初中数学生活中的轴对称综合题目含答案-6页文档资料
- 格式:doc
- 大小:38.00 KB
- 文档页数:6
七年级(下)第5章 生活中的轴对称一、选择题(共18小题)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .2.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为( )A .30°B .45°C .60°D .75°3.如图是经过轴对称变换后所得的图形,与原图形相比( )A .形状没有改变,大小没有改变B .形状没有改变,大小有改变C .形状有改变,大小没有改变D .形状有改变,大小有改变4.正方形的对称轴的条数为( )A .1B .2C .3D .4 5.正三角形△ABC 的边长为3,依次在边AB 、BC 、CA 上取点A 1、B 1、C 1,使AA 1=BB 1=CC 1=1,则△A 1B 1C 1的面积是( )A .√34B .3√34C .94D .9√346.在Rt △ABC 中,∠C =90°,AB =10.若以点C 为圆心,CB 为半径的圆恰好经过AB的中点D ,则AC =( )A.5B.5√2C.5√3D.67.观察下列图形,是轴对称图形的是()A.B.C.D.8.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.9.以下图形中对称轴的数量小于3的是()A.B.C.D.10.下列图案中,轴对称图形是()A.B.C.D.11.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.12.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.13.下列图案是轴对称图形的是()A.B.C.D.14.如图,直角坐标系中的五角星关于y轴对称的图形在()A.第一象限B.第二象限C.第三象限D.第四象限15.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.√2B.2C.√6D.2√216.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP2B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP217.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM =2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm18.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+tan∠ADB=√2B.2BC=5CFC.∠AEB+22°=∠DEF D.4cos∠AGB=√6二、填空题(共10小题)19.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是cm.20.如图,有一个英语单词,四个字母都关于直线l对称,请在试卷上补全字母,在答题卡上写出这个单词所指的物品.21.请从以下两个小题中任选一个作答,若多选,则按所选做的第一题计分.A.一个正五边形的对称轴共有条.B.用科学计算器计算:√31+3tan56°≈(结果精确到0.01)22.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4√3,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.23.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.24.如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是.25.如图,点B1是面积为1的等边△OBA的两条中线的交点,以OB1为一边,构造等边△OB1A1(点O,B1,A1按逆时针方向排列),称为第一次构造;点B2是△OB1A1的两条中线的交点,再以OB2为一边,构造等边△OB2A2(点O,B2,A2按逆时针方向排列),称为第二次构造;以此类推,当第n次构造出的等边△OB n A n的边OA n与等边△OBA的边OB第一次重合时,构造停止.则构造出的最后一个三角形的面积是.26.已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边三角形AB1C1,再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边三角形AB2C2,再以等边三角形AB2C2的边B2C2边上的高AB3为边作等边三角形,得到第三个等边AB3C3;…,如此下去,这样得到的第n个等边三角形AB n∁n 的面积为.27.如图,在平面直角坐标系中,点O是原点,点B(0,√3),点A在第一象限且AB⊥BO,点E是线段AO的中点,点M在线段AB上.若点B和点E关于直线OM对称,则点M 的坐标是(,).28.已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,点P到AC的距离是2,则点P到BC的最小距离和最大距离分别是.三、解答题(共2小题)29.如图,在等边△ABC中,点D,E分別在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F 的度数;(2)若CD =2,求DF 、EF 的长.30.如图,O 为△ABC 内部一点,OB =312,P 、R 为O 分别以直线AB 、直线BC 为对称轴的对称点.(1)请指出当∠ABC 在什么角度时,会使得PR 的长度等于7?并完整说明PR 的长度为何在此时会等于7的理由.(2)承(1)小题,请判断当∠ABC 不是你指出的角度时,PR 的长度是小于7还是会大于7?并完整说明你判断的理由.七年级(下)第5章生活中的轴对称参考答案一、选择题(共18小题)1.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.【分析】要使白球反弹后能将黑球直接撞入袋中,则∠2=60°,根据∠1、∠2对称,则能求出∠1的度数.【解答】解:要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.故选:C.3.【分析】根据轴对称不改变图形的形状与大小解答.【解答】解:∵轴对称变换不改变图形的形状与大小,∴与原图形相比,形状没有改变,大小没有改变.故选:A.4.【分析】根据正方形的对称性解答.【解答】解:正方形有4条对称轴.故选:D.5.【分析】依题意画出图形,过点A1作A1D∥BC,交AC于点D,构造出边长为1的小正三角形△AA1D;由AC1=2,AD=1,得点D为AC1中点,因此可求出S△AA1C1=2S△AA1D=√32;同理求出S△CC1B1=S△BB1A1=√32;最后由S△A1B1C1=S△ABC ﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1求得结果.【解答】解:依题意画出图形,如下图所示:过点A1作A1D∥BC,交AC于点D,易知△AA1D是边长为1的等边三角形.又AC1=AC﹣CC1=3﹣1=2,AD=1,∴点D 为AC 1的中点,∴S △AA 1C 1=2S △AA 1D =2×√34×12=√32; 同理可求得S △CC 1B 1=S △BB 1A 1=√32, ∴S △A 1B 1C 1=S △ABC ﹣S △AA 1C 1﹣S △CC 1B 1﹣S △BB 1A 1=√34×32﹣3×√32=3√34. 故选:B .6.【分析】连结CD ,直角三角形斜边上的中线性质得到CD =DA =DB ,利用半径相等得到CD =CB =DB ,可判断△CDB 为等边三角形,则∠B =60°,所以∠A =30°,然后根据含30度的直角三角形三边的关系先计算出BC ,再计算AC .【解答】解:连结CD ,如图,∵∠C =90°,D 为AB 的中点,∴CD =DA =DB ,而CD =CB ,∴CD =CB =DB ,∴△CDB 为等边三角形,∴∠B =60°,∴∠A =30°,∴BC =12AB =12×10=5,∴AC =√3BC =5√3.故选:C .7.【分析】根据轴对称图形的概念求解.【解答】解:A 、是轴对称图形,故本选项正确;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:A .8.【分析】根据轴对称图形的概念求解.【解答】解:A 、不是轴对称图形,B 、不是轴对称图形,C 、不是轴对称图形,D 、是轴对称图形,故选:D.9.【分析】根据对称轴的概念求解.【解答】解:A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选:D.10.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.11.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.12.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.13.【分析】根据轴对称图形的概念对个图形分析判断即可得解.【解答】解:A、是轴对称图形,B、不是轴对称图形,C、不是轴对称图形,D、不是轴对称图形,故选:A.14.【分析】根据轴对称的性质作出选择.【解答】解:如图所示,直角坐标系中的五角星关于y轴对称的图形在第一象限.故选:A.15.【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【解答】解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC=√12AC2=√12×22=√2,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=√2.16.【分析】作出图形,根据轴对称的性质求出OP1、OP2的数量与夹角即可得解.【解答】解:如图,∵点P关于直线OA、OB的对称点P1、P2,∴OP1=OP2=OP,∠AOP=∠AOP1,∠BOP=∠BOP2,∴∠P1OP2=∠AOP+∠AOP1+∠BOP+∠BOP2,=2(∠AOP+∠BOP),=2∠AOB,∵∠AOB度数任意,∴OP1⊥OP2不一定成立.故选:B.17.【分析】利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ的长,即可得出QR的长.【解答】解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB 的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN﹣MQ=4﹣2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.18.【分析】连接CE,设EF与BD相交于点O,根据轴对称性可得AB=AE,并设为1,利用勾股定理列式求出BE,再根据翻折的性质可得DE=BF=BE,再求出BC=1,然后对各选项分析判断利用排除法求解.【解答】解:如图,连接CE,设EF与BD相交于点O,由轴对称性得,AB=AE,设为1,则BE=√12+12=√2,∵点E与点F关于BD对称,∴DE=BF=BE=√2,∴AD=1+√2,∵AD∥BC,AB⊥AD,AB=AE,∴四边形ABCE是正方形,∴BC=AB=1,=1+√2−1=√2,故A正确;1+tan∠ADB=11+√2CF=BF﹣BC=√2−1,∴2BC=2×1=2,5CF=5(√2−1),∴2BC≠5CF,故B错误;∠AEB+22°=45°+22°=67°,∵BE=BF,∠EBF=∠AEB=45°,∴∠BFE=180°−45°2=67.5°,∴∠DEF=∠BFE=67.5°,故C错误;由勾股定理得,OE2=BE2﹣BO2=(√2)2﹣(√4+2√22)2=4−2√24,∴OE=√4−2√22,∵∠EBG+∠AGB=90°,∠EBG+∠BEF=90°,∴∠AGB=∠BEF,又∵∠BEF=∠DEF∴cos∠AGB=OEDE =√4−2√22√2=√2−√22,4cos∠AGB=2√2−√2,故D错误.故选:A.二、填空题(共10小题)19.【分析】根据有一个角是60°的等腰三角形的等边三角形进行解答即可.【解答】解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=18cm,故答案为:1820.【分析】根据轴对称图形的性质,组成图形,即可解答.【解答】解:如图,这个单词所指的物品是书.故答案为:书.21.【分析】A.过正五边形的五个顶点作对边的垂线,可得对称轴.B.先用计算器求出√31、tan56°的值,再计算加减运算.【解答】解:(A)如图,正五边形的对称轴共有5条.故答案为:5.(B)√31≈5.5678,tan56°≈1.4826,则√31+3tan56°≈5.5678+3×1.4826≈10.02故答案是:10.02.22.【分析】根据等边三角形的性质,可得AD 的长,∠ABG =∠HBD =30°,根据等边三角形的判定,可得△MEH 的形状,根据直角三角形的判定,可得△FIN 的形状,根据面积的和差,可得答案.【解答】解:如图所示:,由△ABC 是等边三角形,高AD 、BE 相交于点H ,BC =4√3,得AD =BE =√32BC =6,∠ABG =∠HBD =30°. 由直角三角的性质,得∠BHD =90°﹣∠HBD =60°.由对顶角相等,得∠MHE =∠BHD =60°由BG =2,得EG =BE ﹣BG =6﹣2=4.由GE 为边作等边三角形GEF ,得FG =EG =4,∠EGF =∠GEF =60°,△MHE 是等边三角形;S △ABC =12AC •BE =12AC ×EH ×3EH =13BE =13×6=2.由三角形外角的性质,得∠BIG =∠FGE ﹣∠IBG =60°﹣30°=30°, 由∠IBG =∠BIG =30°,得IG =BG =2,由线段的和差,得IF =FG ﹣IG =4﹣2=2,由对顶角相等,得∠FIN =∠BIG =30°,由∠FIN +∠F =90°,得∠FNI =90°,由锐角三角函数,得FN =1,IN =√3.S 五边形NIGHM =S △EFG ﹣S △EMH ﹣S △FIN=√34×42−√34×22−12×√3×1=5√32, 故答案为:5√32. 23.【分析】根据等边三角形三个角相等,可知∠ACB =60°,根据等腰三角形底角相等即可得出∠E 的度数.【解答】解:∵△ABC 是等边三角形,∴∠ACB =60°,∠ACD =120°,∵CG =CD ,∴∠CDG =30°,∠FDE =150°,∵DF =DE ,∴∠E =15°.故答案为:15.24.【分析】先证出阴影的三角形是等边三角形,又观察图可得,第n 个图形中大等边三角形有2n 个,小等边三角形有2n 个,据此求出第100个图形中等边三角形的个数.【解答】解:如图①∵△ABC 是等边三角形,∴AB =BC =AC ,∵A ′B ′∥AB ,BB ′=B ′C =12BC ,∴B ′O =12AB ,CO =12AC , ∴△B ′OC 是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个, 第2个图形中大等边三角形有4个,小等边三角形有4个,第3个图形中大等边三角形有6个,小等边三角形有6个,…依次可得第n 个图形中大等边三角形有2n 个,小等边三角形有2n 个. 