ARM硬件平台设计
- 格式:ppt
- 大小:1.25 MB
- 文档页数:69
摘要论文主要介绍了基于ARM9的嵌入式Web服务器Boa的软、硬件设计及其实现,其中硬件部分的核心是三星的S3C2410X为处理器。
最后成果形式为可以远程访问的WebServer嵌入式服务器。
Boa是一款单任务的HTTP服务器。
与其他传统的Web服务器不同的是当有连接请求到来时,它并不为每个连接单独创建进程, 也不通过复制自身进程来处理多链接。
而是通过建立HTTP请求列表来处理多路HTTP连接请求。
同时它只为CGI程序创建新的进程,这样就在最大程度上节省了系统资源,这对嵌入式系统来说至关重要。
同时它还具有自动生成目录、自动解压文件等功能。
因此, Boa在嵌入式系统中具有很高的应用价值。
关键词:ARM;Linux;嵌入式Web服务器;CGIThis paper has mainly developed the software hardware design and realization of the embedded Web server Boa based on ARM. And the core of the hardware part is S3C2410X microprocessor produced by Samsung . The final achievement is the embedded webserver which can remote visit. Boa is a single-tasking HTTP server. That means that unlike traditional webservers, it does not fork for each incoming connection, nor does it fork many copies of itself to handle multiple connections. It internally multiplexes all of the ongoing HTTP connections. And forks only for CGI programs, this is very important to embedded system. At the same time, it also has the function of automatic directory generation、automatic file gunzipping and so on. So Boa is of highly value in the embedded system application.Keywords: ARM;Linux;Embedded Web server;CGI摘要 (1)Abstract (2)目录 (3)第一章引言 (5)第二章课题背景 (6)2.1 嵌入式系统简介 (6)2.2 嵌入式系统和Linux (6)2.3 ARM9硬件平台 (7)2.3.1 ARM简介 (7)2.3.2 JXARM9-2410 ARM嵌入式教学实验系统 (8)第三章嵌入式Web服务器 (9)3.1 概述 (9)3.2 Web服务器原理 (9)3.3 嵌入式Web服务器实现原理 (9)3.3.1 TCP/IP协议 (9)3.4 嵌入式Web服务器Boa (10)3.4.1 Boa概述 (10)3.4.2 Boa的功能实现 (11)第四章CGI技术 (12)4.1 CGI概述 (12)4.2 CGI工作原理 (12)第五章建立嵌入式系统开发环境 (14)5.1 在Vmware下安装Redhat 9.0 (14)5.2 编译配置主机开发环境 (18)5.2.1 配置以太网 (18)5.2.2 安装配置tftp服务器 (19)5.2.3 配置防火墙 (21)5.2.4 配置NFS服务器 (22)5.3 JXARM9-2410中U-boot烧写 (22)5.3.1 u-boot的功能 (22)5.3.2 使用ADT IDE烧写u-boot (23)第六章系统功能的实现 (25)6.1 GCC简介 (25)6.1.1 GCC概述 (25)6.1.2 GCC基本用法 (25)6.2 Linux内核移植 (26)6.2.1 Linux内核源代码的安装 (26)6.2.2 