生的空间想象力和计算能力.21.【分析】利用基向量表示出结合异面直线所成角确定点E 的位置从而可求的长也可以建立空间坐标系利用空间向量坐标求解【详解】设则因为异面直线与所成角的余弦值为所以解得所以故答案为:【点睛】关键点睛:利用空间 解析:12【分析】利用基向量表示出1,A B AE ,结合异面直线所成角,确定点E 的位置,从而可求1C E 的长,也可以建立空间坐标系,利用空间向量坐标求解. 【详解】设1CE C C λ= ,则11A B AB AA =-,11AE AC CE AC CC AC AA λλ=+=+=+, 142A B =21616AE λ=+111()()16A B AE AB AA AC AA λλ⋅=-⋅+=-. 1121cos ,22A B AE A B AE A B AEλ⋅==+,因为异面直线1A B 与AE 130200213213λ=+. 解得18λ=,所以12CE =. 故答案为:12.【点睛】关键点睛:利用空间向量解决异面直线所成角的问题,注意向量夹角与异面直线所成角的范围的不同.22.必要不充分【分析】根据充分条件和必要条件的定义进行判断即可【详解】解:若向量是平面的法向量则若则则向量所在直线平行于平面或在平面内即充分性不成立若向量所在直线平行于平面或在平面内则向量是平面的法向量解析:必要不充分【分析】根据充分条件和必要条件的定义进行判断即可.【详解】解:若向量n是平面α的法向量,则nα⊥,若0n b=,则//bα,则向量b所在直线平行于平面α或在平面α内,即充分性不成立,若向量b所在直线平行于平面α或在平面α内,则//bα,向量n是平面α的法向量,∴nα⊥,则n b⊥,即0n b=,即必要性成立,则0n b=是向量b所在直线平行于平面α或在平面α内的必要条件,故答案为:必要不充分【点睛】本题主要考查充分条件和必要条件的判断,根据向量和平面的位置关系是解决本题的关键.23.【分析】根据向量的线性运算得出根据向量的数量积运算即可求出结果【详解】解:由题可知所以得故答案为:【点睛】本题考查向量的运算涉及到线性运算和向量的数量积同时考查学生的化归和转化思想解析:17 2【分析】根据向量的线性运算,得出112AE AB BC CC =++,根据向量的数量积运算,即可求出结果. 【详解】解:由题可知,112AE AB BC CC =++, 所以2211()2AE AB BC CC =++222111124AB BC CC AB BC AB CC BC CC =+++⋅+⋅+⋅22211112cos60cos60cos604AB BC CC AB BC AB CC BC CC =+++⋅+⋅+⋅11111711242224=+++⨯++=得17AE =.故答案为:2. 【点睛】本题考查向量的运算,涉及到线性运算和向量的数量积,同时考查学生的化归和转化思想.24.①②【分析】建立如图所示的空间直角坐标系把空间中的平行垂直关系归结为方向向量法向量之间的关系后可得正确的选项【详解】建立如图所示的空间直角坐标系设正方体的棱长为2则故所以故所以故②正确又设平面的法向解析:①② 【分析】建立如图所示的空间直角坐标系,把空间中的平行、垂直关系归结为方向向量、法向量之间的关系后可得正确的选项. 【详解】建立如图所示的空间直角坐标系,设正方体的棱长为2, 则()()()()2,0,0,0,0,0,0,2,0,2,2,0A D C B ,()()()()11112,0,2,0,0,2,0,2,2,2,2,2A D C B ,故()()2,2,1,0,1,0M N ,所以()2,1,1MN =---,()10,2,2CD =-, 故10MN CD ⋅=,所以1MN CD ⊥,故②正确.又()2,2,0DB =,()12,0,2DA =,设平面1A BD 的法向量为(),,n x y z =, 由100n DB n DA ⎧⋅=⎪⎨⋅=⎪⎩得00x y x z +=⎧⎨+=⎩,取1z =-,则()1,1,1n =--,因为0MN n ⋅=且MN ⊄平面1A BD ,故//MN 平面1A BD ,故①正确.又()10,2,1A M =-,设平面1A MN 的法向量为(),,m x y z =, 由100m MN m A M ⎧⋅=⎪⎨⋅=⎪⎩得2020x y z y z ---=⎧⎨-=⎩,取1y =,则3,1,22m ⎛⎫=- ⎪⎝⎭,平面1A AC 的法向量为()2,2,0a =,则0m a ⋅≠ 故平面1A MN ⊥平面1A AC 不成立, 故③错, 故答案为:①②. 【点睛】本题考查空间中平行关系、垂直关系的判断,注意根据几何体的特征建立合适的空间直角坐标系后再利用空间向量来处理,本题属于中档题.25.【分析】构造一个正方体三棱锥放入正方体中建立坐标系利用数量积公式求解即可【详解】将三棱锥放入如下图所示的正方体中且棱长为分别以为轴故答案为:【点睛】本题主要考查了求空间向量的数量积属于中档题解析:12-【分析】构造一个正方体,三棱锥A BCD -放入正方体中,建立坐标系利用数量积公式求解即可. 【详解】将三棱锥A BCD -放入如下图所示的正方体中,且棱长为22分别以,,OC OD OB 为,,x y z 轴222222222(,,),(,0,0),(,,0),(,,)222244442A C G E (0,02222,),(20,,)2GE AC ==-- 122)(=2GE AC ∴⋅=--⨯ 故答案为:12-【点睛】本题主要考查了求空间向量的数量积,属于中档题.26.2【分析】利用两边平方后利用向量数量积计算公式计算得【详解】对两边平方并化简得故【点睛】本小题主要考查空间向量的加法和减法运算考查空间向量数量积的表示属于中档题解析:2 【分析】利用11BD AD AA AB =+-,两边平方后,利用向量数量积计算公式,计算得1BD . 【详解】对11BD AD AA AB =+-两边平方并化简得21BD 2221AD AA AB =++11222AD AA AD AB AA AB+⋅-⋅-⋅BD=.=+++⨯--⨯⨯=,故12211210212cos1204【点睛】本小题主要考查空间向量的加法和减法运算,考查空间向量数量积的表示,属于中档题.。
高三数学空间向量试题答案及解析1.如图,长方体中,分别为中点,(1)求证:.(2)求二面角的正切值.【答案】(1)见解析(2)【解析】(1)由长方体及E、F分别为AB、C1D1的中点知,AE平行且等于C1F,所以AEC1F是平行四边形,所以C1E∥AF,由线面平行的判定定理知,C1E∥面ACF;(2)易证FG⊥面ABCD,过F作FH⊥AC于H,连结HG,因为FG⊥面ABCD,则FG⊥AC,所以∠FHG为二面角F—AC—G的平面角,然后通过解三角形,求出FG、GH的长,即可求出∠FHG的正切值,即为二面角F-AC-G的正切值.试题解析:(1)证明:在长方体中,分别为中点,且四边形是平行四边形3分,5分(2).长方体中,分别为中点,7分过做于,又就是二面角的平面角 9分,在中, 11分直角三角形中 13分二面角的正切值为 14分考点:线面平行的判定定理;二面角的计算;逻辑推理能力2.如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与平面ABA1夹角的正弦值.【答案】(1)(2)【解析】解:(1)以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),∴=(2,0,-4),=(1,-1,-4).∵cos〈,〉===,∴异面直线A1B与C1D所成角的余弦值为.(2)设平面ADC1的法向量为n1=(x,y,z),∵=(1,1,0),=(0,2,4),∴n1·=0,n 1·=0,即x+y=0且2y+4z=0,取z=1,得x=2,y=-2,∴n1=(2,-2,1)是平面ADC1的一个法向量.取平面AA1B的一个法向量为n2=(0,1,0),设平面ADC1与平面ABA1夹角的大小为θ.由cosθ===,得sinθ=.因此,平面ADC1与平面ABA1夹角的正弦值为.3.已知正方体ABCD-A1B1C1D1中,点E为上底面A1C1的中心,若=+x+y,则x、y的值分别为()A.x=1,y=1B.x=1,y=C.x=,y=D.x=,y=1【答案】C【解析】如图,=+=+=+ (+).4.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:(1)·;(2)·;(3)EG的长;(4)异面直线AG与CE所成角的余弦值.【答案】(1)(2)-(3)(4)【解析】解:设=a,=b,=c.则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°.=BD=c-a,=-a,=b-c,(1)·=(c-a)·(-a)=a2-a·c=;(2)·= (c-a)·(b-c)= (b·c-a·b-c2+a·c)=-;(3)=++=a+b-a+c-b=-a+b+ c.||2=a2+b2+c2-a·b+b·c-c·a=.即||=,所以EG的长为.(4)设、的夹角为θ.=b+c,=+=-b+a,cosθ==-,由于异面直线所成角的范围是(0°,90°],所以异面直线AG与CE所成角的余弦值为.5.在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②【答案】D【解析】设,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D.【考点】空间由已知条件,在空间坐标系中作出几何体的形状,再正视图与俯视图,容易题.6.如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1);(2)证明见解析.