故第100个图形中等边三角形的个数是:2×100+2×100=400.故答案为:400.25.【分析】由于点B 1是△OBA 两条中线的交点,则点B 1是△OBA 的重心,而△OBA 是等边三角形,所以点B 1也是△OBA 的内心,∠BOB 1=30°,∠A 1OB =90°,由于每构造一次三角形,OB i 边与OB 边的夹角增加30°,所以还需要(360﹣90)÷30=9,即一共1+9=10次构造后等边△OB n A n 的边OA n 与等边△OBA 的边OB 第一次重合;又因为任意两个等边三角形都相似,根据相似三角形的面积比等于相似比的平方,由△OB 1A 1与△OBA 的面积比为13,求得构造出的最后一个三角形的面积.【解答】方法一:解:∵点B 1是面积为1的等边△OBA 的两条中线的交点,∴点B 1是△OBA 的重心,也是内心,∴∠BOB 1=30°,∵△OB 1A 1是等边三角形,∴∠A 1OB =60°+30°=90°,∵每构造一次三角形,OB i 边与OB 边的夹角增加30°,∴还需要(360﹣90)÷30=9,即一共1+9=10次构造后等边△OB n A n 的边OA n 与等边△OBA 的边OB 第一次重合,∴构造出的最后一个三角形为等边△OB 10A 10.如图,过点B 1作B 1M ⊥OB 于点M ,∵cos ∠B 1OM =cos30°=OM OB 1=√32, ∴OB OB 1=2OM OB 1=2√32=√3,即OB 1OB =√3,∴S △OB 1A 1S △OBA =(OB 1OB )2=13,即S △OB 1A 1=13S △OBA =13, 同理,可得S △OB 2A 2S △OB 1A 1=(OB 2OB 1)2=13,即S △OB 2A 2=13S △OB 1A 1=(13)2=132, …, ∴S △OB 10A 10=13S △OB 9A 9=(13)10=1310,即构造出的最后一个三角形的面积是1310. 故答案为1310.方法二:∵∠AOA 1=30°,∠A 1OA 2=30°,∠AOB =60°,∴每构造一次增加30°,∴n =360−6030=10,∵△OBA ∽△OB 1A 1,∴A 1B 1AO =√33⇒S △OB 1A 1S △OBA =13, ∵S △OBA =1,∴S △OB 1A 1=13,q =13,∴S △OB 10A 10=13×(13)9=1310.26.【分析】由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n∁n的面积.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=√3,∴第一个等边三角形AB1C1的面积为√34×(√3)2=√3(34)1;∵等边三角形AB1C1的边长为√3,AB2⊥B1C1,∴B1B2=√32,AB1=√3,根据勾股定理得:AB2=32,∴第二个等边三角形AB2C2的面积为√34×(32)2=√3(34)2;依此类推,第n个等边三角形AB n∁n的面积为√3(34)n.故答案为:√3(34)n.27.【分析】根据点B的坐标求出OB的长,再连接ME,根据轴对称的性质可得OB=OE,再求出AO的长度,然后利用勾股定理列式求出AB的长,利用∠A的余弦值列式求出AM的长度,再求出BM的长,然后写出点M的坐标即可.【解答】解:∵点B(0,√3),∴OB=√3,连接ME,∵点B和点E关于直线OM对称,∴OB =OE =√3,∵点E 是线段AO 的中点,∴AO =2OE =2√3,根据勾股定理,AB =√AO 2−OB 2=√(2√3)2−√32=3,cos A =AE AM =AB AO ,即√3AM =2√3, 解得AM =2,∴BM =AB ﹣AM =3﹣2=1,∴点M 的坐标是(1,√3).故答案为:(1,√3).28.【分析】根据题意画出相应的图形,直线DM 与直线NF 都与AB 的距离为1,直线NG 与直线ME 都与AC 的距离为2,当P 与N 重合时,HN 为P 到BC 的最小距离;当P 与M 重合时,MQ 为P 到BC 的最大距离,根据题意得到△NFG 与△MDE 都为等边三角形,利用锐角三角函数定义及特殊角的三角函数值求出DB 与FB 的长,以及CG 与CE 的长,进而由DB +BC +CE 求出DE 的长,由BC ﹣BF ﹣CG 求出FG 的长,求出等边三角形NFG 与等边三角形MDE 的高,即可确定出点P 到BC 的最小距离和最大距离.【解答】解:根据题意画出相应的图形,直线DM 与直线NF 都与AB 的距离为1,直线NG 与直线ME 都与AC 的距离为2,当P 与N 重合时,HN 为P 到BC 的最小距离;当P 与M 重合时,MQ 为P 到BC 的最大距离,根据题意得到△NFG 与△MDE 都为等边三角形,∴DB =FB =1sin60°=2√33,CE =CG =2sin60°=4√33, ∴DE =DB +BC +CE =2√33+8√33+4√33=14√33,FG =BC ﹣BF ﹣CG =2√33, ∴NH =√32FG =1,MQ =√32DE =7, 则点P 到BC 的最小距离和最大距离分别是1,7.故答案为:1,7.三、解答题(共2小题)29.【分析】(1)根据平行线的性质可得∠EDC =∠B =60°,根据三角形内角和定理即可求解;(2)易证△EDC 是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC 是等边三角形,∴∠B =60°,∵DE ∥AB ,∴∠EDC =∠B =60°,∵EF ⊥DE ,∴∠DEF =90°,∴∠F =90°﹣∠EDC =30°;(2)∵∠ACB =60°,∠EDC =60°,∴△EDC 是等边三角形.∴ED =DC =2,∵∠DEF =90°,∠F =30°,∴DF =2DE =4,∴EF =√3DE =2√3.30.【分析】(1)连接PB 、RB ,根据轴对称的性质可得PB =OB ,RB =OB ,然后判断出点P 、B 、R 三点共线时PR =7,再根据平角的定义求解;(2)根据三角形的任意两边之和大于第三边解答.【解答】解:(1)如图,∠ABC =90°时,PR =7.证明如下:连接PB 、RB ,∵P 、R 为O 分别以直线AB 、直线BC 为对称轴的对称点,∴PB =OB =312,RB =OB =312,∵∠ABC =90°,∴∠ABP +∠CBR =∠ABO +∠CBO =∠ABC =90°,∴点P 、B 、R 三点共线,∴PR =2×312=7;(2)PR的长度是小于7,理由如下:∠ABC≠90°,则点P、B、R三点不在同一直线上,∴PB+BR>PR,=7,∵PB+BR=2OB=2×312∴PR<7.知识清单1.平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.2、两条平行线之间的距离处处相等.2.平行线之间的距离(1)平行线之间的距离从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.(2)平行线间的距离处处相等.3.三角形三边关系(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略.4.三角形的外角性质(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.5.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.6.等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.7.等边三角形的判定与性质(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.8.含30度角的直角三角形(1)含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;②应用时,要注意找准30°的角所对的直角边,点明斜边.9.生活中的轴对称现象(1)轴对称的概念:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称轴对称;这条直线叫做对称轴.(2)轴对称包含两层含义:①有两个图形,且这两个图形能够完全重合,即形状大小完全相同;②对重合的方式有限制,只能是把它们沿一条直线对折后能够重合.10.轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线。
七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版一、单选题1.下列图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.∠=︒,则∠2为()2.如图,将一个长方形纸条折成如图的形状,若已知1116A.125°B.124°C.122°D.116°3.一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为()A.30B.24C.18D.24或304.面对新冠疫情,我国毫不动摇坚持动态清零总方针,外防输入,内防反弹.下面是支付宝“国家政务服务平台”上与疫情防控相关的四个小程序图标,其中是轴对称图形的是()A.B.C.D.5.下列汉字中,可以看成轴对称图形的是()A.B.C.D.6.如图,把长方形ABCD沿EF折叠后使两部分重合,若∠1=40°,则∠AEF= ()A.110°B.100°C.120°D.140°7.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°8.如图,将∠ABC绕点A顺时针旋转角100°,得到∠ADE,若点E恰好在CB的延长线上,则∠BED的度数为()A.80°B.70°C.60°D.50°9.如图,在∠ABC中,∠ACB=90°,BE平分∠ABC,DE∠AB于D.如果AC=10cm,那么AE+DE 等于()A.6cm B.8cm C.10cm D.12cm10.下面是四位同学作∠ABC关于直线MN的轴对称图形,其中正确的是()A.B.C .D .二、填空题11.如图,APT 与CPT 关于直线PT 对称,A APT ∠=∠,延长AT 交PC 于点F 当A ∠= °时FTC C ∠=∠.12.如图,∠ABC 中,∠B=40°,点D 为边BC 上一点,将∠ADC 沿直线AD 折叠后,点C 落到点E 处,若DE∠AB ,则∠ADE 的度数为 °.13.如图,ABC 中,DE 垂直平分BC ,若ABD 的周长为104AB =,,则AC = .14.如图是由三个小正方形组成的图形请你在图中补画一个小正方形使补画后的图形为轴对称图形,共有 种补法.三、作图题15.如图,在正方形网格中,ABC 的三个顶点均在格点上.(1)画出111A B C ,使得111A B C 和ABC 关于直线l 对称;(2)过点C 作线段CD ,使得CD AB ,且CD AB .四、解答题16.如图,在∠ABC 中,高线CD 将∠ACB 分成20°和50°的两个小角.请你判断一下∠ABC 是轴对称图形吗?并说明你的理由.17.如图,长方形纸片ABCD ,点E 为BC 边的中点,将纸片沿AE 折叠,点B 的对应点为'B ,连接'.B C 求证:AE ∠'B C .18.如图,在∠ABC 中,AF 平分∠BAC 交BC 于点F ,AC 的垂直平分线交BC 于点E ,交AC 于点D ,∠B =60°,∠C =26°,求∠FAE 的度数.19.如图,在平面直角坐标系xOy 中,A (1,2),B (3,1),C (﹣2,﹣1).(1)在图中作出∠ABC关于y轴的对称图形∠A1B1C1(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1五、综合题20.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD= ▲ °;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则∠PMN的周长为.21.已知:如图,∠ABD和∠BDC的平分线交于点E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB CD;(2)试探究DF与DB的数量关系,并说明理由.22.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与∠ABC关于直线l成轴对称的∠AB′C′;(2)求∠ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.参考答案与解析1.【答案】A【解析】【解答】解:A、是中心对称图形,但不是轴对称图形,故符合题意;B、不是中心对称图形,但是轴对称图形,故不符合题意;C、是中心对称图形,也是轴对称图形,故不符合题意;D、不是中心对称图形,但是轴对称图形,故不符合题意.故答案为:A.【分析】中心对称图形的定义:一个图形绕对称中心旋转180°后能够与原图形完全重合,这个图形叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此一一判断得出答案.2.【答案】C【解析】【解答】解:如图∵纸条的两边互相平行∴∠1+∠3=180°∵∠1=116°∴∠3=180°-∠1=180°-116°=64°根据翻折的性质得,2∠4+∠3=180°∴∠4= 12(180°-∠3)=12(180°-64°)=58°∵纸条的两边互相平行∴∠2+∠4=180°∴∠2=122°故答案为:C.【分析】由两直线平行同旁内角互补得∠1+∠3=180°,∠2+∠4=180°,结合已知可求得∠3的度数,由翻折性质得2∠4+∠3=180°可求得∠4的度数,把∠4的度数代入∠2+∠4=180°计算可求解.3.【答案】A【解析】【解答】当三边6,6,12时,6+6=12,不符合三角形的三边关系,应舍去;当三边是6,12,12时,符合三角形的三边关系,此时周长是30.故答案为:A.【分析】利用三角形三边的关系及等腰三角形的性质求解即可。