Linux交叉编译环境的建立和使用 (27)6.2.3 Linux内核的配置和编译 (27)6.3 加载Linux内核映像 (30)6.4 Boa Web服务器的移植 (31)6.4.1 Boa Web服务器的建立 (31)6.5 Linux下动态Web页面的实现 (32)6.5.1 CGI程序分析 (32)6.5.2 Form输入的分析和解码 (34)第七章系统功能的测试 (36)7.1 测试Web服务器 (36)7.2 动态Web页面测试 (37)结束语 (40)致谢 (41)参考文献 (42)附录 (43)第一章引言随着计算机技术的发展,嵌入式系统已成为计算机领域的一格重要组成部分。
基于 ARM和 Linux的 GNSS智能接收机设计摘要:随着北斗卫星导航系统的正式服务,卫星导航系统开始广泛应用于各行各业,GNSS接收机也在不断适应各行各业的应用需求,朝着智能化、功能丰富的方向发展。
ARM处理器在嵌入式设备中应用尤为广泛,Linux系统则可以提供丰富的应用功能开发。
为了满足更多的人机交互和运算,可采用ARM完成GNSS 接收机底层硬件平台设计,利用Linux实现GNSS接收机丰富的功能。
关键词:GNSS接收机智能 ARM Linux随着北斗卫星导航系统的正式服务,卫星导航系统开始广泛应用于各行各业,GNSS接收机正在不同领域发挥着至关重要的作用,例如监测、导航、测绘等方面。
近年来,嵌入式技术发展迅速,ARM处理器具有很强的性能,在功耗、成本方面优势尤为突出,成为很多工业、消费产品的首选;Linux是支持多任务、多进程,安全,稳定,免费的操作系统,可以基于Linux开发丰富的应用功能,实现诸多类似人机交互、功能复杂的应用需求。
本文立足GNSS智能接收机,设计一种基于ARM的硬件平台,以及基于Linux的应用软件。
1 总体硬件设计方案GNSS智能接收机主要由ARM处理器、GNSS板卡、液晶屏、按键、以太网模块、WIFI模块组成。
本次设计采用的ARM处理器是Freescale ARM9产品系列的i.mx287工业级处理器,带有16KB缓存的454MHz内核,处理器性能强大,可以实现复杂应用,同时支持10/100M以太网,有UART、SPI、I2C等诸多总线接口,可以连接丰富外设,工作温度-40到85℃,满足工业级要求。
GNSS板卡采用NovAtel公司的OEM729板卡,拥有555个动态通道,能够跟踪BDS+GPS+GLONASS+Galileo的多频卫星信号,具有50Hz的数据更新率,动态厘米级,静态毫米级的定位精度。
硬件框图如下:(1)GNSS板卡向射频天线提供 3.3v的馈电,并实时处理射频天线接收的GNSS信号,计算出当前的位置、速度等信息。
第28卷 第3期核电子学与探测技术V ol.28 N o.32008年 5月Nuclear Electr onics &Detection T echnolo gyM a y. 2008基于ARM9的智能 能谱仪器硬件平台的设计洪天祺,方 方(成都理工大学应用核技术与自动化工程学院,四川成都610059)摘要:在分析当前流行的嵌入式硬件平台的基础上,结合三星S3C2410A 处理器的高性能、低功耗,设计了智能 能谱仪器的硬件平台,并着重分析了硬件平台的存储器、L CD 、键盘控制器的电路设计,为智能 能谱仪器硬件平台提供了新的解决方案。
关键词:A RM 9,S3C2410A , 能谱仪中图分类号: T L81 文献标识码: A 文章编号: 0258 0934(2008)03 0650 04收稿日期:2006 07 08基金项目:四川省高新技术成果转化重点实施项目。
作者简介:洪天祺(1980.6-),男,汉族,四川省人,硕士研究生,研究方向:辐射防护传统的智能 能谱仪器硬件平台多选用单片机作为系统的控制核心,嵌入式 能谱仪器软件系统功能简洁,系统的软硬件集成化不高、开发周期长、限制了仪器的智能化发展。
ARM 9微处理器与之相比在满足便携式设备体积小、低功耗、低成本的需求下,还具有以下特点:采用5级整数流水线,指令执行效率高;提供1.1M IPS/M H z 的哈佛结构;支持32位ARM 指令集和16位Thumb 指令集;支持32位的高速AM BA 总线接口;全性能的MM U (M em eor y M anag em ent U nit 内存管理单元),支持Linux 、Window s CE 和Palm OS 等嵌入式操作系统。