【解析】(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,, 10分,.又,平面. 12分【考点】(1)异面直线所成的角;(2)线面垂直.7.(2013•天津)如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1﹣CE﹣C1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.【答案】(1)见解析(2)(3)【解析】(1)证明:以点A为原点建立空间直角坐标系,如图,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).则,而=0.所以B1C1⊥CE;(2)解:,设平面B1CE的法向量为,则,即,取z=1,得x=﹣3,y=﹣2.所以.由(1)知B1C1⊥CE,又CC1⊥B1C1,所以B1C1⊥平面CEC1,故为平面CEC1的一个法向量,于是=.从而==.所以二面角B1﹣CE﹣C1的正弦值为.(3)解:,设0≤λ≤1,有.取为平面ADD1A1的一个法向量,设θ为直线AM与平面ADD1A1所成的角,则==.于是.解得.所以.所以线段AM的长为.8.如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F.(1)求证:AD⊥平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值.【答案】(1)见解析(2)【解析】(1)因为△DAB ≌△DCB,EA=EB=AB=1,所以△ECB是等边,,(2)建立空间坐标系如图,取向观点的坐标为, 向量设平面PBC的法向量平面PDC的法向量则【考点】本题主要考查空间垂直关系的证明、平行关系的运用,考查空间角的求解方法,考查空间想象能力、推理论证能力、计算能力.9.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值。
高三数学空间向量试题答案及解析1.如图,在四棱锥中,底面,,,,,点为棱的中点.(Ⅰ)证明:;(Ⅱ)若为棱上一点,满足,求二面角的余弦值.【答案】(Ⅰ)详见解析;(Ⅱ)余弦值为.【解析】思路一:坐标法.依题意,以点为原点建立空间直角坐标系(如图),写出各点的坐标,利用空间向量即可解决问题.思路二:几何法.(Ⅰ)如图,取中点,连接,.易得四边形为矩形,从而使问题得证.(Ⅱ)由于,那么BF在平面ABCD内的射影与AC垂直,故考虑作出BF在平面ABCD 内的射影.在中,过点作交于点.由题设可得,从而得,.在平面内,作交于点,于是.显然为二面角的平面角. 在三角形PAG中,由余弦定理可得二面角的余弦值.试题解析:解法一:坐标法.依题意,以点为原点建立空间直角坐标系(如图),可得,,,.由为棱的中点,得.(Ⅰ)向量,,故. 所以,.(Ⅱ)向量,,,.由点在棱上,设,.故.由,得,因此,,解得.即.设为平面的法向量,则即不妨令,可得为平面的一个法向量取平面的法向量,则.易知,二面角是锐角,所以其余弦值为.解法二:几何法.(Ⅰ)如图,取中点,连接,.由于分别为的中点,故,且,又由已知,可得且,故四边形为平行四边形,所以.因为底面,故,而,从而平面,因为平面,于是,又,所以.(Ⅱ)如图,在中,过点作交于点.因为底面,故底面,从而.又,得平面,因此.在底面内,可得,.在平面内,作交于点,于是.由于,故,所以四点共面.由,,得平面,故.所以为二面角的平面角.在中,,,,由余弦定理可得,在三角形PAG中,由余弦定理得.所以,二面角的余弦值为.【考点】1、空间直线的垂直关系;2、二面角.2.在如图所示的多面体中,四边形和都为矩形.(Ⅰ)若,证明:直线平面;(Ⅱ)是否存在过的平面,使得直线平行,若存在请作出平面并证明,若不存在请说明理由.【答案】(Ⅰ)见解析;(Ⅱ)存在,证明见解析【解析】(Ⅰ)由四边形和都为矩形知,⊥AB,⊥AC,由线面垂直判定定理知⊥面ABC,由线面垂直定义知⊥BC,又因为AC⊥BC,由线面垂直判定定理知,BC⊥面;(Ⅱ)取AB的中点为M,连结交于D,连结DE,显然E是的中点,根据三角形中位线定理得,DE∥,又由于DE在面过的平面内,根据线面平行的判定定理知和该平面平行.试题解析:(Ⅰ)证明:因为四边形和都是矩形,所以 2分因为为平面内的两条相交直线,所以 4分因为直线平面,所以又由已知,为平面内的两条相交直线,所以平面 7分(Ⅱ)存在 8分连接,设,取线段AB的中点M,连接.则平面为为所求的平面. 11分由作图可知分别为的中点,所以 13分又因为因此 14分考点: 空间线面垂直垂直的判定与性质;线面平行的判定;推理论证能力3.平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是()A.(,-1,-1)B.(6,-2,-2)C.(4,2,2)D.(-1,1,4)【答案】D【解析】设平面α的法向量为n,则n⊥,n⊥,n⊥,所有与 (或、)平行的向量或可用与线性表示的向量都与n垂直,故选D.4.如图所示,已知空间四边形OABC中,|OB|=|OC|,且∠AOB=∠AOC,则、夹角θ的余弦值为()A.0B.C.D.【答案】A【解析】设=a,=b,=c.由已知条件∠AOB=∠AOC,且|b|=|c|,·=a·(c-b)=a·c-a·b=|a||c|cos∠AOC-|a||b|cos∠AOB=0,∴cosθ=0.故选A.5.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)·(2b)=-2,则x=________.【答案】2【解析】c-a=(0,0,1-x),2b=(2,4,2),由(c-a)·(2b)=-2,得(0,0,1-x)·(2,4,2)=-2,即2(1-x)=-2,解得x=2.6.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:(1)·;(2)·;(3)EG的长;(4)异面直线AG与CE所成角的余弦值.【答案】(1)(2)-(3)(4)【解析】解:设=a,=b,=c.则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°.=BD=c-a,=-a,=b-c,(1)·=(c-a)·(-a)=a2-a·c=;(2)·= (c-a)·(b-c)= (b·c-a·b-c2+a·c)=-;(3)=++=a+b-a+c-b=-a+b+ c.||2=a2+b2+c2-a·b+b·c-c·a=.即||=,所以EG的长为.(4)设、的夹角为θ.=b+c,=+=-b+a,cosθ==-,由于异面直线所成角的范围是(0°,90°],所以异面直线AG与CE所成角的余弦值为.7.已知点A(1,t,-1)关于x轴的对称点为B,关于xOy平面的对称点为C,则BC中点D的坐标为________.【答案】(1,0,1)【解析】因为A(1,t,-1)关于x轴的对称点为B(1,-t,1),关于xOy平面的对称点为C(1,t,1),所以BC中点D的坐标为(,,),即D(1,0,1).8.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为()A.B.C.D.【答案】C【解析】以C为原点,直线CA为x轴,直线CB为y轴,直线为轴,则设CA=CB=1,则,,A(1,0,0),,故,,所以,故选C.【考点】本小题主要考查利用空间向量求线线角,考查空间向量的基本运算,考查空间想象能力等数学基本能力,考查分析问题与解决问题的能力.9.如图,已知四棱锥P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA 的中点。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!1.1 空间向量及其运算(精讲)考点一 概念的辨析【例1】(2020·全国高二课时练习)下列命题中,假命题是()A .同平面向量一样,任意两个空间向量都不能比较大小B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等【答案】D【解析】A.向量是有向线段,不能比较大小.真命题.B.两向量相等:方向相同,模长相等.起点相同,则终点也相同.真命题.C.零向量:模长为0的向量.真命题.D.共线的单位向量是相等向量或相反向量. 假命题.故选:D.【一隅三反】1.(2020·全国高二课时练习)在下列命题中:①若向量,a b r r 共线,则,a b r r 所在的直线平行;②若向量,a b r r 所在的直线是异面直线,则,a b r r一定不共面;③若三个向量,a b c r r r ,两两共面,则,a b c r r r ,三个向量一定也共面;④已知三个向量,a b c r r r ,,则空间任意一个向量p r 总可以唯一表示为p xa yb zc =++r r r r.其中正确命题的个数为()A .0B .1C .2D .3【答案】A【解析】此题考查向量的知识点;对于①:根据两向量共线定义知道,两向量共线有可能两向量所在的直线重合,所以此命题错误;对于②:两个向量可以平移到一个平面内,所以此命题错误;对于③:若三个向量,,a b c r r r 两两共面,这三个向量有可能不共面,所以此命题错误;对于④:根据空间向量的基本定理知道,这三个向量要不共面才可以,所以此命题错误,所以选A2.(2020·全国高二课时练习)在下列命题中:①若a r 、b r 共线,则a r 、b r 所在的直线平行;②若a r 、b r 所在的直线是异面直线,则a r 、b r 一定不共面;③若a r 、b r 、c r 三向量两两共面,则a r 、b r 、c r 三向量一定也共面;④已知三向量a r 、b r 、c r ,则空间任意一个向量p u r 总可以唯一表示为p xa yb zc =++u r r r r .