北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各选项中左边的图形与右边的图形成轴对称的是( )2.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多..的是( )A.正方形 B.等边三角形C.等腰三角形 D.线段4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数是( )A.30° B.40°C.45° D.60°5.如图,在△ABC中,AB的垂直平分线交AC于点E,若AE=2,则B,E两点间的距离是( )A.2 B.3 C.4 D.56.能用无刻度直尺,直接准确画出下列轴对称图形的所有对称轴的是( )7.下列说法正确的是( )A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴8.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,E为OP上一点,则下列结论中错误..的是( )A.CE=DE B.∠CPO=∠DEPC.∠CEO=∠DEO D.OC=OD9.如图,有一张直角三角形纸片,两直角边AC=5 cm,BC=10 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为( )A.10 cm B.12 cmC.15 cm D.20 cm10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.下面4个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(每题3分,共30分)11.如图所示的图形中,对称轴的条数大于3的有________个.12.△ABC 和△A ′B ′C ′关于直线l 对称,若△ABC 的周长为12 cm ,△A ′B ′C ′的面积为 6 cm 2,则△A ′B ′C ′的周长为________,△ABC 的面积为________.13.已知等腰三角形的顶角是底角的4倍,则顶角的度数为________.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于D ,若CD =12BD ,点D 到边AB 的距离为6,则BC 的长是________.15.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E ,F 是AD 的三等分点,若△ABC 的面积为12 cm 2,则图中阴影部分的面积为__________.16.如图,AC ,BD 相交于点O ,AB ∥DC ,AB =BC ,∠D =40°,∠ACB =35°,则∠AOD =________.17.如图,这是一组按照某种规律摆放成的图案,则第2 021个图案________轴对称图形(填“是”或“不是”).18.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF=________.19.如图,在正方形网格中,阴影部分是涂灰7个小正方形所形成的图案,再将网格内空白的一个小正方形涂灰,使得到的新图案成为一个轴对称图形的涂法有________种.20.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有__________(填序号).①AC⊥BD;②AC,BD互相平分;③CA平分∠BCD;④∠ABC=∠ADC=90°;⑤筝形ABCD的面积为12 AC·BD.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.把图中的图形补成轴对称图形,其中MN,EF为各图形的对称轴.22.如图,D为△ABC的边BC的延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB,且CF交AB于点F,试判断CE与CF的位置关系.23.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,∠DAE与∠DAC的度数比为2∶1,求∠B的度数.24.如图,已知△ABC是等腰三角形,且AB=AC,D是△ABC外一点,连接AD,BD.已知AB=AD,AD∥BC,∠D=35°,求∠DAC的度数.25.如图,校园有两条路OA,OB,在交叉口附近有两块宣传牌C,D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你画出灯柱的位置点P,并说明理由.26.如图①,△ABC为等腰直角三角形,∠BAC=90°,点D为直线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD 左侧作等腰直角三角形ADE,连接CE.(1)当点D在线段BC上时(不与点B重合),线段CE和BD的数量关系与位置关系分别是什么?请给予说明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图②中画出相应的图形,并说明理由.参考答案一、1.C 2.D 3.A 4.B 5.A6.A 7.C 8.B 9.C 10.A二、11.312.12 cm;6 cm213.120°14.1815.6 cm216.75°点拨:因为AB=BC,所以∠BAC=∠ACB=35°.因为AB∥CD,所以∠ABD=∠D=40°.所以∠AOB=180°-35°-40°=105°.所以∠AOD=180°-105°=75°.17.是18.60°点拨:因为AB=BC=CD=DE=EF,所以∠BCA=∠A =15°.所以∠ABC=150°.所以∠CBD=∠CDB=30°.所以∠ACD=135°.所以∠CED=∠ECD=45°.所以∠ADE=120°.所以∠EDF=∠EFD=60°.所以∠DEF=60°.19.320.①③⑤三、21.解:如图所示.22.解:因为CD=CA,E是AD的中点,所以∠ACE=∠DCE.因为CF平分∠ACB,所以∠ACF=∠BCF.因为∠ACE+∠DCE+∠ACF+∠BCF=180°,所以∠ACE+∠ACF=90°,即∠ECF=90°.所以CE⊥CF.23.解:设∠DAC=x,则∠DAE=2x.因为DE是AB的垂直平分线,所以DA=DB.所以∠B=∠DAB=2x.因为∠C=90°,所以2x+(2x+x)=90°,x=18°.所以∠B=36°.24.解:因为AD∥BC,所以∠D=∠DBC,∠DAC=∠ACB.因为AB=AC=AD,所以∠D=∠ABD,∠ACB=∠ABC=∠ABD+∠DBC=2∠D=2×35°=70°.所以∠DAC=70°.25.解:如图,到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C,D的距离相等的点则在线段CD的垂直平分线上,故它们的交点P 即为所求.26.解:(1)CE =BD ,且CE ⊥BD .说明:由题可知AC =AB ,AE =AD .因为∠EAD =∠BAC =90°,所以∠EAD -∠CAD =∠BAC -∠CAD ,即∠EAC =∠DAB .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC=AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ECA =∠DBA .所以∠ECD =∠ECA +∠ACD =∠DBA +∠ACD =180°-90°=90°.所以CE ⊥BD .(2)(1)的结论仍然成立.理由如下:画出的图形如图所示.由题可知AC =AB ,AE =AD .因为∠CAB =∠DAE =90°,所以∠CAB +∠CAD =∠DAE +∠CAD ,即∠CAE =∠BAD .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ACE =∠B .所以∠BCE =∠ACE +∠ACB =∠B +∠ACB =180°-90°=90°. 所以CE ⊥BD .。
北师大版数学七年级下册生活中的轴对称单元试题及答案(3套)北师大版数学七年级下册生活中的轴对称单元试题及答案(1)一、选择题1.在等边三角形ABC 中,CD 是∠ACB 的平分线,过D 作DE ∥BC 交AC 于E ,若△ABC 的边长为a ,则△ADE 的周长为 ( )A .2aB .C .1.5aD .a2.下列推理中,错误的是 ( ) A .∵∠A =∠B =∠C ,∴△ABC 是等边三角形 B .∵AB =AC ,且∠B =∠C ,∴△ABC 是等边三角形 C .∵∠A =60°,∠B =60°,∴△ABC 是等边三角形 D .∵AB =AC ,∠B =60°,∴△ABC 是等边三角形 3.下列说法中,不正确的是 ( ) A .等腰三角形底边上的中线就是它的顶角平分线 B .等腰三角形底边上的高就是底边的垂直平分线的一部分 C .一条线段可看作以它的垂直平分线为对称轴的轴对称图形 D .两个三角形能够重合,它们一定是轴对称的4.等腰三角形两边的长分别为2cm 和5cm ,则这个三角形的周长是 ( ) A .9cm B .12cmC .9cm 和12cmD .在9cm 与12cm 之间 5.观察图中的汽车商标,其中是轴对称图形的个数为 ()A.2B.3C.4D.56.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为a 34( )A .0B .1C .2D .37.△ABC 中,AB =AC ,点D 与顶点A 在直线BC 同侧,且BD =AD .则BD 与CD 的大小关系为 ( )A .BD >CDB .BD =CDC .BD <CDD .BD 与CD 大小关系无法确定8.下列图形中,不是轴对称图形的是 ( ) A .互相垂直的两条直线构成的图形 B .一条直线和直线外一点构成的图形C .有一个内角为30°,另一个内角为120°的三角形D .有一个内角为60°的三角形9.在等腰△ABC 中,AB =AC ,O 为不同于A 的一点,且OB =OC ,则直线AO 与底边BC 的关系为 ( )A .平行B .垂直且平分C .斜交D .垂直不平分10.三角形的三个顶点的外角平分线所在的直线两两相交,所围成的三角形一定是 ( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形二、填空题1.正五角星形共有_______条对称轴. 2.黑板上写着在正对着黑板的镜子里的像是__________.3.已知等腰三角形的腰长是底边长的34,一边长为11cm ,则它的周长为________. 4.(1)等腰三角形,(2)正方形,(3)正七边形,(4)平行四边形,(5)梯形,(6)菱形中,一定是轴对称图形的是_____________.5.如果一个图形沿某一条直线折叠后,直线两旁的部分能够_______,那么这个图形叫做轴对称图形,这条直线叫做___________.6.如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =________.7.已知:如图,△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E=_____________.8.如图,在Rt△ABC中,B为直角,DE是AC的垂直平分线,E在BC上,∠BAE:∠BAC=1:5,则∠C=_________.9.如图,∠BAC=30°,AM是∠BAC的平分线,过M作ME∥BA交AC于E,作MD⊥BA,垂足为D,ME=10cm,则MD=_________.10.如图,OE是∠AOB的平分线,BD⊥OA于D,AC⊥BO于C,则关于直线OE对称的三角形有________对.三、解答题1.如图,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.2.如图,图中的图形是轴对称图形吗?如果是轴对称图形,请作出它们的对称轴.3.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,求PQ之长.4.如图,在△ABC中,C为直角,∠A=30°,CD⊥AB于D,若BD=1,求AB之长.5.如图,在△ABC中,C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AB =20,求△ABC的两锐角及AD、DE、EB各为多少?6.如图,AD、BE分别是等边△ABC中BC、AC上的高.M、N分别在AD、BE的延长线上,∠CBM=∠ACN.求证:AM=BN.7.如图,点G 在CA 的延长线上,AF =AG ,∠ADC =∠GEC .求证:AD 平分∠BAC .8.已知:如图,等腰直角三角形ABC 中,∠A =90°,D 为BC 中点,E 、F 分别为AB 、AC 上的点,且满足EA =CF .求证:DE =DF .参考答案一、1. C 2.B 3.D 4.B 5.C 6.C 7.D 8.D 9.B 10.A二、1.5 2. 3.cm 3121或cm 41214.等腰三角形,正方形,正七边形,菱形5.互相重合,对称轴 6.80° 7.50° 8.40° 9.5cm 10.4 三、1.分别以直线Ox ,Oy 为对称轴,作P 点的对应点P '和P '',连结P P '''交Ox 于M ,交Oy 于N 则PM +MN +NP 最短.如图所示.2.略 3.2 4.45.∠A=60°,∠B=30°,AD=5cm,DE=5cm,EB=10cm 6.先证△ENC≌△DMB(ASA),∴ DM=EN.再加上AD=BE即可.7.∵ AF=AG,∴∠G=∠AFG.又∵∠ADC=∠GEC,∴ AD∥GE.∴∠G=∠CAD.∴∠AFG=∠BAD.∴∠CAD=∠BAD.∴ AD平分∠BAC.8.连结AD.在△ADF和△BDE中,可证得:BD=AD,BE=AF,∠B=∠DAF.∴△ADF≌△BDE.∴ DE=DF.北师大版数学七年级下册生活中的轴对称单元试题及答案(2)一、选择题(每小题3分,共30分)1. 观察图形…并判断照此规律从左到右第四个图形是( )A .B .C .D .2. 如图的方格纸中,左边图形到右边图形的变换是( ) A.向右平移7格B.以AB 的垂直平分线为对称轴作轴对称变换,再以AB 为对称轴作轴对称变换C.绕AB 的中点旋转180°,再以AB 为对称轴作轴对称变换D.以AB 为对称轴作轴对称变换,再向右平移7格3. 如图所示,△与△关于直线对称,则∠等于( )A. B. C.D.4. 下列说法正确的是( )第2题图第3题图A.如果图形甲和图形乙关于直线MN 对称,则图形甲是轴对称图形B.任何一个图形都有对称轴,有的图形不止一条对称轴C.平面上两个大小、形状完全一样的图形一定关于某直线对称D.如果△ABC 和△EFG 成轴对称,那么它们的面积一定相等 5. 如图所示,在2×2的方格纸中有一个以格点为顶点的△ABC ,则与△ABC 成轴对称且以格点为顶点的三角形共有( ) A.3个 B.4个 C.5个 D.6个6.以下各命题中,正确的命题是()(1)等腰三角形的一边长为 4 cm ,一边长为9 cm ,则它的周长为17 cm 或22 cm ; (2)三角形的一个外角等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等; (4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形. A .(1)(2)(3) B .(1)(3)(5) C .(2)(4)(5) D .(4)(5) 7. 将一张正方形纸片如图所示折叠两次,并在上面剪下一个菱形小洞,纸片展开后是( )A .B .C .D .8. 下列说法正确的是( ) A.轴对称图形是两个图形组成的B.等边三角形有三条对称轴第5题图第7题图C.两个全等的三角形组成一个轴对称图形D.直角三角形一定是轴对称图形9. 如图所示,在3×3正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有( ) A.6种 B.5种 C.4种 D.2种10. 如图所示,在△中,,∠,的垂直平分线交于,交于,下列结论错误的是( )A.平分∠B.△的周长等于C.D.点是线段的中点二、填空题(每小题3分,共24分)11. 一位交警在执勤过程中,从汽车的后视镜中看见某车牌照的后5位号码是,该车牌的后5位号码实际是 .12. 光线以如图所示的角度照射到平面镜上,然后在平面镜Ⅰ、Ⅱ间来回反射,已知=60°,β=50°,则= .