将ARM9微处理器引入 能谱仪器的研制,更好地满足了智能 能谱仪器的便携性和智能化的需求。
因此本系统采用三星电子公司的S3C2410A 嵌入式处理器作为系统的控制核心。
基于ARM的嵌入式测控硬件平台设计的开题报告一、选题背景随着物联网技术的不断发展和嵌入式技术的应用,现代工业生产不断追求智能化、自动化和数据化。
测控硬件平台在其中扮演着重要的角色,它是指通过各种传感器等设备采集现场数据并进行处理,提供一系列功能,如数据存储、实时监测、远程控制等。
嵌入式测控硬件平台具有结构紧凑、功耗低、性能高等特点,通常用于工业控制、环境监测、智能家居等领域。
本文将基于ARM架构的嵌入式系统,设计一个测控硬件平台,主要包括硬件设计和软件开发两个部分。
硬件部分包括主控芯片选择、外设模块接口设计、系统电路组成等方面;软件部分则包括系统移植、驱动程序开发、系统测试等内容。
二、项目内容1.硬件设计(1)主控芯片的选择考虑ARM架构的应用广泛,本文选择ARM作为主控芯片。
具体来说,选择一款性能较高,常用的ARM Cortex-M系列芯片。
(2)外设模块接口设计测控硬件平台需要与各种传感器、数据存储设备等外设连接,在设计时需要考虑外设的接口标准、数据传输速率等指标,以保证系统的稳定性和可靠性。
(3)系统电路组成通过对外设接口的设计,进一步构建系统电路,包括电源保护电路、时钟电路、复位电路等。
2.软件开发(1)系统移植在确定了硬件平台的组成之后,需要将系统移植到硬件平台上。
针对ARM Cortex-M系列芯片的特殊体系结构和寄存器结构,需要对系统进行移植和适配。
(2)驱动程序开发考虑到测控硬件平台需要与各种传感器等外设设备进行通信,需要编写相应的驱动程序。
这些驱动程序需要支持各种通信协议,例如SPI、I2C、UART等。
(3)系统测试完成了系统移植和驱动程序开发后,需要对系统进行测试,对各种功能进行评估和验证,以保证系统的可用性和可靠性。
三、选题目的和意义本文的主要目的是基于ARM架构的嵌入式系统,设计一个测控硬件平台。
这种硬件平台可以广泛应用于各个领域,如工业控制、航空航天、智能家居、环境监测等。
的灵活性和适应性。
图1为本信号处理系统的功能框图。
图1信号处理系统的功能框图数字脉冲压缩本雷达采用固态发射机,峰值功率受限,只能通过增加发射机的平均功率来提高作用距离。
提高发射机平均功率的办法就是要进一步加大发射脉冲的时宽。
但是,脉冲宽度的增加带来了距离分辨率的降距离分辨率和作用距离之间试一对矛盾体,解决这一矛盾的方法位寄存器的延迟数与卫星编号相关。
图4P码发生器及时域波形2.3导航电文数据码产生GPS的导航数据码的播发速度是50HZ bit,对于GPS接收的射频前端和数字中频,该数据码可以用Bernoulli随机分布模型来模拟[5],在Simulink仿真环境中可以直接调用Bernoulli模块直接产生随机序列。
2.4BPSK调制完成C/A码、P码和导航数据码等基带处理后需要对其进行BPSK调制。
BPSK调制时将基带单极性码(0,1)转换成双极性码(-1,1),然后将其乘上载波。
二进制单极性码转为双极性码的转换原理为:将输入左移1位后减1。
得到双极性码后乘上正弦波就得到调制波形。
3GPS信号的基带等效仿真由于GPS LI载波频率为1575.42MHz,若在Simulink平台下直接为基带等效通信系统进行仿真。
图5是基带仿真频谱图。
图5GPS L1基带仿真频谱图小结本文利用Simulink工具产生L1波段上的GPS信号,给出了C/A 码,数据码,BPSK等模块的仿真图,主要针对基带信号仿真。
1575.42MHz的L1波段。
由于频率较高,时域仿真不太现实,因此将频带通信系统转化为基带等效通信系统进行仿真。
【参考文献】谢钢.GPS原理与接收机设计[M].电子工业出版社.邓炜,杨东凯,寇艳红.GPS中频信号处理的Simulink实现[J].遥测遥控,2006,11,27沈超,裘正定.基于MatLab/Simulink的GPS系统仿真[J].系统仿真学报,2006,7,18涂凤琴.GPS中频卫星信号的仿真研究[D].南京:南京理工大学,2010.陈涛.GPS接收机基带信号处理的研究和设计[D].上海:上海交通大学,2009.[责任编辑:汤静(上接第69页)缘内侧虚警概率显著增加的现象。