其中正确命题的个数为()A .0B .1C .2D .3【答案】A【解析】①若a r 、b r 共线,则a r 、b r 所在的直线平行或重合;所以①错;②因为向量是可以自由移动的量,因此即使a r 、b r 所在的直线是异面直线,a r 、b r 也可以共面;所以②错;③若a r 、b r 、c r 三向量两两共面,因为两平面的关系不确定,因此a r 、b r 、c r三向量不一定共面;所以③错;④若三向量a r 、b r 、c r 共面,若向量p u r 不在该平面内,则向量p u r 不能表示为p xa yb zc =++u r r r r ,所以④错.故选:A.考法二 空间向量的线性运算【例2】2020·江西赣州.高二期中(理))在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF uuu r 等于( )A .1223EF AC AB AD ®®®®=+-B .112223EF AC AB AD ®®®®=--+C .112223EF AC AB AD ®®®®=-+D .112223EF AC AB AD ®®®®=-+-【答案】B【解析】在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,所以EF EB BA AF®®®®=++1223AB AC AB AD ®®®®æö=--+ç÷èø112223AC AB AD ®®®=--+,即112223EF AC AB AD ®®®®=--+.故选:B.【一隅三反】1.(2020·南昌市八一中学)如图,空间四边形OABC 中,,,OA a OB b OC c ===uuu r r uuu r r uuu r r,且2OM MA =,BN NC =,则MN =uuuu r( )A .221332a b c ++r r r B .111222a b c +-r r r C .211322a b c -++r r r D .121232a b c -+r r r 【答案】C 【解析】因为MN ON OM =-uuuu r uuu r uuuu r ,又因为()()2211,3322a OM OA ON OB OC c b =+===+uuuu r uuu r r uuu r uuu r uuu r r r,所以211322MN a b c =-++uuuu r r r r .故选:C 2.(2020·宝山.上海交大附中高二期末)在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若,AB a AD b ==uuu r r uuu r r ,1AA c =uuur r ,则与BM uuuu r 相等的向量是( )A .1122a b c ++r r r B .1122a b c --+r r r C .1122a b c -+r r r D .1122-++r r r a b c 【答案】D 【解析】根据空间向量的线性运算可知11BM BB B M =+uuuu r uuur uuuur 11112AA B D =+uuur uuuur ()1111112AA B A A D =++uuur uuuu r uuuur ()112AA AB AD =+-+uuur uuu r uuu r 因为,AB a AD b ==uuu r r uuu r r ,1AA c =uuur r ,则()112AA AB AD +-+uuur uuu r uuu r 1122a b c =-++r r r 即1122BM a b c =-++uuuu r r r r ,故选:D.3.(2019·张家口市宣化第一中学高二月考)如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD uuu r +12(BC uuu r -BD uuu r )等于( )A .AD uuu r B .FA uuu r C .AF uuu rD .EFuuu r 【答案】C 【解析】BC uuu r -BD uuu r =DC uuur ,11()22BC BD DC DF -==uuu r uuu r uuu r uuu r ,∴AD uuu r +12(BC uuu r -BD uuu r )AD DF AF =+=uuu r uuu r uuu r .故选C .考点三 空间向量的共面问题【例3】(2020·全国高二)在下列条件中,使M 与A ,B ,C 一定共面的是()A .OM OA OB OC =--uuuu r uuu r uuu r uuu r B .111532OM OA OB OC =++uuuu r uuu r uuu r uuu r C .0MA MB MC ++=uuu r uuu r uuu u r r D .0OM OA OB OC +++=uuuu r uuu r uuu r uuu r r 【答案】C 【解析】对于A 选项,由于11111--=-¹,所以不能得出,,,M A B C 共面.对于B 选项,由于1111532++¹,所以不能得出,,,M A B C 共面.对于C 选项,由于MA MB MC =--uuu r uuu r uuu u r ,则,,MA MB MC uuu r uuur uuuu r 为共面向量,所以,,,M A B C 共面.对于D 选项,由0OM OA OB OC +++=uuuu r uuu r uuu r uuu r r 得OM OA OB OC =---uuuu r uuu r uuu r uuu r,而11131---=-¹,所以不能得出,,,M A B C 共面.故选:C 【一隅三反】1.(2020·全国高二)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++uuu v uuu v uuu v uuu v ,若P ,A ,B ,C 四点共面,则实数t =______.【答案】18【解析】P ,A ,B ,C 四点共面,且3148OP OA OB OC t =++uuu r uuu r uuu r uuu r ,31148t ++=,解得18t =.故答案为: 182.(2020·全国高二)已知点M 在平面ABC 内,并且对空间任意一点O ,有1133OM xOA OB OC =++uuuu v uuu v uuu v uuu v ,则x =________.【答案】13【解析】已知1133OM xOA OB OC =++uuuu v uuu v uuu v uuu v 且M ,A ,B ,C 四点共面,则11133x ++= ,解得x=133.(2019·随州市第一中学高二期中)空间A B C D 、、、四点共面,但任意三点不共线,若P 为该平面外一点且5133PA PB xPC PD uuu r uuu r uuu r uuu r =--,则实数x 的值为( )A .13B .13-C .23D .23-【答案】A【解析】因为空间A B C D 、、、四点共面,但任意三点不共线,对于该平面外一点P 都有5133PA PB xPC PD uuu r uuu r uuu r uuu r =--,所以51133x --=,解得13x =.故选A 4.(2020·全国高二课时练习)已知平行四边形ABCD 从平面AC 外一点O 引向量.,OE k OA OF k OB ®®®®==,,OG k OC OH k OD ®®®®==.求证:四点E ,F ,G ,H 共面【答案】证明见解析【解析】∵,OE k OA OF k OB ®®®®==;∴||OE OF k OA OB==;EF //AB ,且EF =|k |AB ;同理HG //DC ,且HG =|k |DC ,AB =DC ;∴EF //HG ,且EF =HG ;∴四边形EFGH 为平行四边形;∴四点E ,F ,G ,H 共面.考点四 空间向量的数量积【例4】(2020·全国高二课时练习)已知平行六面体ABCD ﹣A ′B ′C ′D ′中,AB =4,AD =3,AA ′=5,∠BAD =90°,∠BAA ′=∠DAA ′=60°.(1)求AC ′的长;(如图所示)(2)求AC ¢uuuu r 与AC uuu r 的夹角的余弦值.【答案】(1;(2【解析】(1)可得AC ¢uuuu r ='AC CC +uuu r uuuu r ='AB AD AA ++uuu r uuu r uuur ,2AC ¢uuuu r =2AB AD AA ¢++uuu r uuu r uuur =22AB AD AA ¢++uuu r uuu r uuur +2(AB AD AB AA AD AA ¢¢×+×+×uuu r uuu r uuu r uuur uuu r uuur )=42+32+52+2(4×3×0+4×1153522´+´´)=85故AC ′的长等于AC ¢uuuu r=(2)由(1)可知AC ¢uuuu r =AB AD AA ¢++uuu r uuu r uuur ,AC ¢uuuu r=故AC AC ¢×uuuu r uuu r =(AB AD AA ¢++uuu r uuu r uuur )×(AB AD +uuu r uuu r )=222AB AB AD AD AA AB AA AD ¢¢+×++×+×uuu ruuu r uuu r uuu r uuur uuu r uuur uuu r =2211424303545322+´´´++´´+´´=852又AC uuu r ==5故AC ¢uuuu r 与ACuuu r的夹角的余弦值=AC AC AC AC ¢×¢×uuuu r uuu r uuuu r uuu r ==【一隅三反】1.