第9题图第10题图第12题图13. 如图,在△ABC 中,AB=5 cm ,AC=3 cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm .14. 如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,则∠E = 度.15. 如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 . 16. 如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的平分线AD 交BC 于点D ,DE ∥AC ,DE 交AB 于点E ,M 为BE 的中点,连结DM . 在不添加任何辅助线和字母的情况下,图中的等腰三角形是 .(写出一个即可)17. 如图所示,P 是等边三角形ABC 内一点,将△ABP 绕点B 顺时针方向旋转60°,得到△CBP ′.若PB =3,则PP ′= .第15题图第17题图ABDCO E第18题第13题B第14题图第16题图18. 如图所示,是∠的平分线,于点,于,则关于直线对称的三角形共有_______对.三、解答题(共46分)19.(6分)如图所示,在等边△中,分别平分∠和△的外角∠,∥交于点,求证:.20. (6分)如图所示,∥∠的平分线与∠的平分线交于点,过点的直线垂直于,垂足为,交于点.试问:点是线段的中点吗?为什么?21. (6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系; (2)请作出△ABC 关于轴对称的△A ′B ′C ′; (3)写出点B ′的坐标.第21题图ABCDP第20题图22. (6分)公园内有一块三角形空地(如图所示),现要将它分割成三块,种植三种不同的花卉,为了美观,要求每块都要是轴对称图形,请你在图中画出分割线,保留必要的画图痕迹.23. (6分)以直线为对称轴画出图的另一半.24. (8分)已知:如图所示,等边三角形ABC 中,D 为AC 边的中点,E 为BC 延长线上一点,CE =CD ,DM ⊥BC 于M ,求证:M 是BE 的中点. 25. (8分)如图所示,∠内有一点,在射线上找出一点,在射线上找出一点,使最短.第24题图第22题图第25题第23题图参考答案1. D 解析:观察图形可知:单独涂黑的角顺时针旋转,只有D 符合.故选D .2. D 解析:观察可得:要使左边图形变化到右边图形,首先以AB 为对称轴作轴对称变换,再向右平移7格.故选D .3. D 解析:因为 △与△关于直线对称, 所以所以.4. D 解析:A.如果图形甲和图形乙关于直线MN 对称,则图形甲不一定是轴对称图形, 错误;B.有的图形没有对称轴,错误;C.平面上两个大小、形状完全一样的图形不一定关于某直线对称,与摆放位置有关,错误;D.如果△ABC 和△EFG 成轴对称,那么它们全等,故其面积一定相等,正确.故选D . 5. C 解析:与△ABC 成轴对称且以格点为顶点的三角形有 △ABG 、△CDF 、△AEF 、△DBH ,△BCG 共5个,故选C .6. D 解析:(1)等腰三角形的一边长为 4 cm ,一边长为9 cm ,则三边长为9 cm ,9 cm ,4 cm ,或 4 cm ,4 cm ,9 cm ,因为4+4<9,则它的周长只能是22 cm ,故此命题错误;(2)三角形的一个外角等于与它不相邻的两个内角的和,故此命题错误; (3)有两边和一角对应相等的两个三角形全等错误,必须是夹角; (4)等边三角形是轴对称图形,此命题正确; (5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形,正确. 如图所示:∵ AD ∥BC ,∴ ∠1=∠B ,∠2=∠C . ∵ AD 是角平分线,∴ ∠1=∠2,第5题答第6题答∴∠B =∠C,∴AB =AC.即△ABC是等腰三角形.故选D.7. C 解析:当正方形纸片两次沿对角线对折成为一直角三角形时,在垂直于斜边的位置上剪菱形,则直角顶点处完好,即原正方形中间无损,且菱形关于对角线对称.故选C.8. B 解析:A.轴对称图形是指1个图形,故错误;B.等边三角形有三条对称轴,即三条中线所在直线,故正确;C.两个全等的三角形不一定组成一个轴对称图形,故错误;D.直角三角形不一定是轴对称图形,只有等腰直角三角形是轴对称图形,故错误.故选B.9. C 解析:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,而当涂黑左上角和右下角的小正方形时,不会是轴对称图形,其余的4种情况均可以. 故选C.10. D 解析:因为在△中,,∠,所以∠∠.因为的垂直平分线是,所以,所以∠∠,所以∠∠∠∠,所以平分∠,故正确.所以△的周长为,故正确. 因为∠,∠,所以∠∠∠,所以∠∠,所以,所以,故正确.因为,所以,所以点不是线段的中点,故错误.故选.11. BA629 解析:关于镜面对称,也可以看成是关于某条直线对称,关于某条直线对称的数字依次是BA629.12. 40° 解析:=180°-[60°+(180°-100°)]=40°. 13. 8 14. 1515. 3 解析:要使△PBG 的周长最小,而BG =1一定,只要使BP +PG 最短即可.连接AG 交EF 于M .∵ △ABC 是等边三角形,E 、F 、G 分别为AB 、AC 、BC 的中点, ∴ AG ⊥BC ,EF ∥BC , ∴ AG ⊥EF ,AM =MG , ∴ A 、G 关于EF 对称,∴ P 点与点E 重合时,BP +PG 最小, 即△PBG 的周长最小,最小值是:PB +PG +BG =AE +BE +BG =AB +BG =2+1=3.16. △MBD 或△MDE 或△EAD 解析:由∠ACB =90°,DE ∥AC ,得∠EDC=90°,又M 为BE 的中点,得MB=MD=ME,∴△MBD 和△MDE 是等腰三角形,∵∠BAC 的平分线AD 交BC 于点D ,DE ∥AC ,∴∠EDA =∠EAD =∠DAC , ∴△EAD 是等腰三角形.17. 3 解析:∵ △ABP 绕点B 顺时针方向旋转60°得到△CBP ′, ∴ ∠PBP ′=60°,BP =BP ′,第15题答图∴△BPP′为等边三角形,∴PP′=BP=3.18.解析:△和△,△和△△和△△和△共4对.19. 证明:因为分别平分∠和∠,所以∠∠,∠∠.因为∥,所以∠∠,∠∠.所以∠∠,∠∠.所以.所以.20. 解:点是线段的中点.理由如下:过点作于点因为∥所以.又因为∠的平分线,是∠的平分线,所以所以所以点是线段的中点.21. 分析:(1)易得y轴在C的右边一个单位,轴在C的下方3个单位;(2)作出A,B,C三点关于y轴对称的三点,顺次连接即可;(3)根据所在象限及与坐标轴的距离可得相应坐标.解:(1)(2)如图所示;(3)点B′的坐标为(2,1).22. 解:如图,分别作AB 、BC 的垂直平分线,相交于点P , 沿PA 、PB 、PC 进行分割,得到的△PAB 、△PBC 、△PAC 都是等腰三角形,都是轴对称图形. 23. 分析:作图形的对称图形首先作出各顶点的对称点,然后连接各对称点即为原图形的对称图形.解:作对称图形得:作圆弧的对称图形时以原来圆弧的圆心为圆心,原半径为半径作出圆弧的对称图形.对于矩形的对称图形和外框图形的对称图形首先作出各顶点关于的对称点,连接对称点即为原图形的对称图形.24. 分析:欲证M 是BE 的中点,已知DM ⊥BC ,因此只需证DB =DE ,即证∠DBE =∠E ,根据BD 是等边△ABC 的中线可知∠DBC =30°,因此只需证∠E =30°. 证明:连结BD ,∵ △ABC 是等边三角形,∴ ∠ABC =∠ACB =60°.第21题答图第23题答图第22题答图∵ CD =CE ,∴ ∠CDE =∠E =30°.∵ BD 是AC 边上的中线,∴ BD 平分∠ABC ,即∠DBC =30°, ∴ ∠DBE =∠E .∴ DB =DE.又∵ DM ⊥BE , ∴ DM 是BE 边上的中线,即M 是BE 的中点.25. 解:如图所示,分别以直线、为对称轴,作点的对应点和,连接,交于,交于,则最短.第24题答OP MN第25题答图YX北师大版数学七年级下册生活中的轴对称单元试题及答案(3)一、填空题(每题3分,共30分)1、△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=_____.2、等腰三角形的一个角为100°,则它的两底角为_____.3、等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为_______.4、底角等于顶角一半的等腰三角形是_____三角形,画出此三角形斜边上的高,这时图中有_____个等腰三角形.5、等腰三角形的周长为22 cm,其中一边的长是8 cm,则其余两边长分别为_______________.6、26个大写英文字母中,有些字母可以看成轴对称图形,例如_ _(至少写出4个).7、图1中三角形1与____成轴对称图形,整个图形中共有____条对称轴.图1 图2 图38、如图2,如果点M在的∠ACB平分线上且AM=6厘米,则BM=______厘米,你的理由是_____________________________________________.9、如图3,OC平分∠AOB,D为OC上任一点,DE⊥OB于E,若DE=4 cm,则D 到OA的距离为_____.10、请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.二、选择题(每题3分,共15分)11、下列图形中,不是轴对称图形的是( )A.角B.等边三角形C.线段D.不等边三角形12、下列说法中错误的是( )A.两个对称的图形对应点连线的垂直平分线就是它们的对称轴B.关于某直线对称的两个图形全等C.面积相等的两个三角形对称D.轴对称指的是两个图形沿着某一直线对折后重合13、如图,下列图案是我国几家银行的标志,其中不是轴对称图形的有( )14、线段AB 和CD 互相垂直平分于O 点,且OC =21AB , 顺次连结A 、D 、B 、C ,那么图中的等腰直角三角形共有( ) A.4个B.6个C.8个D.10个15、将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是( )三、简答题(本题8分)16、指出下列图形中的轴对称图形,并画出它们的对称轴.ABCD四、解答题17、如图,已知:△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9 cm,△BCE的周长为15 cm,求BC的长. (7分)18、如图,△ABC中,AB=AC,点M、N分别在BC所在直线上,且AM=AN。
word 整理版七年级(下)第五章生活中的轴对称练习题一、选一选,牛刀初试露锋芒!(每小题 3 分,共30 分)1.下列图形中,轴对称图形的个数是()A.4 个 B .3 个C.2 个 D .1 个2.下列分子结构模型平面图中,有一条对称轴的是()ABE 22.5C 3.如图1,将长方形ABCD纸片沿对角线BD 折叠,使点C 落在C 处,C D BC 交AD于E,若DBC 22.5°,则在不添加任何辅助线的情况下,图1 则图中45 的角(虚线也视为角的边)的个数是()A.5 个 B .4 个 C .3 个 D . 2个4.下列说法中错误的是()A.两个关于某直线对称的图形一定能够完全重合C.成轴对称的两个图形,其对应点的连线的垂直平分线是它们的对称轴D.平面上两个能够完全重合的图形不一定关于某直线对称学习参考资料5.如图2,△AOD关于直线l 进行轴对称变换后得到△BOC,下列说法中不正确的是().A.∠DAO=∠CBO,∠ADO∠=BCO B .直线l 垂直平分AB、CDC.△AO D和△BOC均是等腰三角形 D .AD=BC,OD=OC6.将一个正方形纸片依次按图 a ,图b的方式对折,然后沿图 c 中的虚线裁剪,图2 最后将图d 的纸再展开铺平,所看到的图案是().a b c dA B C D7.如图3,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长图3 为()A.10 cm B .12cm C .15cm D .20cm8.图4 是小明在平面镜里看到的电子钟示数,这时的实际时间是()A.12:01 B .10:51 C .10:21 D .15:10图4 9.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图 5 所示的图形,两条直角边在同一直线上.则图中等腰三角形有()个.A.1 个 B .2 个 C .3 个 D .4个10.如图6,AB AC ,BAC 120 ,AB的垂直平分线交BC于点D,那么DAC 的度数为().A.90 B .80 C .70 D .60图6图5图7二、填一填,狭路相逢勇者胜!(每小题 3 分,共30 分)11.在一些缩写符号:①SOS,②CCTV,③BBC,④WWW,⑤TNT 中,成轴对称图形的是(填写序号)12.已知等腰三角形的顶角是底角的 4 倍,则顶角的度数为.13.如图7,公路BC所在的直线恰为AD的垂直平分线,则下列说法中:①小明从家到书店与小颖从家到书店一样远;②小明从家到书店与从家到学校一样远;③小颖从家到书店与从家到学校一样远;④小明从家到学校与小颖从家到学校一样远. 正确的是. (填写序号)14.汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳如“王、中、田”,请你再举出三个可以看成是轴对称图形的汉字.(笔画的粗细和书写的字体可忽略不记).学习参考资料word 整理版15.如图8(下页),AD是三角形ABC的对称轴,点E、F 是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是.16.从汽车的后视镜中看见某车车牌的后 5 位号码是,则该车的后 5 位号码实际是.17.下午2 时,一轮船从A处出发,以每小时40 海里的速度向正南方向行驶,下午4 时,到达 B 处,在 A 处测得灯塔 C 在东南方向,在 B 处测得灯塔 C 在正东方向,则B、C之间的距离是.18.如图9,在ABC 中,ABC ACB,AB=25cm,AB的垂直平分线交AB于点D,交AC于点E,若B C E的周长为43cm,则底边BC的长为.19.如图10,把宽为2cm的纸条ABCD沿EF,GH 同时折叠,B、C 两点恰好落在AD 边的P 点处,若△PFH 的周长为10cm,则长方A形ABCD 的面积DE PGAD 为.CBF H图10图8 图920.在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分线MN交AC于D.在下列结论中:①∠C=72°;②BD是∠ABC的平分线;③∠BDC=100°;④△ABD 是等腰三角形;⑤AD=BD=BC. 上述结论中,正确的三、想一想,百尺竿头再进步!(共60 分)学习参考资料图1121.(7 分)如图11,在△ABC中,∠C 90 ,AD 平分∠BAC ,DE ⊥AB,如果DE 5cm,∠CAD 32 ,求CD 的长度及∠B的度数.22.(7 分)如图12,已知AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8cm,BE=3cm. 求AE的长.图1223.(8 分)如图13,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置点P,并说明理由.图1324.(8 分)如图14,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.25.(10 分)(1)观察图15①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助图15⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与图14①~④的图案不能重合).图1526.(10分)如图16,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°. 求∠ACB和∠BAC的度数.27.(10分)如图17,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F 分别是边AB、AC上的中点,且EF∥BC.(1)试说明△AEF是等腰三角形;(2)试比较DE与DF的大小关系,并说明理由.图17答案一、选一选,牛刀初试露锋芒!1.B.点拨:可利用轴对称图形的定义判断.2.A.点拨:选项A有1 条对称轴,选项B、C各有2 条对称轴,选项D有6 条对称轴. 3.A.点拨:图中45 的角分别是:CBC , ABE, AEB, C ED, C DE .4.B.点拨:对称图形的对称点也可能在对称轴上.5.C.点拨:△AO D和△BOC的形状不确定.6.D.点拨:可动手操作,或空间想象.7.C.点拨:由题意得,AD=BD. 故△ACD的周长=AC+CD+AD=AC+BC=15cm8.B.点拨:镜子中看到的时刻的读数与实际时刻的读数关于镜子成轴对称.9.C.点拨:等边三角形是特殊的等腰三角形,故等腰三角形有△EPQ、△BPR、△PAD. 10.A.点拨:可求得 B BAD 30 .二、填一填,狭路相逢勇者胜!11.③,④.12.120°. 点拨:设底角的度数为x,则顶角的度数为 4 x,则有x +x +4 x =180. 13.②、③. 点拨:利用线段的垂直平分线的性质.14.本,幸,苦. 点拨:答案不惟一,只要是轴对称图形即可.15.3.点拨:利用转化思想,阴影部分的面积即为直角三角形ABD的面积. 16.BA629. 点拨:这 5 位号码在镜子中所成的像关于镜面成轴对称.17.80 海里. 点拨:画出示意图可知,△ABC是等腰直角三角形.18.18cm.点拨:由BE+CE=AC=AB=2,5可得BC=43-25=18(cm).19. 220cm .点拨:根据轴对称的性质得,BC的长即为△PFH的周长.20.①②④⑤. 点拨:∠ABC =∠C=∠BDC =72°;∠CBD=∠ABD=∠A=36°.三、想一想,百尺竿头再进步!21.因为AD 平分∠BAC ,DE⊥AB,DC ⊥AC ,所以CD DE 5cm.又因为AD 平分∠BAC ,所以∠CAB 2∠CAD 2 32 64 ,所以∠B 90 64 26 .22.因为△ABD、△BCE都是等腰三角形,所以AB=BD,BC=BE.又因为BD=CD-BC,所以AB= CD-BC=CD-BE=8cm-3cm=5cm,所以AE=AB-BE=2cm.学习参考资料23.如答图 1 所示. 到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C、D 的.距离相等的点则在线段C D的垂直平分线上,故交点P 即为所求24.(1)如答图 2 所示. 点拨:利用图中格点,可以直接确定出△ABC中各顶点的对称点的位置,从而得到△ABC关于直线MN的对称图形△ A B C .(2)S ABC 9. 点拨:利用和差法.答图 1答图 225.(1)都是轴对称图形;它们的面积相等(都是4).(2)答案不惟一,如答图 3 所示.答图 326.因为AB=AC,AE平分∠BAC,所以AE⊥BC(等腰三角形的“三线合一”)因为∠ADC=125°,所以∠CDE=55°,所以∠DCE=90°-∠CDE=35 °,又因为CD平分∠ACB,所以∠ACB=2∠DCE=70°.又因为AB=AC,所以∠B=∠ACB=70°,所以∠BAC=180-(∠B+∠ACB)=40°.27.(1)因为EF∥BC,所以∠AEF=∠B,∠AFE=∠C .又因为AB=AC,所以∠B=∠C,所以∠AEF=∠AFE,所以AE=AF,即△AEF是等腰三角形.(2)DE=DF.理由如下:方法一:因为AD是等腰三角形ABC的底边上的高,所以AD也是∠BAC的平分线.又因为△AEF是等腰三角形,所以A G是底边EF上的高和中线,所以AD⊥EF,G E=G F,所以AD是线段E F的垂直平分线,所以DE=DF.方法二:因为AD是高,所以BD=CD(三线和一);又因为点E、F 分别是边AB、AC上的中点,所以BE=CF,又因为∠B=∠C,所以△BDE≌△CDF(SAS),所以DE=DF.学习参考资料学习参考资料。
生活中的轴对称试题总集含答案It was last revised on January 2, 2021第十二章 轴对称 全章测试一、选择题(每小题2分,共20分) 1、下列说法正确的是( ).A .轴对称涉及两个图形,轴对称图形涉及一个图形B .如果两条线段互相垂直平分,那么这两条线段互为对称轴C .所有直角三角形都不是轴对称图形D .有两个内角相等的三角形不是轴对称图形 2、点M (1,2)关于x 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1) 3、下列图形中对称轴最多的是( ) .A .等腰三角形B .正方形C .圆D .线段4、已知直角三角形中30°角所对的直角边为2cm ,则斜边的长为( ). A .2cm B .4cm C .6cm D .8cm5、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ). A .11cm B .cm C .11cm 或cm D .以上都不对6、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )厘米.A .16B .18C .26D .287、如图所示,l 是四边形ABCD 的对称轴,AD∥BC ,现给出下列结论: ①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ).A .1个B .2个C .3个D .4个8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ).l O DCB AA .75°或15°B .75°C .15°D .75°和30°9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ).A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行10、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是 ( ) .A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标 二、填空题(每小题2分,共20分)11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 13、等腰三角形一个底角是30°,则它的顶角是__________度.14、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm . 15、等腰三角形的一内角等于50°,则其它两个内角各为 .16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .17、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 2cm .AC图2图1BDECBAO18、如图所示,两个三角形关于某条直线对称,则 = .19.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称.20.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm .三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ;(2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标;(3)求△ABC 的面积.22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.24、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D .求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 的长.ADE F B CA B C DE26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .080050065065030【考题2-2】(2004、宁波,3分)仔细观察下列图案(图1-7-10),并按规律在横线上画出合适的图 形.解: 点拨:此题是轴对称图形的具体应用,关键是认真分析所给图形的特征、发现均是轴对称图形. 三、针对性训练:( 20分钟) (答案:226 ) 1.如图1―7―11所示,AD 为△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,点C 落在点 C ′的位置,则BC ′和 BC 之问的数量关系为___________2.如图如图1―7―12所示,两个全等三角形可以拼出各种不同的图形,如图1―7―12已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成不同的轴对称图形,(所画三角形可与原三角形有重叠部分).3.一身高为1.8米的人,要想在平面镜中看到自己的全身像,他至少要买多少米长的穿衣镜? 4.一平面镜与水平面成45°角固定在水平桌面上,如图1―7―13所示,一小球以1米/秒的速度沿桌面向平面镜匀速滚去,则小球在平面镜里所成的像 是( )A .以1米/秒的速度,做竖直向上的运动B .以1米/秒的速度,做竖直向下的运动C .以 2米/秒的速度,做竖直向上的运动D .以2米/秒的速度,做竖直向下的运动5.在一次数学竞赛中,王老师设计了一道抢答题:“怎样根据轴对称的知识把2+3=8变成一个真正的等式”话音刚落,聪明的小虎马上举手回答,在场的同学都连连称赞他的说法,你知道他是怎么回答的吗?★★★(II)2005年新课标中考题一网打尽★★★【回顾1】(2005、温州,4分)图1-7-14中既是轴对称图形又是中心对称图形的是( ) 【回顾2】(2005、重庆,4分)图1-7-15中既是轴对称图形,又是中心对称图形的是( )【回顾3】(2005、丽水,5分)在平行四边形、矩形、菱形、正方形、等腰梯形这五种图形中,既成轴对称、又成中心对称的图形是__________.★★★(III)2006年中考题预测★★★( 100分 60分钟) 答案(226 )一、基础经典题( 分)(一)选择题(每题4分,共16分)【备考1】下列说法中错误的是()A.教室里的黑板是轴对称图形B.扑克牌中的梅花图案是轴对称图形C.五星红旗的五角星图案不是轴对称图形D.英文字母印刷体大写“W”是轴对称图形【备考2】将一张长方形纸片折一次,折痕平分这个长方形的面积,这样的折纸方法有()A.l种 B.2种 C.4种 D.无数种【备考3】圆是轴对称图形,其对称轴有()A.1条 B.2条 C.4条 D.无数条【备考4】下列图形中是轴对称图形的是()A.三角形B.平行四边形C.等腰梯形D,梯形(二)填空题(每题4分,共16分)【备考5】若图形关于某一条直线对称,则连结相应两对称点的线段必被对称轴________.【备考6】字母A,B,C,D,E,F,S,X,Y,Z中,是轴对称图形的有_______个.【备考7】将一张矩形的纸对折一次,用笔尖扎(扎透)出一个三角形,将纸打开后,可得到_____个三角形,它们之间_________.【备考8】数字______在镜中看作二、学科内综合题(每题10分,共20分)【备考9】如图1-7-16,请在ABCDE中,以线段DE所在的直线为对称轴,画出它的轴对称图形.【备考10】试画出图1-7-17中图案的对称轴(有几条就画几条)三、实际应用题(12分)【备考11】请你从一个等边三角形,一个圆,一个正方形,一条线段,一个点中,任选三个图形,设计一个轴对称图形,并说明你想表达的含义.【备考12】(开放题)某学校搞绿化,计划在一矩形空地上建一个花坛,现征集设计方案,要求设计的图案由圆和正方形组成(个数不限)并使矩形场地成轴对称图形,请你试试看.【备考13】(新信息题)我们把形如的abba四位数称为“对称数”,如 1991、2002等,试问在1000~10000 之间有几个“对称数”【备考14】(实践操作题)明发现:如果将4棵树栽于正方形的四个顶点上,如图1-7-18(1)所示,恰好构成一轴对称图形.你还能找到其他两种栽树的方法,也使其组成一个轴对称图形吗?请在图1-7-19⑵上表示出来.如果是栽5棵,又如何呢6棵、7棵呢请分别在⑷、⑸、⑹上表示出来.生活中的轴对称检测题(ⅰ)一、选择题(每题3分,共30分)1. 下列图案是我国几家银行的标志,其中不是..轴对称图形的是( )2. 如下书写的四个汉字,其中为轴对称图形的是( )A .B . C. D.3 . 如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处 C .在AC 、BC 两边垂直平分线的交点处D .在∠A 、∠B 两内角平分线的交点处 4 . 如图,直线L 1,L 2,L 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A .一处 B .二处 C .三处 D .四处 5 . 等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线 6 . 如图,AB AC BD BC ==,,若40A ∠=,则ABD ∠的度数是( )A .20B .30C .35D .40 7 . 下列说法不成立的是( )A.若两图形关于某直线对称,那么对称轴是对应点连线的中垂线B.两图形若关于某直线对称,则两图形能重合.C.等腰三角形是轴对称图形D.线段的对称轴只有一条8 . .如图,在四边形ABCD 中,边AB 与AD 关于AC 对称,则下面结论正确的是( ) ①CA 平分∠BCD ;②AC 平分∠BAD ;③DB ⊥AC ;④BE=DE.A.②B.①②C.②③④D.①②③④A B C D ABC图4BADCE CB AD9. 哪一面镜子里是他的像( )10 .一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共( )条 A .9 B. 7 C. 6 D. 3二、填空题(每题3分,共30分)11. 观察下面的英文字母,其中是轴对称图形的有_____个.A ,C ,D ,E ,F ,H ,J ,S ,M ,Y ,Z12 . 等腰三角形的一个内角是700,则它的另外两个角的度数分别是_____.13 . 