(2019·宁夏贺兰县景博中学高二月考(理))平行六面体ABCD-A 1B 1C 1D 1中,向量1AB,AD,AA uuu r uuu r uuuu r 两两的夹角均为60°,且|AB uuu r |=1,|AD uuu r |=2,|1AA uuuu r |=3,则|1AC uuuu r |等于( )A .5B .6C .4D .8【答案】A 【解析】在平行六面体ABCD-A 1B 1C 1D 1中有,11AC AB AD CC =++uuuu v uuu v uuu v uuuu v =1AB AD AA ++uuu v uuu v uuuv 所以有1AC uuuu v =1AB AD AA ++uuu v uuu v uuuv ,于是有21AC uuuu v =21AB AD AA ++uuu v uuu v uuuv 21AC uuuu v =2220001112cos602cos602cos60AB AD AA AB AD AB AA AD AA +++××+××+××uuu v uuu v uuuv uuu v uuu v uuu v uuuv uuu v uuuv =25所以15AC =uuuu v ,答案选A2.(2020·延安市第一中学高二月考(理))四棱柱1111ABCD A B C D -的底面ABCD 为矩形,2AB =,4=AD ,16AA =,1160A AB A AD Ð=Ð=o ,则1AC的长为( )A .B .46C .D .32【答案】C 【解析】由11AC AC CC =+uuuu r uuu r uuuu r ,2222211111()2AC AC AC CC AC AC CC CC ==+=+×+uuuu r uuuu r uuu r uuuu r uuu r uuu r uuuu r uuuu r .由底面ABCD 为矩形得;241620AC =+=uuu r ,2136CC =uuuu r ,另;1160A AB A AD Ð=Ð=o ,1122()AC CC AB BC CC ×=+×uuu r uuuu r uuu r uuu r uuuu r ,01126cos 606,12AB CC BC CC ×=´´=×=uuu r uuuu r uuu r uuuur 21120363692,AC AC =++==uuuu r uuuu r 3.(2020·四川雨城�雅安中学高二月考(理))若空间四边形OABC 的四个面均为等边三角形,则cos ,OA BC uuu r uuu r 的值为( )A .12BC .12-D .0【答案】D【解析】依题意空间四边形OABC 的四个面均为等边三角形,设棱长均为a .而BC OC OB =-uuu r uuu r uuu r ,则()22cos cos 033OA OC OB OA OC OA OB a a p p ×-=×-×=×-×=uuu r uuu r uuu r uuu r uuu r uuu r uuu r 所以()cos ,0OA OC OB OA BC OA BC OA BC OA BC ×-×===××uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r .故选:D 4.(2020·全国高二课时练习).1BB ⊥平面ABC ,且△ABC 是∠B =90°的等腰直角三角形,▱A 11B A B 、▱B 11B C C 的对角线都分别相互垂直且相等,若AB =a ,求异面直线1BA 与AC 所成的角.【答案】60°【解析】如图所示.因为11,BA BA BB AC AB BC=+=+uuu r uuu r uuur uuu r uuu r uuu r 故()()1111BA AC BA BB AB BC BA AB BA BC BB AB BB BC ×=+×+=×+×+×+×uuu r uuu r uuu r uuur uuu r uuu r uuu r uuu r uuu r uuu r uuur uuu r uuur uuu r 因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC ,故2110,0,0,AB BC BB AB BB BC BA AB a ×=×=×=×=-uuu r uuu r uuur uuu r uuuruuu r uuu r uuu r故21BA AC a ×=-uuu r uuu r 又111,BA AC BA AC cos BA AC×=××uuu r uuu r uuu r uuu r uuu r uuu r故11,2cos BA AC ==-uuu r uuu r .而[]1,0,BA AC p Îuuu r uuu r ,故可得1,120BA AC =°uuu r uuu r <>,又∵异面直线所成的角是锐角或直角,∴异面直线BA 1与AC 成60°角.。
2021年人教A 版(2019)选择性必修第一册数学第一章 空间向量与立体几何单元测试卷(1)一、选择题1. 已知向量a →=(1,−2,2),b →=(1,1,6),则|a →−b →|=( ) A.25 B.17 C.√17 D.52. 已知向量a →=(λ, 6, 2),b →=(−1, 3, 1),满足a → // b →,则实数λ的值是( ) A.2 B.6 C.−2 D.−63. 在空间直角坐标系O −xyz 中,点A (−1,0,3)关于坐标原点的对称点为B ,则|AB|=( ) A.2 B.√10 C.2√10 D.104. 如图所示,在空间四边形OABC 中, OA →=a →,OB →=b →,OC →=C →,点N 在AB 上,且AN →=2NB →,M 为OC 中点,则MN →=( )A.12a →−23b →−12c →B.−23a →+12b →+12c →C.13a →+12b →−12c →D.13a →+23b →−12c →5. 设P (1,−2,5)是空间直角坐标系中的一点,则点P 关于坐标平面yOz 的对称点的坐标为( ) A.(1,2,−5) B.(−1,−2,5) C.(−1,−2,−5) D.(1,−2,−5)6. 已知平面α内有一点A (2,−1,2),平面α 的一个法向量为n →=(12,16,13),则下列四个点中在平面α内的是( ) A.P 1(1,−1,1) B.P 2(1,3,32)C.P 3(1,−3,32)D.P 4(−1,3,−32)7. 如图,在平行六面体ABCD −A 1B 1C 1D 1中,M 在AC 上,且AM =12MC ,N 在A 1D 上,且A 1N =2ND ,设AB →=a →,AD →=b →,AA 1→=c →,则MN →=( )A.−13a →+13b →+13c →B.a →+13b →−13c →C.13a →−13b →−23c →D.−13a →+b →+13c →8. 空间直角坐标系中A(1, 2, 3),B(−1, 0, 5),C(3, 0, 4),D(4, 1, 3),则直线AB 与CD 的位置关系是( ) A.平行 B.垂直 C.相交但不垂直 D.无法确定9. 已知A (0,0,2),B (1,0,2),C (0,2,0),则点A 到直线BC 的距离为( ) A.2√23B.1C.√2D.2√210. 如图,在正方体ABCD −A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段B 1C 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( )A.[√63,1] B.[√23,1] C.[√23,2√23] D.[√63,2√23]11. 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.在如图所示的阳马P−ABCD中,侧棱PD⊥底面ABCD,且PD=CD=AD,点E是PC 的中点,则PD与BE所成角的余弦值是()A.√33B.√36C.√63D.√6612. 如图,直三棱柱ABC一A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90∘,D是A1B1的中点,F是棱BB1上的动点,AB1,DF交于点E,要使AB1⊥平面C1DF,则线段B1F的长为( )A.√510B.√1010C.12D.√105二、填空题13. 已知直线l的一个法向量是n→=(√3,−1),则l的倾斜角的大小是________.14. 已知平面α的法向量为(2, −4, −2),平面β的法向量为(k, 2, 1),若α // β,则实数k的值为________.15. 给出下列命题:①直线l 的方向向量为a →=(1, −1, 2),直线m 的方向向量b →=(2, 1, −12),则l 与m 垂直; ②直线l 的方向向量a →=(0, 1, −1),平面α的法向量n →=(1, −1, −1),则l ⊥α; ③平面α,β的法向量分别为n 1→=(0, 1, 3),n 2→=(1, 0, 2),则α // β;④平面α经过三点A(1, 0, −1),B(0, 1, 0),C(−1, 2, 0),向量n →=(1, u, t)是平面α的法向量,则u +t =1.其中真命题的是________.(把你认为正确命题的序号都填上)16. 如图所示的一块长方体木料中,已知AB =BC =2,AA 1=1,设F 为线段AD 上一点,则该长方体中经过点A 1,F ,C 的截面面积的最小值为________.