如图,三角形ABC 中,AB=AC ,∠A=40度,AB 的垂直平分线MN 交AC 于D ,连接BD ,∠DBC 等于_____度.14. 如图所示的两个三角形关于某条直线对称,∠1=110°,∠2=46°,则x = .15. 如图,镜子中号码的实际号__________. 16. 如图,在△ABC 中,∠C=90°,AD 平分BAC交BC 于D,点D 到AB 的距离为5cm,则CD=_____cm. 17. 已知AD 是等边△ABC 的高,BE 是AC 边的中线, AD 与BE 交于点F ,则∠AFE=______.18 .如图是一个轴对称图形,AD 所在的直线是对称轴, 仔细观察图形,回答下列问题:(1) 线段BO 、CF 的对称线段是_________; (2)△ACE 的对称三角形是__________.AB CD1x2第1419. 一辆汽车的车牌在水中的倒影如图所示, 则该车的车牌号码是_________.20 . 小明把一张长方形的纸对折2次,描上一个四边形, 再剪去这个图形(镂空),展开长方形纸,得到如下图案, 设折痕为123,,l l l ,观察图形并填空: 四边形①与四边形②关于______成轴对称; 折痕2l 既是_____与______的对称轴; 又是_____与______的对称轴;整体看也是_____与______的对称轴. 三、 解答题(共40分)21. (本题满分10分)如图,分别以AB 为对称轴,画出各图形的对称图形.22. (本题满分10分)如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,且到∠AOB 的两边的距离相等23. (本题满分10分)如图,在△ABC 中,已知AB =AC ,AD 为∠BAC 的平分线, 且∠2=25°,求∠BAC 和∠B 的度数.24. (本题满分10分) 如图,△ABC 中,∠BAC=1100,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G 分别为垂足. (1) 求∠DAF 的度数.(2)如果BC ﹦10cm ,求△DAF 的周长.生活中的轴对称检测题 (ⅱ)一、选择题 (每小题3分,共30分) 1.圆是轴对称图形,它的对称轴有( ).条条DFEGABCBAB AAMN条 D.无数条2.如图1,∠1=∠2,PD ⊥AB ,PE ⊥BC ,垂足分别为D 、E ,则下列结论中错误的是( ).=PE=BE C.∠BPD =∠BPE =BE3.如图2是我国几家银行的标志,其中轴对称图形有( ).图2个个个个4.如图3,已知∠AOB 和一条定长线段a ,在∠AOB 内找一点P 到角的两边OA 、OB 的距离都等于a .作法:(1)作OB 的垂线NH ,使NH =a ,H 为垂足;(2)过点N 作NM ∥OB ;(3)作∠AOB 的平分线OP ,与MN 交于点P ;(4)点P 即为所求.其中(3)的依据是( ). A.平行线间的距离处处相等B.到角的两边距离相等的点在角的平分线上C.角的平分线上的点到角的两边等距离D.到线段两端等距离的点在这条线段的垂直平分线上5.如图4,△ABC 和△ADE 关于直线l 对称,下列结论:①△ABC ≌△ADE ;②l 垂直平分DB ;③∠C =∠E ;④BC 与DE 的延长线的交点一定落在直线l 上.其中错误的有( ). 个个个个6.在下面四个图形中,如果将左边的图形作轴对称折叠,哪一个能变成右边的图形图 4图3( ).图57.如图6,在桌面上坚直放置两块镜面相对的平面镜,在两镜之间放一个小凳,那么在两镜中共可得到小凳的象( ).个个 个 D.无数个 8.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是( ).A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形9. 等腰三角形的底边长为10 cm,一腰上的中线把三角形周长分成两部分的差为4 cm ,则这个三角形的腰长是( ).cmcm cm 或14 cm cm 或14 cm10.如图7,直线l 1、l 2、l 3分别表示三条相互交叉的公路,现要建一个货物中转站,要它到三条公路的距离都相等.猜想可供选择的地址有( ). 处处 处处 二、填空题 (每小题3分,共30分)11.如果一个图形沿一条直线________后,直线两旁的部分能够________,那么这个图形叫做________图形,这条直线叫做________.12.“三线合一”指的是等腰三角形________、________、________重合.13.小明面对镜子站着,他从镜子里看到自己背心上的号码为801,则他背心上实际号图7 图6码应为________.14.在直线、角、线段、等边三角形四个图形中,对称轴最多的是________,它有________条对称轴;最少的是________,它有________条对称轴.15.等腰三角形两边长分别为4 cm 、9 cm ,则它的周长=________cm ;若等腰三角形的顶角为70°,则底角=________.16.如图8,DE 是AB 的垂直平分线,交AC 于点D ,若AC =6 cm,BC =4 cm,则△BDC 的周长是________.17.在汉字中有许多汉字是轴对称图形,如由、田、品,请你再写出6个这样的字:________.18.用长方形纸条,折叠后剪出一个图案,展开后折痕是整个图案的________.19.一天小刚照镜子时,在镜子中看见挂在身后墙上的时钟,如图9,猜想实际的时间应是________.20.小明在平放在桌面上的练习本上写了一个两位数,小颖拿了一个平面镜垂直立于桌面上且也和两位数的方向垂直,这时他们二人看到实际中两位数与镜子中的像的两位数完全相同,请你猜想小明在练习本上写下的这个两位数可能是__________.(至少写出三个.注:练习本与镜子在人的同一侧)三、解答题 (共60分)21.(6分)在一次活动中,老师出了这样一道题:“如何把纸条上+=变成一个真正的等式.”同学们都思考了好长时间.这时小颖走到纸条前,只拿出了一面镜子,很快解决了这个问题,你知道小颖是怎样做的吗?22.(6分) 如图10,以虚线为对称轴,请画出下列图案的另一半.图8图923.(8分)牧马人在A 处放牧,现他准备将马群赶回B 处的家中,但中途他必须让马到河边l 饮水一次(如图11),他应该怎样选择饮水点P ,才能使所走的路程P A +PB 最短为什么24.(8分)一犯罪分子正在两交叉公路间沿到两公路距离相等的一条小路上逃跑,埋伏在A 、B 两处的两名公安人员想在距A 、B 相等的距离处同时抓住这一罪犯.(如图12) 请你帮助公安人员在图中设计出抓捕点,并说明理由.25.(8分)小红想在卧室放一穿衣镜,能看到自己的全身像,那么她至少应买多高(宽度适当)的穿衣镜?26.(8分)瓦工师傅盖房时,看房梁是否水平,有时就用一块等腰三角板放在梁上(如图13),从顶点系一重物.如果系重物的线恰好经过三角板底边的中点,则瓦工师傅就判断此房梁是水平的.这种方法是否合理?请阐述你的理由.27.(8分) 如图15,两个全等的三角板可以拼成各种不同的图形,下面已画出其中一个三角板,请你分别补画出另外一个与其全等的三角形,使每一个图形分别成不同的轴对称图形.(所画三角形与原三角形可以有重叠部分)28.(8分) 如图16,某地板厂要制作一批正方形形状的地板砖,为适应市场多样化需要,要求在地板砖上设计的图案能够把正方形四等分,请你帮助该厂设计等分图案.(至少六种)参考答案图图图图图一、二、11. 折叠互相重合轴对称对称轴12. 顶角的平分线底边上的高底边上的中线13. 10814. 直线无数角和线段15. 22 55°16. 10 cm17. 甲、出、山、个、美、业、兢、开……18. 对称轴19. 4∶1520. 80、30、10、11、18、88、…三、21 利用平面镜成像原理,把平面镜放在纸条的前后左右均可.如图.22 略.23 作点B关于直线l的对称点B′,连结AB′交l于P点,则点P为饮水点.由对称性得PB=PB′.∵在l上任取一点P′,连结AP′、P′B,由三角形两边之和大于第三边,知AP′+P′B′>AB′=P A+PB′,即AP′+P′B′>P A+PB.∴只有点P处才能使P A+PB最小.24. 作∠MAN的平分线OC,连结AB,作线段的垂直平分线与OC交于点P,则点P为抓捕点.理由:角平分线上的点到角两边的距离相等(即犯罪分子在∠MON的角平分线上,点P也在其上).线段垂直平分线上的点到线段两端点的距离相等(所以点P在线段AB的垂直平分线上).∴两线的交点,即点P符合要求.25. 镜高至少为身高的一半.26. 合理.理由:根据等腰三角形三线合一的性质,系重物的线过底边的中点,此线也为底边上的高.因为线是铅直的,所以底边即房梁就是水平的.27.28. 分法如图.生活中的轴对称习题精选(二)1.如图15-1-1,找出图中的轴对称图形,并说出它们各有几条对称轴?2.如图15-1-2,下列图案中轴对称图形的个数为()A.1个B.2个C.3个D.4个3.图15-1-3的图形中,轴对称图形的个数为()A.4B.3C.2D.14.请分别现出图15-1-4中个图形的对称轴.5.下列平面图形中不是轴对称图形的是()6.图15-1-5四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由.答:图形______________;理由是:___________________.7.小明用如图15-1-6所示的胶滚沿从左到右的方向将图案滚到墙上.下列给出的四个图案中,符合胶滚涂出的图案的是()(二)课本习题变式题练习第4题变式题)如图15-1-7,标出点A、B、C关于直线l的对8.(课本P50称点A'、B'、C'.(三)易错题9.如图15-1-8,观察(1)~(9)所示的图案,其中图案__________是轴对称图形;图案___________中的两个图形成轴对称.(四)难题巧解题10.如图15-1-9,①正三角形,②正四边形,③正五边形,④正六边形,⑤正八边形,⑥正九边形都是轴对称图形,数一数它们的对称轴的条数.观察后分析:正多边形对称轴的条数与边数n有什么关系根据你的分析结果回答,正十边形,正十六边形,正二二十九边形分别有几条对称轴正五十边形呢正一百边形呢(五)一题多变题11.(2003.福州中考试题)用若干根火柴棒可以摆出一些优美的图案.图15-1-10是用火柴棒摆出的一企图案,此图案表示的含义可以是:天平(或公正).请你用5根或5根以上火柴棒摆成一个轴对称图案,并说明你摆出的图案的含义.图案:含义:[数学在学校、家庭、社会生活中的应用]12.王成球衣上的口惠而实号码是由一个三位数组成的.他站在镜前,发现这个号码在镜子中的像与原来的号码完全相同.请问这个号码可能是多少?[数学在生产、经济、科技中的应用]13.下列图形中常见的安全标记,其中是轴对称图形的是()[自主探究]14.两个全等的三角形,可以拼出各种不同的图形,图15-1-11已画出其中一个三角形,请你分别补出一个与其全等的三角形,使每个图形有不同的对称轴(所画三角形可与原三角形有重叠部分).[潜能开发]15.在图15-1-12的图形中,以中线部分为对称轴,画出每一个图形,你会看到一些美丽的图案.试试看.[信息处理]16.观察下列图形(如图15-1-13),判断是不是轴对称图形.如果是,它有几条对称轴?[开放实践]17.日常生活中,我们常见到一些轴对称商标(徽标),请你收集10到15个,从中选择你认为精彩的1到2个进行分析.并与同伴交流.[经典名题,提升自我]18.(2004.上海)正六边形是轴对称图形.它有_____________条对称轴.19.(2004.浙江宁波)仔细观察图15-1-14中的图案,并按规律在横线上画出合适的图形.20.观察下列中国传统工艺品的花纹,其中轴对称图形是()[奥赛赏析]21.有两个村庄A和B被一条河隔开,如图15-1-15,现在要架一座桥MN,使由A到B的路程最短,问桥应架在什么地方(河岸是平行的,桥垂直于两岸) A..B[趣味数学]22.某汽车的车牌倒映在水中(如图15-1-16),你能确定该车的牌照号码吗?答案1.解:①是轴对称图形,有3条对称轴;②是轴对称图形,有5条对称轴;③是轴对称图形,有4条对称轴;④是轴对称图形,有1条对称轴;⑤是轴对称图形,有2条对称轴;⑥不是轴对称图形.2.C3.D4.略.5.D6②;四个图形中只有②不是轴对称图形.7.A8.略9.解:①,③,④,⑥,⑧是轴对称图形;②,⑤,⑦,⑨成轴对称.点拨:(1)轴对称的定义中包括两层意思:①有两个图形;②沿某直线折过来能够互相重合,即这两个图形是全等的图形;(2)轴对称图形的定义中也包括两层意思:①只有一个图形;②沿某直线折叠后,直线两旁的部分能够互相重合,即这两部分图形是全等形.(3)轴对称图形是研究一个图形的有关性质;轴对称是研究两个图形具有的性质.10.解:正三角形有3条对称轴,正四边形有4条对称轴,正五边形有5条对称轴,正六边形有6条对称轴,正八边形有8条对称轴,正九边形有9条对称轴.正多边形的对称轴的条数与边数n之间的关系是:边数是n,对称轴的条数是n 条.所以正十边形有10条对称轴,正十六边形有16条对称轴,正二十九边形有29条对称轴,正五十边形有50条对称轴,正一百边形就有100条对称轴.11.略.12.解:在用行书书写0~9这十个数字中,只有0,1,8这三个数字在镜子中的像与原来的完全一样,因此王成球衣上的号码可能是以下两种情况:①号码中有两个相同的数字的数有6个:101,181,010,080,808;818.②号码中的三个数字完全相同的有2个:888,111(000这个号不符合实际)因此这个号码是以上8个数中的一个.13.A14.15.略.16.分析:注意从不同的方向看图.解:①是轴对称图形,有一条对称轴;②不是轴对称图形;③是轴对称图形,有一条对称轴;④不是轴对称图形;⑤是轴对称图形,有一条对称轴;⑥不是轴对称图形;⑦不是轴对称图形;⑧是轴对称图形,有一条对称轴.17.略.经典名题,提升自我18.619.20.A21.分析:因河宽是一定值,所以桥MN 的长度一定,只需使AM+BN 最短即可,可平移AM(或BN),使它们首尾相接,即可确定N(或AO 点的位置.解:将A 沿垂直于河岸的方向平移至1A ,使1AA 与河宽相等,连结A 1B ,与靠近B点的河岸交于点N 在N 处架桥MN,则路程AMNB 最短.22.M17936生活中的轴对称单元测试题一、选择题1.下列说法中,不正确的是 ( )A .等腰三角形底边上的中线就是它的顶角平分线B .等腰三角形底边上的高就是底边的垂直平分线的一部分C .一条线段可看作以它的垂直平分线为对称轴的轴对称图形D .两个三角形能够重合,它们一定是轴对称的2.下列推理中,错误的是 ( )A .∵∠A =∠B =∠C ,∴△ABC 是等边三角形 B .∵AB =AC ,且∠B =∠C ,∴△ABC 是等边三角形C .∵∠A =60°,∠B =60°,∴△ABC 是等边三角形D .∵AB =AC ,∠B =60°,∴△ABC 是等边三角形3.在等边三角形ABC 中,CD 是∠ACB 的平分线,过D 作DE ∥BC 交AC 于E ,若△ABC 的边长为a ,则△ADE 的周长为 ( )A .2aB .a 34C .1.5aD .a4.等腰三角形两边的长分别为2cm 和5cm ,则这个三角形的周长是 ( )A .9cmB .12cmC .9cm 和12cmD .在9cm 与12cm 之间5.观察图7—108中的汽车商标,其中是轴对称图形的个数为 ( )6.