三、解答题17. 已知向量b →=(−2,1,1),点A(−3,−1,4),B(−2,−2,2),点E 在直线AB 上,使得OE →⊥b →,则点E 的坐标为多少.18. 如图,在空间直角坐标系中,正方体ABCD −A 1B 1C 1D 1棱长为2,E 为正方体的棱AA 1的中点,F 为棱AB 上的一点,若∠C 1EF =90∘,则点F 的坐标是多少.19.如图,正四棱柱ABCD −A 1B 1C 1D 1中,设AD =1,D 1D =λ(λ>0),若棱C 1C 上存在唯一的一点P 满足A 1P ⊥PB ,求实数λ的值.20.在如图所示的几何体中,△FCB是等边三角形,四边形ABCD是等腰梯形,AB//CD,AB,平面FCB⊥平面ABCD.CB=CD=12(1)求证:AC⊥平面FCB;(2)求二面角F−BD−C的余弦值.21. 在直四棱柱ABCD−A1B1C1D1中,AD // BC,∠BAD=90∘,AB=√3,BC=1,AD=AA1=3.(1)证明:AC⊥B1D;(2)求直线B1C1与平面ACD1所成角的正弦值.22. 如图1,在矩形ABCD中,AB=2,BC=4,E为AD的中点,O为BE中点.将△ABE沿BE折起到A′BE,使得平面A′BE⊥平面BCDE(如图2).(1)求证:A′O⊥CD;(2)求直线A′C与平面A′DE所成角的正弦值;(3)在线段A′C上是否存在点P,使得OP//平面A′DE?若存在,求出A′P的值;若不存在,A′C请说明理由.参考答案与试题解析2021年人教A 版(2019)选择性必修第一册数学第一章 空间向量与立体几何单元测试卷(1)一、选择题 1.【答案】 D【考点】空间向量运算的坐标表示 向量的模向量的减法及其几何意义 【解析】先求出a →−b →=(0,−3,−4),再利用模长公式求解即可. 【解答】解:∵ a →=(1,−2,2),b →=(1,1,6), ∴ a →−b →=(0,−3,−4),∴ |a →−b →|=√02+(−3)2+(−4)2=5. 故选D . 2.【答案】 C【考点】共线向量与共面向量 【解析】利用向量平行的性质直接求解. 【解答】解:∵ 向量a →=(λ, 6, 2),b →=(−1, 3, 1),满足a → // b →, ∴ λ−1=63=21,解得λ=−2, ∴ 实数λ的值是−2. 故选C . 3.【答案】 C【考点】空间中的点的坐标 空间两点间的距离公式求出B 点的坐标,再根据空间中两点间的距离公式即可得解. 【解答】解:设B (a,b,c ), 由中点坐标公式可得:a−12=0,b+02=0,c+32=0,解得a =1,b =0,c =−3, 所以B (1,0,−3),所以点|AB |=√(−1−1)2+(0−0)2+(3+3)2=2√10. 故选C . 4. 【答案】 D【考点】空间向量的加减法 【解析】利用向量的加法,MN →=MO →+OB →+BN →,利用中点公式代入. 【解答】解:MN → =MO → +OB → +BN →,MO → =−12OC →,BN → = 13BA → = 13(OA → −OB →), 所以MN →=−12OC → + 23OB → + 13OA →=−12c →+23b →+13a →. 故选D . 5. 【答案】 B【考点】空间直角坐标系 【解析】根据空间点的对称性分别进行判断即可. 【解答】解:因为点P(a, b, c)与点P ′关于坐标平面yOz 对称,则y ,z 不变,x 相反, 所以对称点P ′(−a, b, c),所以P (1,−2,5)关于坐标平面yOz 的对称点的坐标为(−1,−2,5). 故选B . 6.【答案】 B【考点】 平面的法向量向量的减法及其几何意义若点P 在平面α内,则P 2A →⋅n →=0,经过验证即可判断出结论. 【解答】解:由题意得P 1A →=(1,0,1),P 1A →⋅n →=56≠0,排除选项A . 同理,可排除选项C ,D . 因为P 2A →=(1,−4,12),所以P 2A →⋅n →=0. 故选B . 7.【答案】 A【考点】空间向量的基本定理及其意义 向量的加法及其几何意义 【解析】充分利用向量加法、减法的平行四边形、三角形法则以及数乘运算,将MN →表示出来,易知MN →=MA →+AA 1→+A 1N →,然后将三个向量分别用基底表示出来代入即可. 【解答】解:因为M 在AC 上,且AM =12MC ,N 在A 1D 上,且A 1N =2ND , 所以AM →=13AC →,A 1N →=23A 1D →. 又由已知平行六面体ABCD −A 1B 1C 1D 1, 且AB →=a →,AD →=b →,AA 1→=c →得: AC →=a →+b →,A 1D →=b →−c →,所以MN →=MA →+AN →=−AM →+AA 1→+A 1N →=−13(a →+b →)+c →+23(b →−c →). 化简得MN →=−13a →+13b →+13c →.故选A . 8. 【答案】 A【考点】共线向量与共面向量 【解析】由已知得AB →=(−2, −2, 2),CD →=(1, 1, −1),AB →=−2CD →,从而得到直线AB 与CD 平行. 【解答】解:在空间直角坐标系中,A(1, 2, 3),B(−1, 0, 5),C(3, 0, 4),D(4, 1, 3), ∴ AB →=(−2, −2, 2),CD →=(1, 1, −1), ∴ AB →=−2CD →, ∴ 直线AB 与CD 平行. 故选A . 9. 【答案】 A【考点】空间向量的夹角与距离求解公式 【解析】求出|AB →|=(1,0,0), |BC →|=(−1,2,−2),根据空间向量的夹角与距离公式即可求解点A 到直线BC 的距离. 【解答】解:∵ A (0,0,2) ,B (1,0,2) ,C (0,2,0), ∴ AB →=(1,0,0), BC →=(−1,2,−2), ∴ 点A 到直线BC 的距离为: d =|AB →|√1−(cos <AB →,BC →>)2 =|AB →|√1−(AB →⋅BC→|AB →|⋅|BC →|)2=1×√1−(−11×3)2=2√23. 故选A . 10.【答案】 C【考点】用空间向量求直线与平面的夹角 【解析】设正方体的棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出sin α的取值范围. 【解答】解:设正方体的棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则A 1(2, 0, 2),B(2, 2, 0),D(0, 0, 0),O(1, 1, 0),P(a, 2, 2),0≤a ≤2,DA 1→=(2, 0, 2),DB →=(2, 2, 0),OP →=(a −1, 1, 2),设平面A 1BD 的法向量n →=(x, y, z),则{n →⋅BD →=2x +2y =0,n →⋅DA 1→=2x +2z =0,取x =1,得n →=(1, −1, −1),∴ sin α=|cos <OP →,n →>|=|OP →⋅n →|OP →|⋅|n →|| =√(a−1)2+5⋅√3=√33⋅√(a−1)2+5, ∵ 0≤a ≤2,∴ a =2时,sin α取最小值 (sin α)min =√33√(2−1)2+5=√23, a =0时,sin α取最大值 (sin α)max =√33×√(0−1)2+5=2√23. ∴ sin α的取值范围是[√23,2√23]. 故选C .11. 【答案】D【考点】用空间向量求直线间的夹角、距离【解析】此题暂无解析【解答】解:建立空间直角坐标系如图所示,设PD =CD =AD =2,则E(0, 1, 1),B(2, 2, 0),P(0, 0, 2),D(0, 0, 0),∴ PD →=(0, 0, −2),BE →=(−2, −1, 1),设PD 与BE 的夹角为θ,则cos θ=|PD →⋅BE →||PD →|⋅|BE →| =22√6 =√66. 故选D .12.【答案】C【考点】点、线、面间的距离计算向量语言表述线面的垂直、平行关系【解析】以C 1为原点,C 1A 1为x 轴,C 1B 1为y 轴,C 1C 为z 轴,建立空间直角坐标系,利用向量法能求出线段B 1F 的长.【解答】解:以C 1为原点,C 1A 1为x 轴,C 1B 1为y 轴,C 1C 为z 轴,建立空间直角坐标系,由题意A 1(1, 0, 0),B 1(0, 1, 0),D(12,12, 0),C 1(0, 0, 0),A(1, 0, 2),设F(0, 1, t),0≤t ≤2,C 1D →=(12,12, 0),AB 1→=(−1, 1, −2),C 1F →=(0, 1, t),因为AB 1⊥平面C 1DF ,{AB 1→⋅C 1D →=0,AB 1→⋅C 1F →=0,所以1−2t =0,解得t =12,所以B 1F →=(0,0,12),所以线段B 1F 的长为12.故选C .二、填空题13.【答案】π3【考点】直线的方向向量直线的倾斜角【解析】设直线l 的倾斜角为θ,θ∈[0, π).设直线的方向向量为u →=(x, y),则u →∗n →=0,可得tan θ=y x .【解答】解:设直线l 的倾斜角为θ,θ∈[0, π).设直线的方向向量为u →=(x, y),则u →⋅n →=√3x −y =0,∴ tan θ=y x =√3, 解得θ=π3.故答案为:π3.14.【答案】−1【考点】向量语言表述面面的垂直、平行关系向量的数量积判断向量的共线与垂直【解析】设平面α的法向量为a →,平面β的法向量为b →.由于α // β,可得a → // b →,因此∃实数λ使得a →=λb →.再利用向量共线定理的坐标运算即可得出.【解答】解:∵ 平面α的法向量为(2, −4, −2),平面β的法向量为(k, 2, 1),且α // β, ∴ a → // b →,∴ 存在实数λ使得a →=λb →.∴ {2=kλ,−4=2λ,−2=λ,解得k =−1.故答案为:−1.15.【答案】①④【考点】平面的法向量共线向量与共面向量数量积判断两个平面向量的垂直关系用向量证明平行【解析】①根据直线l 、m 的方向向量a →与b →垂直,得出l ⊥m ;②根据直线l 的方向向量a →与平面α的法向量n →垂直,不能判断l ⊥α;③根据平面α、β的法向量n 1→与n 2→不共线,不能得出α // β;④求出向量AB →与BC →的坐标表示,再利用平面α的法向量n →,列出方程组求出u +t 的值.【解答】解:①,∵ a →=(1, −1, 2),b →=(2, 1, −12),∴ a →⋅b →=1×2−1×1+2×(−12)=0,∴ a →⊥b →,∴ 直线l 与m 垂直,故①正确;②,a →=(0, 1, −1),平面法向量为n →=(1, −1, −1),∴ a →⋅n →=0×1+1×(−1)+(−1)×(−1)=0,∴ a →⊥n →,∴ l // α或l ⊂α,故②错误;③,∵ n 1→=(0, 1, 3),n 2→=(1, 0, 2),∴ n 1→与n 2→不共线,∴ α // β不成立,故③错误;④,∵ 点A(1, 0, −1),B(0, 1, 0),C(−1, 2, 0),∴ AB →=(−1, 1, 1),BC →=(−1, 1, 0),向量n →=(1, u, t)是平面α的法向量,∴ {n →⋅AB →=0,n →⋅BC →=0,即{−1+u +t =0,−1+u =0,∴ u +t =1,故④正确.综上,以上真命题的序号是①④.故答案为:①④.16.【答案】6√55【考点】空间向量的数乘运算空间直角坐标系棱柱的结构特征【解析】根据题意,建立建立空间直角坐标系O −xyz ,用坐标表示向量, 通过向量计算截面面积,求出截面面积的最小值.【解答】解:如图所示,以DA 为x 轴,AB 为y 轴,AA 1为z 轴,建立空间直角坐标系A −xyz ,设截面与交B 1C 1点K ,F(−2λ, 0, 0),则FC →=(−2+2λ, 2, 0),FA 1→=(2λ, 0, 1);∴ S =|FC →|⋅|FA 1→|sin θ,S 2=|FC →|2⋅|FA 1→|2−(FC →⋅FA 1→)2=[(−2+2λ)2+4](4λ2+1)−[(−2+2λ)⋅2λ]2=20λ2−8λ+8=20(λ−15)2+365, 当λ=15时,S 2取最小值365,∴ S 的最小值为6√55. 故答案为:6√55. 三、解答题17.【答案】解:AB →=OB →−OA →=(1,−1,−2),∵ 点E 在直线AB 上,∴ OE →=OA →+λAB →=(−3,−1,4)+λ(1,−1,−2)=(−3+λ,−1−λ,4−2λ), ∴ OE →⋅b →=−2(−3+λ)+(−1−λ)+(4−2λ)=0,解得λ=95,∴ OE →=(−65,−145,25), ∴ E 点坐标为(−65,−145,25). 【考点】空间向量运算的坐标表示共线向量与共面向量【解析】此题暂无解析【解答】解:AB →=OB →−OA →=(1,−1,−2),∵ 点E 在直线AB 上,∴ OE →=OA →+λAB →=(−3,−1,4)+λ(1,−1,−2)=(−3+λ,−1−λ,4−2λ), ∴ OE →⋅b →=−2(−3+λ)+(−1−λ)+(4−2λ)=0,解得λ=95,∴ OE →=(−65,−145,25), ∴ E 点坐标为(−65,−145,25).18.【答案】解:由正方体的性质可得E(2,0,1),C 1(0,2,2),设F(2,y,0),则EC 1→=(−2,2,1),EF →=(0,y,−1).因为∠C 1EF =90∘,所以EC 1→⋅EF →=2y −1=0,解得y =12, 则点F 的坐标为(2,12,0). 【考点】空间向量的数量积运算空间中的点的坐标【解析】此题暂无解析【解答】解:由正方体的性质可得E(2,0,1),C 1(0,2,2),设F(2,y,0),则EC 1→=(−2,2,1),EF →=(0,y,−1).因为∠C 1EF =90∘,所以EC 1→⋅EF →=2y −1=0,解得y =12, 则点F 的坐标为(2,12,0).19.【答案】解:如图,以点D 为原点O ,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系O −xyz ,则D(0, 0, 0),B(1, 1, 0),A 1(1, 0, λ),设P(0, 1, x),其中x ∈[0, λ],因为A 1P ⊥PB ,所以A 1P →⋅BP →=0,即(−1, 1, x −λ)⋅(−1, 0, x)=0,化简得x 2−λx +1=0,x ∈[0, λ],由点P(0, 1, x)的唯一性知方程x 2−λx +1=0只有唯一解,所以,判别式Δ=λ2−4=0,且λ>0,解得λ=2.【考点】空间向量的数量积运算【解析】以点D 为原点O ,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系O −xyz ,利用向量法能求出实数λ的值.【解答】解:如图,以点D 为原点O ,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系O −xyz ,则D(0, 0, 0),B(1, 1, 0),A 1(1, 0, λ),设P(0, 1, x),其中x ∈[0, λ],因为A 1P ⊥PB ,所以A 1P →⋅BP →=0,即(−1, 1, x −λ)⋅(−1, 0, x)=0,化简得x 2−λx +1=0,x ∈[0, λ],由点P(0, 1, x)的唯一性知方程x 2−λx +1=0只有唯一解,所以,判别式Δ=λ2−4=0,且λ>0,解得λ=2.20.【答案】证明:(1)在等腰梯形ABCD 中,过点C 作CE ⊥AB 交AB 于点E ,设BC 长为1, 则AB =2,BE =12,CE =√32,AC =√3,可得BC 2+AC 2=AB 2,即∠ACB =90∘,所以AC ⊥BC .因为面FCB 与面ABCD 交线为BC ,又AC ⊂面ABCD ,所以AC ⊥面FCB .(2)解:过点C 作CM ⊥平面BCD ,以点C 为原点,CA,CB,CM 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系.则C(0,0,0),B(0,1,0),D (√32,−12,0),F (0,12,√32), 所以BD →=(√32,−32,0),BF→=(0,−12,√32), 设平面BDF 的法向量为m →=(x,y,z),则{m →⋅BD →=0m →⋅BF →=0即{√32x −32y =0−12y +√32z =0,取z =1,则y =√3,x =3,得m →=(3,√3,1),取平面BCD 的法向量为n →=(0,0,1) ,所以cos <m →,n →>=m →⋅n →|m →|⋅|n →|=1√9+3+1=√1313由图形知该二面角的平面角为锐角,所以二面角F −BD −C 的余弦值为√1313.【考点】用空间向量求平面间的夹角直线与平面垂直的判定【解析】此题暂无解析【解答】证明:(1)在等腰梯形ABCD 中,过点C 作CE ⊥AB 交AB 于点E ,设BC 长为1, 则AB =2,BE =12,CE =√32,AC =√3,可得BC 2+AC 2=AB 2,即∠ACB =90∘,所以AC ⊥BC .因为面FCB 与面ABCD 交线为BC ,又AC ⊂面ABCD ,所以AC ⊥面FCB .(2)解:过点C 作CM ⊥平面BCD ,以点C 为原点,CA,CB,CM 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系.则C(0,0,0),B(0,1,0),D (√32,−12,0),F (0,12,√32), 所以BD →=(√32,−32,0),BF→=(0,−12,√32), 设平面BDF 的法向量为m →=(x,y,z),则{m →⋅BD →=0m →⋅BF →=0即{√32x −32y =0−12y +√32z =0,取z =1,则y =√3,x =3,得m →=(3,√3,1),取平面BCD 的法向量为n →=(0,0,1) ,所以cos <m →,n →>=m →⋅n →|m →|⋅|n →|=1√9+3+1=√1313由图形知该二面角的平面角为锐角,所以二面角F −BD −C 的余弦值为√1313. 21.【答案】(1)证明:以AB →,AD →,AA 1→方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.A(0,0,0),C(√3,1,0),B 1(√3,0,3),D(0,3,0),C 1(√3,1,3),D 1(0,3,3),∴ AC →=(√3,1,0),B 1D →=(−√3,3,−3),∴ AC →⋅B 1D →=0,∴ AC ⊥B 1D .(2)解:设平面ACD 1的一个法向量为m →=(x,y,z),AC →=(√3,1,0),AD 1→=(0,3,3),则{√3x +y =03y +3z =0, ∴ m →=(1,−√3,√3)设直线B 1C 1与平面ACD 1所成角为θ,∵ B 1C 1→=(0,1,0),∴ sin θ=|B 1C 1→⋅m →||B 1C 1→||m →|=√217, ∴ 直线B 1C 1与平面ACD 1所成角的正弦值为√217. 