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为()A.0 B.1 C.2 D.37.△ABC中,AB=AC,点D与顶点A在直线BC同侧,且BD=AD.则BD与CD的大小关系为 ()A.BD>CD B.BD=CD C.BD<CD D.BD与CD大小关系无法确定8.下列图形中,不是轴对称图形的是 ()A.互相垂直的两条直线构成的图形 B.一条直线和直线外一点构成的图形C.有一个内角为30°,另一个内角为120°的三角形 D.有一个内角为60°的三角形9.在等腰△ABC中,AB=AC,O为不同于A的一点,且OB=OC,则直线AO与底边BC 的关系为 ()A.平行 B.垂直且平分 C.斜交D.垂直不平分10.三角形的三个顶点的外角平分线所在的直线两两相交,所围成的三角形一定是()A.锐角三角形 B.钝角三角形 C 等腰三角形 D.直角三角形二、填空题1.正五角星形共有_______条对称轴.2.黑板上写着在正对着黑板的镜子里的像是__________.4,一边长为11cm,则它的周长为________. 3.已知等腰三角形的腰长是底边长的34.(1)等腰三角形(2)正方形(3)正七边形(4)平行四边形(5)梯形(6)菱形中,一定是轴对称图形的是_________.5如果一个图形沿某一条直线折叠后,直线两旁的部分能够_____,则这个图形叫轴对称图形,这条直线叫__.6.如图7—109,在△ACD中,AD=BD=BC,若∠C=25°,则∠ADB=________. 7.已知:如图7—110,△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E=_____________.8如图111,在Rt△ABC中,B为直角,DE是AC的垂直平分线,E在BC上,∠BAE:∠BAC=1:5,则∠C=___.9.如图7—112,∠BAC=30°,AM是∠BAC的平分线,过M作ME∥BA交AC于E,作MD⊥BA,垂足为D,ME=10cm,则MD=_________.10.如图7—113,OE是∠AOB的平分线,BD⊥OA于D,AC⊥BO于C,则关于直线OE 对称的三角形有________对.三、解答题1.如图7—114,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.2.如图7—115,图中的图形是轴对称图形吗?如果是轴对称图形,请作出它们的对称轴.3.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,求PQ之长.4.如图7—116,在△ABC中,C为直角,∠A=30°,CD⊥AB于D,若BD=1,求AB 之长.5.如图7—117,在△ABC中,C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AB=20,求△ABC的两锐角及AD、DE、EB各为多少?。
一、选择题1.如图,点D 在△ABC 的边BC 上,BD CD >.将△ABD 沿AD 翻折,使B 落在点E 处.且DE 与AC 交于点F .设△AEF 的面积为1S ,△CDF 的面积为2S ,则1S 与2S 的大小关系为( )A .12S S >B .12S SC .12S S <D .不确定 2.正方形是轴对称图形,它的对称轴有( )A .2条B .4条C .6条D .8条 3.如图,矩形纸片ABCD 沿着BE 折叠,使C 、D 两点分别落在C 1、D 1处,若∠ABC 1=45°,则∠ABE 的度数为( )A .22.5°B .21.5°C .22°D .21° 4.把一张对边互相平行的纸条按如图所示折叠,EF 是折痕,若∠EFB =34°,则下列结论不正确的是( )A .34C EF '∠︒=B .∠AEC =146° C .∠BGE =68°D .∠BFD =112° 5.在如图所示的直角坐标系中,三颗棋子A 、O 、B 的位置如图,它们的坐标分别是(-1,1),(0,0)和(1,0),添加棋子C ,使A 、O 、B 、C 四颗棋子成为一个轴对称图形,则C 的坐标一定不是( )A .(-1,-1)B .(1,1)C .(-1,2)D .(0,-1) 6.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是( ) A . B .C .D .7.在汉字“生活中的日常用品”中,成轴对称的有( )A .3个B .4个C .5个D .6个8.如图,点P 是AOB ∠外的一点,点,M N 分别是AOB ∠两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,若2.5,3,4PM cm PN cm MN cm ===,则线段QR 的长为( )A .4.5B .5.5C .6.5D .79.如图,若ABC ∆的面积为24,6AC =,现将ABC ∆沿 AB 所在直线翻折,使点 C 落在直线 AD 上的C '处,P 为直线AD 上一点,则线段 BP 的长可能是( )A .3B .5C .6D .1010.下列图形中是轴对称图形的个数为( )A.2个B.3个C.4个D.5个11.在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC关于某条直线对称的格点三角形,最多能画()个.A.5 B.6 C.7 D.812.如图所示,在锐角三角形ABC中,AB=8,AC=5,BC=6,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,下列结论:①∠CBD=∠EBD,②DE⊥AB,③三角形ADE的周长是7,④34 BCDABDSS=△△,⑤34CDAD=.其中正确的个数有()A.2 B.3 C.4 D.5二、填空题13.如图,将书页斜折过去,使角的顶点A落在A'处,BC为折痕,BD是A BE∠'的平分线,则∠CBD=______.14.如图将长方形ABCD折叠,折痕为EF,BC的对应边B C''与CD交于点M,若40C FM'∠=︒,则BEF∠的度数为_______.15.如图,将一张长方形纸片分别沿着EP、FP对折,使点A落在点A′,点B落在点B′,若点P ,A ′,B ′在同一直线上,则两条折痕的夹角∠EPF 的度数为_____.16.如图,△ABC 中,∠ACB =90°,AC <BC ,将△ABC 沿EF 折叠,使点A 落在直角边BC 上的D 点处,设EF 与AB 、AC 边分别交于点E 、F ,如果折叠后△CDF 与△BDE 均为等腰三角形,那么∠B =_____.17.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数是________.18.如图,长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF ,将BEF ∠对折B 落在直线EF 上的点'B 处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点'A 得折痕EN ,若6215'BEM ∠=︒,则AEN ∠=____.19.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.20.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.三、解答题21.如图,在Rt ABC △中,AC BC =,90ACB ∠=︒,D 是AC 的中点,DG AC ⊥交AB 于点G ,E 为线段DC 上任意一点,点F 在线段DG 上,且DE DF =,连结EF 与CF ,过点F 作FH FC ⊥,交直线AB 于点H .(1)试说明DG DC =的理由;(2)判断FH 与FC 的数量关系,并说明理由.22.如图,邮递员小王的家在两条公路OM 和ON 相交成的角(MON ∠)的内部A 处,小王每天都要到开往OM 方向的车上取下快件,然后再送到开往ON 方向的车上,这样他就可以回家了,为使小王每天接送快件时的行程最短,请帮助他找出在公路OM 和ON 上的等车地点.(画草图,保留作图痕迹)23.如图,已知ABC ∆,点B 在直线a 上,直线,a b 相交于点O .(1)画ABC ∆关于直线a 对称的111A B C ∆;(2)在直线b 上画出点P ,使BP CP +最小.24.如图所示,ABC ∆在正方形网格中,若点A 的坐标是()2,4,点B 的坐标是()1,0-,按要求解答下列问题:(1)在图中建立正确的平面直角坐标系,写出点C 的坐标.(2)在图中作出△ABC 关于x 轴对称的△A 1B 1C 1.25.如图,在平面直角坐标系中有一个ABC ,顶点()1,3A -,()2,0B ,()3,1C --. (1)画出ABC 关于y 轴的对称图形111A B C △(不写画法);(2)点C 关于x 轴对称的点的坐标为__________,点B 关于y 轴对称的点的坐标为__________;(3)若网格上每个小正方形的边长为1,求111A B C △的面积?26.如图,在平面直角坐标系中()3,2A -、()4,3B --、()1,1C --.(1)在图中作出ABC ∆关于y 轴对称的图形111A B C ∆;(2)写出1A 、1B 、1C 的坐标,分别是1A (____,_____)、1B (____,_____)、1C (____,_____);(3)ABC ∆的面积是______________.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】依据点D 在△ABC 的边BC 上,BD >CD ,即可得到S △ABD >S △ACD ,再根据折叠的性质,即可得到S 1>S 2.【详解】解:∵点D 在△ABC 的边BC 上,BD >CD ,∴S △ABD >S △ACD ,由折叠可得,S △ABD =S △AED ,∴S △AED >S △ACD ,∴S △AED −S △ADF >S △ACD −S △ADF ,即S 1>S 2,故选:A .【点睛】本题主要考查了折叠的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2.B解析:B【分析】正方形既是矩形,又是菱形,具有矩形和菱形的轴对称性,由此可知其对称轴.【详解】解:正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.故选B .【点睛】本题考查了正方形的轴对称性.关键是明确正方形既具有矩形的轴对称性,又具有菱形的轴对称性.3.A解析:A【分析】根据折叠前后对应角相等即可得出∠CBE 的度数,再根据∠ABC 为直角即可得到答案.【详解】设∠ABE=x ,根据折叠前后角相等可知,∠C 1BE=∠CBE=45x ︒+,∵∠ABC=90°,∴∠CBE+∠ABE=90°,即4590x x ︒++=︒,解得22.5x =︒.故选:A .【点睛】本题考查了图形的翻折变换,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.B解析:B【分析】根据平行线的性质以及翻折不变性,分别求出∠C′EF ;∠AEC ;∠BGE ;∠BFD 即可判断.【详解】解:A 、∵∠EFB =34°,AC′∥BD′,∴∠EFB =∠FEC′=∠FEG =34°,故正确,不符合题意;B 、由折叠可得∠C′EG =68°,则∠AEC=180°﹣∠C′EG=112°,故错误,符合题意;C、∵∠BGE=∠C′EG=68°,故正确,不符合题意;D、∵EC∥DF,∴∠BFD=∠BGC=∠AEC=112°,故正确,不符合题意.故选:B.【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.5.B解析:B【分析】根据A,B,O,C的位置,结合轴对称图形的性质,进而画出对称轴即可.【详解】如图所示,C点的位置为(-1,2),(2,1),A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴,C点的位置为(-1,-1),x轴是对称轴,C点的位置为(0,-1),故选:B.【点睛】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.6.C解析:C【解析】【分析】根据轴对称的概念对各选项分析判断即可得答案.【详解】A.不是轴对称图形,故该选项不符合题意,B.不是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项符合题意,D.不是轴对称图形,故该选项不符合题意.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.A解析:A【分析】根据轴对称的定义,找出成轴对称的字,即可解答.【详解】在汉字“生活中的日常用品”中,成轴对称的字有“中、日、品”3个;故选A.【点睛】本题考查轴对称,解题关键是熟练掌握轴对称的定义.8.A解析:A【分析】根据轴对称性质可得出PM=MQ ,PN=RN ,因此先求出QN 的长度,然后根据QR=QN+NR 进一步计算即可.【详解】由轴对称性质可得:PM=MQ=2.5cm ,PN=RN=3cm ,∴QN=MN−MQ=1.5cm ,∴QR=QN+RN=4.5cm ,故选:A.【点睛】本题主要考查了轴对称性质,熟练掌握相关概念是解题关键.9.D解析:D【分析】过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,P 点在AD 上运动,,利用三角形的面积求出BN ,进而得到BM ,BM 的长即为BP 的最小值.【详解】如图,过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,△ABC 面积为24,AC 为6,故可得到BN=24×2÷6=8,因为△ABC 翻转得到ABC ∆',故=A B C C B A ,所以有BM=BN=8,所以BP 的最小值为8,选项中只有D 选项大于8,故选D.【点睛】本题考查翻转的性质,解题关键在于能够合理做出辅助线.10.B解析:B【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】解:第1个是轴对称图形;第2个不是轴对称图形;第3个是轴对称图形;第4个是轴对称图形;第5个不是轴对称图形.故选:B.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.C解析:C【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出7个格点三角形与△ABC成轴对称.故选:C .【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题的难点在于确定出不同的对称轴.12.C解析:C【分析】根据翻折变换的性质得到DC=DE ,BE=BC ,BCD BED ∠=∠,根据已知求出AE 的长,根据三角形周长公式计算即可,根据高相等判断34BCD ABD S S =△△ ,根据△BCD ≅△BDE 判断①的对错,根据等高,则面积的比等于底边的比判断⑤.