【考点】用空间向量求直线与平面的夹角向量语言表述线线的垂直、平行关系两条直线垂直的判定【解析】(Ⅰ)以AB →,AD →,AA 1→方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.求出相关点的坐标;通过计算AC →⋅B 1D →=0,证明AC ⊥B 1D .(Ⅱ)求出平面ACD 1的法向量,设直线B 1C 1与平面ACD 1所成角为θ,求出B 1C 1→=(0,1,0),利用向量的数量积求解直线B 1C 1与平面ACD 1所成角的正弦值.【解答】(1)证明:以AB →,AD →,AA 1→方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.A(0,0,0),C(√3,1,0),B 1(√3,0,3),D(0,3,0),C 1(√3,1,3),D 1(0,3,3),∴ AC →=(√3,1,0),B 1D →=(−√3,3,−3),∴ AC →⋅B 1D →=0,∴ AC ⊥B 1D .(2)解:设平面ACD 1的一个法向量为m →=(x,y,z),AC →=(√3,1,0),AD 1→=(0,3,3),则{√3x +y =03y +3z =0, ∴ m →=(1,−√3,√3)设直线B 1C 1与平面ACD 1所成角为θ,∵ B 1C 1→=(0,1,0),∴ sin θ=|B 1C 1→⋅m →||B 1C 1→||m →|=√217, ∴ 直线B 1C 1与平面ACD 1所成角的正弦值为√217. 22.【答案】(1)证明:由已知AB =AE =2,因为O 为BE 中点,所以A ′O ⊥BE .因为平面A ′BE ⊥平面BCDE ,且平面A ′BE ∩平面BCDE =BE ,A ′O ⊂平面A ′BE ,所以A ′O ⊥平面BCDE .又因为CD ⊂平面BCDE ,所以A ′O ⊥CD .(2)解:设F 为线段BC 上靠近B 点的四等分点,G 为CD 中点,由已知易得OF ⊥OG .由(1)可知,A ′O ⊥平面BCDE ,所以A ′O ⊥OF ,A ′O ⊥OG .以O 为原点,OF ,OG ,OA ′所在直线分别为x ,y ,z 轴建立空间直角坐标系(如图).因为A ′B =2,BC =4, 所以A ′(0,0,√2),B(1,−1,0),C(1,3,0),D(−1,3,0),E(−1,1,0). 设平面A ′DE 的一个法向量为m →=(x 1,y 1,z 1),因为A ′D→=(−1,3,−√2),DE →=(0,−2,0), 所以{m →⋅A ′D →=0,m →⋅DE →=0,即{−x 1+3y 1−√2z 1=0,−2y 1=0, 取z 1=−1,得m =(√2,0,−1),而A ′C →=(1,3,−√2),所以直线A ′C 与平面A ′DE 所成角的正弦值sin θ=|2√22√3⋅√3|=√23. (3)解:在线段A ′C 上存在点P ,使得OP//平面A ′DE .设P (x 0,y 0,z 0),且A ′PA ′C =λ(0≤λ≤1),则A ′P →=λA ′C →,λ∈[0,1].因为A ′(0,0,√2),C(1,3,0),所以(x 0,y 0,z 0−√2)=(λ,3λ,−√2λ),所以x 0=λ,y 0=3λ,z 0=√2−√2λ,所以P(λ,3λ,√2−√2λ),OP →=(λ,3λ,√2−√2λ),若OP//平面A ′DE ,则OP →⊥m →,即OP →⋅m →=0.由(2)可知,平面A ′DE 的一个法向量m →=(√2,0,−1),即√2λ−√2+√2λ=0,解得λ=12∈[0,1],所以当A ′P A ′C =12时,OP//平面A ′DE .【考点】用空间向量求直线与平面的夹角用向量证明平行直线与平面垂直的性质直线与平面垂直的判定【解析】此题暂无解析【解答】(1)证明:由已知AB =AE =2,因为O 为BE 中点,所以A ′O ⊥BE .因为平面A ′BE ⊥平面BCDE ,且平面A ′BE ∩平面BCDE =BE ,A ′O ⊂平面A ′BE ,所以A ′O ⊥平面BCDE .又因为CD ⊂平面BCDE ,所以A ′O ⊥CD .(2)解:设F 为线段BC 上靠近B 点的四等分点,G 为CD 中点,由已知易得OF ⊥OG .由(1)可知,A ′O ⊥平面BCDE ,所以A ′O ⊥OF ,A ′O ⊥OG .以O 为原点,OF ,OG ,OA ′所在直线分别为x ,y ,z 轴建立空间直角坐标系(如图).因为A ′B =2,BC =4, 所以A ′(0,0,√2),B(1,−1,0),C(1,3,0),D(−1,3,0),E(−1,1,0).设平面A ′DE 的一个法向量为m →=(x 1,y 1,z 1),因为A ′D →=(−1,3,−√2),DE →=(0,−2,0),所以{m →⋅A ′D →=0,m →⋅DE →=0,即{−x 1+3y 1−√2z 1=0,−2y 1=0, 取z 1=−1,得m =(√2,0,−1),而A ′C →=(1,3,−√2),所以直线A ′C 与平面A ′DE 所成角的正弦值sin θ=|2√22√3⋅√3|=√23.(3)解:在线段A ′C 上存在点P ,使得OP//平面A ′DE . 设P (x 0,y 0,z 0),且A ′P A ′C =λ(0≤λ≤1), 则A ′P →=λA ′C →,λ∈[0,1].因为A ′(0,0,√2),C(1,3,0),所以(x 0,y 0,z 0−√2)=(λ,3λ,−√2λ),所以x 0=λ,y 0=3λ,z 0=√2−√2λ, 所以P(λ,3λ,√2−√2λ),OP →=(λ,3λ,√2−√2λ), 若OP//平面A ′DE ,则OP →⊥m →,即OP →⋅m →=0.由(2)可知,平面A ′DE 的一个法向量m →=(√2,0,−1), 即√2λ−√2+√2λ=0,解得λ=12∈[0,1], 所以当A ′P A ′C =12时,OP//平面A ′DE .。
高三数学空间向量试题答案及解析1.如图,在直三棱柱中,平面侧面,且(1)求证:;(2)若直线与平面所成的角为,求锐二面角的大小.【答案】(1)详见解析;(2)【解析】(1)取的中点,连接,要证 ,只要证平面由直三棱柱的性质可知 ,只需证,因此只要证明平面事实上,由已知平面侧面,平面,且所以平面成立,于是结论可证.(2)思路一:连接,可证即为直线与所成的角,则过点A作于点,连,可证即为二面角的一个平面角.在直角中,即二面角的大小为思路二:以点为原点,以所在直线分别为轴建立空间直角坐标系设平面的一个法向量,平面的一个法向量为,利用向量的数量积求出这两个法向量的坐标,进而利用法向量的夹角求出锐二面角的大小.试题解析:.解(1)证明:如图,取的中点,连接,因,则由平面侧面,且平面侧面,得,又平面,所以.因为三棱柱是直三棱柱,则,所以.又,从而侧面,又侧面,故.解法一:连接,由(1)可知,则是在内的射影∴即为直线与所成的角,则在等腰直角中,,且点是中点,∴,且,∴过点A作于点,连,由(1)知,则,且∴即为二面角的一个平面角且直角中:,又,∴,且二面角为锐二面角∴,即二面角的大小为解法二(向量法):由(1)知且,所以以点为原点,以所在直线分别为轴建立空间直角坐标系,如图所示,且设,则,,,,,,,设平面的一个法向量,由,得:令,得,则设直线与所成的角为,则得,解得,即又设平面的一个法向量为,同理可得,设锐二面角的大小为,则,且,得∴锐二面角的大小为.【考点】1、空间直线、平面的位置关系;2、空间向量在立体几何问题中的应用.2.如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M为AD的中点.(1)证明:MF⊥BD;(2)若二面角A-BF-D的平面角的余弦值为,求AB的长.【答案】(1)见解析(2)【解析】(1)证明由已知得△ADF为正三角形,所以MF⊥AD,因为平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD,MF⊂平面ADEF,所以MF⊥BD.(2)设AB=x,以F为原点,AF,FE所在直线分别为x轴,y轴建立如图所示的空间直角坐标系,则F(0,0,0),A(-2,0,0),D(-1,,0),B(-2,0,x),所以=(1,-,0),=(2,0,-x).因为EF⊥平面ABF,所以平面ABF的法向量可取n1=(0,1,0).设n2=(x1,y1,z1)为平面BFD的法向量,则可取n2=.因为cos〈n1,n2〉==,得x=,所以AB=.3.平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是()A.(,-1,-1)B.(6,-2,-2)C.(4,2,2)D.(-1,1,4)【答案】D【解析】设平面α的法向量为n,则n⊥,n⊥,n⊥,所有与 (或、)平行的向量或可用与线性表示的向量都与n垂直,故选D.4.在正方体ABCD-A1B1C1D1中,M、N分别为棱AA1和BB1的中点,则sin〈,〉的值为()A.B.C.D.【答案】B【解析】设正方体的棱长为2,以D为坐标原点,DA为x轴,DC为y轴,DD1为z轴建立空间直角坐标系(如图),可知=(2,-2,1),=(2,2,-1),cos〈,〉=-,sin〈,〉=.5.如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=AD=a,G是EF的中点,则GB与平面AGC所成角的正弦值为()A.B.C.D.【答案】C【解析】如图,以A为原点建立空间直角坐标系,则A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a,a,0),F(a,0,0),=(a,a,0),=(0,2a,2a),=(a,-a,0),=(0,0,2a),设平面AGC的法向量为n1=(x1,y1,1),由⇒⇒⇒n1=(1,-1,1).sinθ===.6.在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,则AD与平面AA1C1C所成的角的正弦值为()A.B.-C.D.-【答案】A【解析】取AC中点E,连接BE,则BE⊥AC,如图,建立空间直角坐标系B-xyz,则A(,,0),D(0,0,1),则=(-,-,1).∵平面ABC⊥平面AA1C1C,BE⊥AC,∴BE⊥平面AA1C1 C.∴=(,0,0)为平面AA1C1C的一个法向量,∴cos〈,〉=-,设AD与平面AA1C1C所成的角为α,∴sinα=|cos〈,〉|=,故选A.7.已知正方体ABCD-A1B1C1D1中,点E为上底面A1C1的中心,若=+x+y,则x、y的值分别为()A.x=1,y=1B.x=1,y=C.x=,y=D.x=,y=1【答案】C【解析】如图,=+=+=+ (+).8.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)·(2b)=-2,则x=________.【答案】2【解析】c-a=(0,0,1-x),2b=(2,4,2),由(c-a)·(2b)=-2,得(0,0,1-x)·(2,4,2)=-2,即2(1-x)=-2,解得x=2.9.已知2a+b=(0,-5,10),c=(1,-2,-2),a·c=4,|b|=12,则以b,c为方向向量的两直线的夹角为________.【答案】60°【解析】由题意得(2a+b)·c=0+10-20=-10. 即2a·c+b·c=-10,又∵a·c=4,∴b·c=-18,∴cos〈b,c〉===-,∴〈b,c〉=120°,∴两直线的夹角为60°.10.如图,在棱长为a的正方体ABCD-A1B1C1D1中,G为△BC1D的重心,(1)求证:A1、G、C三点共线;(2)求证:A1C⊥平面BC1D;(3)求点C到平面BC1D的距离.【答案】(1)见解析(2)见解析(3) a.【解析】解:(1)证明:=++=++,可以证明:=(++)=,∴∥,即A1、G、C三点共线.(2)证明:设=a,=b,=c,则|a|=|b|=|c|=a,且a·b=b·c=c·a=0,∵=a+b+c,=c-a,∴·=(a+b+c)·(c-a)=c2-a2=0,∴⊥,即CA1⊥BC1,同理可证:CA1⊥BD,因此A1C⊥平面BC1D.(3)∵=a+b+c,∴2=a2+b2+c2=3a2,即||=a,因此||= a.即C到平面BC1D的距离为 a.11.如图,在四棱锥中,,,,,点为棱的中点.(1)证明:;(2)求直线与平面所成角的正弦值;(3)若为棱上一点,满足,求二面角的余弦值.【答案】(1)详见试题分析;(2)直线与平面所成角的正弦值为;(3).【解析】(1)可以建立空间直角坐标系,利用向量数量积来证明。
高三单元试题十:空间向量
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有
一项是符合题目要求的。
) 1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若D A B A ==1111,, c A A =1,则下列向量中与B 1相等的向量是
( )
A .++-21
21 B .
++21
21
C .c b a +-2
1
21
D .c b a +--2
1
21
2.化简(-3,4,1)·[2(5,-2,3)+3(-3,1,0)]·(2,-1,4)的结果是 ( )
A .(-4,2,8)
B .(2,-1,4)
C .(-2,1,-4)
D .(4,-2,8) 3.设OA =a ,OB =b ,OC =c ,则使A 、B 、C 三点共线的条件是 ( )
A .c =a +b ,
B .c =
12a +1
3
b C .
c =3a -4b D .c =4a -3b 4.若点A(x 2
+4,4-y ,1+2z )关于y 轴的对称点是B(-4x ,9,7-z ),则x ,y ,z 的
值依次为
( )
A .1,-4,9
B .2,-5,-8
C .2,5,8
D .-2,-5,8
5.若OA 、OB 、OC 三个单位向量两两之间夹角为60°,则|OA +OB +OC |= ( )
A .6 B
C .3
D
6.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成
角的大小是 ( )
A .5
1
arccos
B .3
1arccos
C .
3π D .6
π
7.设a 、b 是平面α内的两个非零向量,则n ·a =0,n ·b =0是n 为平面α的法向量的( )
A .充分条件
B .充要条件
C .必要条件
D .既非充分又非必要条件 8.已知a =(2,2,1),b =(4,5,3),而n ·a =n ·b =0,且|n |=1,则n = ( )
A .(
13,23,-23) B .(13,-23,23) C .(-13,23,-23)D .±(13,-23,2
3
) 9.设A 、B 、C 、D 是空间任意四个点,令u =AD BC +,v =AB CD +,w =AC BD +,则u 、v 、w 三个向量 ( )
A .互不相等
B .至多有两个相等
C .至少有两个相等
D .有且只有两个相等 10.如图,以等腰直角三角形斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂
直的两个平面后,某学生得出下列四个结论:
①0≠⋅;
②∠BAC =60°;
③三棱锥D —ABC 是正三棱锥;
D C
A 1
B 1 A
B M
D 1
C 1
B
D
C
B
④平面ADC 的法向量和平面ABC 的法向量互相垂直. 其中正确的是 ( )
A .①②
B .②③
C .③④
D .①④ 11.若a 、b 、c 是空间的一个基底,下列各组 ①l a 、m b 、n c (lmn ≠0); ②a +2b 、2b +3c 、3a -9c ; ③a +2b 、b +2c 、c +2a ; ④a +3b 、3b +2c 、-2a +4c
中,仍能构成空间基底的是 ( ) A .①② B .②③ C .①③ D .②④ 12.在空间直角坐标系O —xyz 中,有一个平面多边形,它在x O y 平面的正射影的面积为8,
在y O z 平面和z O x 平面的正射影的面积都为6,则这个多边形的面积为 ( )
A .46
B .246
C .34
D .234
二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.) 13.若A(-1,2,3)、B(2,-4,1)、C(x ,-1,-3)是直角三角形的三个顶点,则x = . 14.若a =(3x ,-5,4)与b =(x ,2x ,-2)之间夹角为钝角,则x 的取值范围为 . 15.设向量a =(1,-2,2),b =(-3,x ,4),已知a 在b 上的射影是1,则x = . 16.设A(1,2,-1),B(0,3,1),C(-2,1,2)是平行四边形的三个顶点,则此平行四边
形的面积为 .
三、解答题(本大题共6小题,共74分.解答应有证明过程或演算步骤) 17.(本题12分)在四面体ABCD 中,AB ⊥平面BCD ,BC=CD ,∠BCD=90°,∠ADB=30°,
E ,
F 分别是AC ,AD 的中点。
⑴求证:平面BEF ⊥平面ABC ; ⑵求平面BEF 和平面BCD 所成的角.
18.(本题12分)已知正三棱柱ABC —A 1B 1C 1,底面边长AB=2,AB 1⊥BC 1,点O 、O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系. ⑴求正三棱柱的侧棱长.
⑵若M 为BC 1的中点,试用基向量1AA 、AB 、AC
⑶求异面直线AB 1与BC 所成角的余弦值..
19.(本题12分)如图,已知正四棱柱ABCD —A 1B 1C 1D 1中,底面边长AB=2,侧棱BB 1的长为4,过点B 作B 1C 的垂线交侧棱CC 1于点E ,交B 1C 于点F. ⑴求证:A 1C ⊥平面BED ;
⑵求A 1B 与平面BDE 所成的角的正弦值.
20.(本题12分).在60°的二面角的棱上,有A 、B 两点,线段AC 、BD 分别在二面角的两个面内,且都垂直于AB ,已知AB=4,AC=6,BD=8. ⑴求
CD 的长度;
⑵求CD 与平面 所成的角
21.(本题12分)棱长为a 的正方体OABC —O 1A 1B 1C 1中,E 、F 分别为棱AB 、BC 上的动点,且AE=BF=x (0≤x ≤a ).以O 为原点,直线OA 、OC 、空间直角坐标系,如图. ⑴求证:A 1F ⊥C 1E ;
⑵当△BEF 的面积取得最大值时,求二面角B 1—EF —B 的大小.
A B D C A 1
B 1
D 1 C 1
E F
22.(本题14分)如图直角梯形OABC 中,∠COA =∠OAB =2
π
,OC =2,OA =AB =1,SO ⊥平面OABC ,SO=1,以OC 、OA 、OS 分别为x 轴、y 轴、z 轴建立直角坐标系O-xyz .
⑴求SC OB α与的夹角的大小(用反三角函数表示); ⑵设:,),,,1(求平面满足SBC n q p n ⊥= ①;n 的坐标
②OA 与平面SBC 的夹角β(用反三角函数表示);
③O 到平面SBC 的距离.
⑶设:.),,1(填写且满足OB k SC k s r k ⊥⊥= ①的坐标为 .
②异面直线SC 、OB 的距离为 .(注:⑶只要求写出答案)。