【详解】根据翻折变换的性质得到DC=DE ,BE=BC=6,BCD BED ∠=∠,故DE ⊥AB 错误,即②错误∴△BCD ≅△BDE ,∴∠CBD =∠EBD,故①正确;∵AB=8,∴AE=AB-BE=2,△AED 的周长为:AD+AE+DE=AC+AE=7,故③正确;设三角形BCD 的高为h ,则三角形BAD 的高也为h ∴116322114822BCD ABD h BC h S S h AB h ⨯⨯⨯⨯==⨯⨯⨯⨯△△=,故④正确; 当三角形BCD 的高为H ,底边为CD ,则三角形BAD 的高也为H ,底边为AD ∴34BCD ABD S C S D AD ==△△,故⑤正确.【点睛】本题考查的是翻折变换的知识涉及了三角形全等、等高等知识点,掌握翻折变换的性质、找准对应关系是解题的关键.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.90°【分析】根据折叠得出∠ABC=∠CBA′=∠ABA′根据角平分线得出∠A′BD=∠A′BE求出∠CBA′+∠A′BD=(∠ABA′+∠A′BE)=90°即可得出答案【详解】解:∵将书页斜折过去解析:90°【分析】根据折叠得出∠ABC=∠CBA′=12∠ABA′,根据角平分线,得出∠A′BD=12∠A′BE,求出∠CBA′+∠A′BD=12(∠ABA′+∠A′BE)=90°,即可得出答案.【详解】解:∵将书页斜折过去,使角的顶点A落在A′处,BC为折痕,∴∠ABC=∠CBA′=12∠ABA′,∵BD为∠A′BE的平分线,∴∠A′BD=12∠A′BE,∴∠CBA′+∠A′BD=12(∠ABA′+∠A′BE)=12×180°=90°,即∠CBD=90°.故答案为:90°.【点睛】本题考查了角的计算和翻折变换的应用,关键是求出∠CBA′+∠A′BD=1 2(∠ABA′+∠A′BE).14.70°【分析】依据矩形的性质以及折叠的性质即可得到∠DFE=∠BEF设∠BEF=α则∠DFE=∠BEF=α根据BE∥CF即可得出∠BEF+∠CFE=180°进而得到∠BEF的度数【详解】解:∵四边形解析:70°【分析】依据矩形的性质以及折叠的性质,即可得到∠DFE=∠B'EF,设∠BEF=α,则∠DFE=∠B'EF=α,根据B'E∥C'F,即可得出∠B'EF+∠C'FE=180°,进而得到∠BEF的度数.解:∵四边形ABCD是矩形,∴AB∥DC,∴∠BEF=∠DFE,由折叠可得,∠BEF=∠B'EF,设∠BEF=α,则∠DFE=∠B'EF=α,∵B'E∥C'F,∴∠B'EF+∠C'FE=180°,即α+α+40°=180°,解得α=70°,∴∠BEF=70°,故答案为:70°.【点睛】本题考查折叠问题以及矩形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.15.90°【分析】根据翻折的性质得到∠APE=∠APE∠BPF=∠BPF根据平角的定义得到∠APE+∠BPF=90°即可求得答案【详解】解:如图所示:∵∠APE=∠APE∠BPF=∠BPF∠APE+∠A解析:90°【分析】根据翻折的性质得到∠APE=∠A'PE,∠BPF=∠B'PF,根据平角的定义得到∠A'PE+∠B'PF =90°,即可求得答案.【详解】解:如图所示:∵∠APE=∠A'PE,∠BPF=∠B'PF,∠APE+∠A'PE+∠BPF+∠B'PF=180°,∴2(∠A'PE+∠B'PF)=180°,∴∠A'PE+∠B'PF=90°,又∴∠EPF=∠A'PE+∠B'PF,∴∠EPF=90°,故答案为:90°.【点睛】此题考查折叠的性质,平角的定义.16.30°【分析】先确定△CDF是等腰三角形得出∠CFD=∠CDF=45°因为不确定△BDE是以那两条边为腰的等腰三角形故需讨论①DE=DB②BD=BE③DE=BE然后分别利用角的关系得出答案即可【详解解析:30°【分析】先确定△CDF是等腰三角形,得出∠CFD=∠CDF=45°,因为不确定△BDE是以那两条边为腰的等腰三角形,故需讨论,①DE=DB,②BD=BE,③DE=BE,然后分别利用角的关系得出答案即可.【详解】解:∵△CDF中,∠C=90°,且△CDF是等腰三角形,∴CF=CD,∴∠CFD=∠CDF=45°,设∠DAE=x°,由对称性可知,AF=FD,AE=DE,∠CFD=22.5°,∠DEB=2x°,∴∠FDA=12分类如下:①当DE=DB时,如图1所示:∠B=∠DEB=2x°,由∠CDE=∠DEB+∠B,得45°+22.5°+x=4x,解得:x=22.5°.此时∠B=2x=45°,∵AC<BC,∴∠B=45°不成立;②当BD=BE时,如图2所示:则∠B=(180°﹣4x)°,∠CAD=22.5°.由∠CDE=∠DEB+∠B得:45°+22.5°+x=2x+180°﹣4x,解得x=37.5°,此时∠B=(180﹣4x)°=30°.③DE=BE时,则∠B=12(180﹣2x)°,由∠CDE=∠DEB+∠B得,45°+22.5°+x=2x+12(180﹣2x)°,此方程无解.∴DE=BE不成立.综上所述,∠B=30°.故答案为:30°.【点睛】本题考查翻折变换的性质、等腰三角形的判定与性质、三角形内角和定理等知识,在不确定等腰三角形的腰时要注意分类讨论,不要漏解,另外要注意方程思想在求解几何问题中的应用.17.45°【分析】根据折叠过程可知在折叠过程中角一直是轴对称的折叠【详解】在折叠过程中角一直是轴对称的折叠故答案为45°【点睛】考核知识点:轴对称理解折叠的本质是关键解析:45°【分析】根据折叠过程可知,在折叠过程中角一直是轴对称的折叠.【详解】在折叠过程中角一直是轴对称的折叠,22.5245AOB︒︒∠=⨯=故答案为45°【点睛】考核知识点:轴对称.理解折叠的本质是关键.18.【分析】先根据折叠的性质求出∠B′EM根据邻补角求出∠AEA′再根据折叠的性质即可求出∠AEN【详解】解:根据折叠可知:EM平分∠BEB′∴∠B′EM=∠BEM=62°15′∴∠AEA′=180°-解析:2745'︒【分析】先根据折叠的性质求出∠B′EM,根据邻补角求出∠AEA′,再根据折叠的性质即可求出∠AEN.【详解】解:根据折叠可知:EM平分∠BEB′,∴∠B′EM=∠BEM=62°15′,∴∠AEA′=180°-2×62°15′=55°30′,EN平分∠AEA′,∴∠AEN=∠A′EN=12∠AEA′=12×55°30′=27°45′,故答案为:27°45′.【点睛】本题考查了折叠的性质,邻补角的定义,以及角的计算、度分秒的换算,解决本题的关键是掌握折叠的性质.19.70【分析】根据三角形的外角和定理得和再根据轴对称的性质得和列式求出的值即可得到结果【详解】解:∵是的外角∴∵是的外角∴∵与关于边OB 所在的直线成轴对称∴∴即解得∴故答案是:【点睛】本题考查轴对称的 解析:70【分析】根据三角形的外角和定理,得ADC A ABC ∠=∠+∠和ADC BOD OBD ∠=∠+∠,再根据轴对称的性质得12OBD ABC ∠=∠和22C A ∠=∠=︒,列式求出ABC ∠的值,即可得到结果.【详解】解:∵ADC ∠是ABD △的外角, ∴ADC A ABC ∠=∠+∠, ∵ADC ∠是BOD 的外角, ∴ADC BOD OBD ∠=∠+∠, ∵AOB 与COB △关于边OB 所在的直线成轴对称, ∴12OBD ABC ∠=∠,22C A ∠=∠=︒, ∴12A ABC BOD ABC ∠+∠=∠+∠, 即122462ABC ABC ︒+∠=︒+∠, 解得48ABC ∠=︒, ∴224870ADC A ABC ∠=∠+∠=︒+︒=︒.故答案是:70.【点睛】本题考查轴对称的性质和三角形外角和定理,解题的关键是熟练运用这两个性质定理进行求解.20.5【分析】作DF ⊥AB 于F 根据角平分线的性质得到DE=DF 根据三角形的面积公式计算即可;【详解】如图:作DF ⊥AB 于F ∵BD 平分∠ABCDE ⊥BCDF ⊥AB ∴DE=DF ∴×AB×DF+×BC×DE=解析:5【分析】作DF ⊥AB 于F ,根据角平分线的性质得到DE=DF ,根据三角形的面积公式计算即可;【详解】如图:作DF ⊥AB 于F ,∵ BD 平分∠ABC ,DE ⊥BC ,DF ⊥AB ,∴DE=DF , ∴12×AB×DF+12×BC×DE=ABC S ∆ , 即12×AB×2+12×7×2=12, 解得:AB=5.故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键;三、解答题21.(1)见解析;(2)FH FC =,见解析.【分析】(1)求出∠A =∠AGD =45°,根据等腰三角形的判定得出AD =DG ,再由AD =DC 即可得出结论;(2)根据已知可依次证得FG =CE ,∠GFH =∠DCF ,∠HGF =∠FEC ,利用ASA 推出△HGF ≌△FEC ,再由全等三角形的性质即可得出结论.【详解】解:(1)∵AC BC =,90ACB ∠=︒,∴45A B ∠=∠=︒.∵DG AC ⊥,所以90ADG ∠=︒.∴45AGD ∠=︒.∴A AGD ∠=∠.∴AD DG =.∵D 是AC 的中点,∴AD DC =.∴DG DC =.(2)FH FC =.理由如下:∵DE DF =,DG DC =,∴DG DF DC DE -=-即FG CE =.∵FH FC ⊥,∴90GFH DFC ∠+∠=︒.又∵90DCF DFC ∠+∠=︒,∴GFH DCF ∠=∠.∵DG AC ⊥,DE DF =,∴45DEF DFE ∠=∠=︒.∴135FEC ∠=︒.同理可得:135HGF ∠=︒.∴HGF FEC ∠=∠.在HGF △和FEC 中,GFH DCF FG CE HGF FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴HGF △≌FEC .∴FH FC =.【点睛】 本题考查了等腰三角形及全等三角形的判定和性质的应用,掌握等腰三角形与全等三角形的判定与性质的相关知识点并能灵活运用定理进行推理是解答此题的关键.22.图见解析【分析】如图所示,分别作点A 关于射线OM 所在直线的对称点E ,点A 关于射线ON 所在直线的对称点F ,连接EF ,分别交射线OM 、ON 于点B 、C ,则根据轴对称的性质可知B 处、C 处分别为小王在公路OM 和ON 上的的等车地点.【详解】解:如图所示,分别作点A 关于射线OM 所在直线的对称点E ,点A 关于射线ON 所在直线的对称点F ,连接EF ,分别交射线OM 、ON 于点B 、C ,连接AB 、AC . 根据轴对称的性质可得AB EB =、AC FC =,此时ABC 的周长最小,则B 处、C 处分别为小王在公路OM 和ON 上的的等车地点.【点睛】本题考查了轴对称—路径最短问题,属于常考题型,正确理解题意、掌握解答的方法是解题的关键.23.(1)见解析;(2)见解析【分析】(1)根据题意,过点A 作直线a 的对称点1A ,过点C 作直线a 的对称点1C ,然后顺次连线,即可得到图形;(2)过点B 作直线b 的对称点B 2,连接CB 2与直线b 相交于点P ,则点P 为所求.【详解】解:(1)如图所示:111A B C 为所求;(2)如图,点P 为所求.【点睛】本题考查了轴对称的性质,画轴对称图形,解题的关键是熟练掌握轴对称的性质进行解题. 24.(1)见解析;C(3,2);(2)见解析.【分析】(1)利用点A 的坐标和点B 的坐标,确定原点,建立平面直角坐标系,并写出点C 的坐标即可;(2)利用关于x 轴对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可得到△A 1B 1C 1.【详解】(1)如图所示;C(3,2);(2)如图所示:【点睛】本题考查了作图——轴对称变换,以及建立平面直角坐标系,解题的关键是熟练掌握轴对称的性质,正确建立平面直角坐标系.25.(1)见解析;(2)()3,1-,()2,0-;(3)9【分析】(1)关于y 轴对称,则纵坐标不变,横坐标变成相反数,先确定三个顶点的对称点,再一次连接即可;(2)关于x 轴对称则横坐标不变,纵坐标变为相反数;关于y 轴对称,则纵坐标不变,横坐标变成相反数;(3)利用网格,所求面积=三角形所在的长方形的面积-多余的三角形面积,计算即可.【详解】解:(1)如解图所示,111A B C △即为所求;(2)点C 关于x 轴对称的点的坐标为()3,1-,点B 关于y 轴对称的点的坐标为()2,0-;(3)111A B C △的面积为:111452433159222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题考查的主要是轴对称变换以及三角形面积求法,根据题意求出对应点的位置是解题关键.26.(1)如图所示,见解析;(2)3,2;4,-3;1,-1;(3)132. 【分析】(1)根据网格结构找出点A 、B 、C 关于y 轴的对称点111A B C 、、的位置,然后顺次连接即可;(2)由点关于y 轴对称点的特点填空即可;(3)根据△ABC 所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解.【详解】(1)如图所示:(2)A1(3,2),B1(4,-3),C1(1,-1),故答案为3,2;4,-3;1,-1;(3)S△ABC=5×3-12×5×1-12×2×3-12×2×3=132.故答案为:132.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.。
北师大版数学七年级下册第五章 生活中的轴对称 综合素质评价一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面所给的图形是轴对称图形的是( )2.【2022·高州校级月考】若等腰三角形中一个角为100°,则它的底角的度数为( )A .40°B .80°C .40°或80°D .50°3.如图,已知△ABC 和△A ′B ′C ′关于直线l 成轴对称,且∠A =45°,∠C ′=35°,则∠B 的度数是( )A .100°B .120°C .45°D .35°4.【2022·佛山顺德区期中】如图,在等边三角形ABC 中,AB =4,D 是边BC 上一点,且∠BAD =30°,则CD 的长为( )A .1B .32C .2D .35.【2022·广州南沙区校级月考】某镇要在三条公路围成的一块三角形平地内修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址( )A .仅有一处B .有四处C .有七处D .有无数处6.小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如图所示,那么哥哥球衣上的号码实际是( )A.25 B.52C.55 D.227.数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题,如图所示,∠1=∠2,若∠3=25°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1为( )A.65°B.60°C.50°D.45°8.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF,若∠A=60°,∠ABD=24°,则∠ACF的度数为( )A.48° B.36° C.30° D.24°9.如图,已知D为△ABC的边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于( )A.65° B.50° C.60° D.57.5°10.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC 上的点,当△AEF的周长最小时,∠EAF的度数为( )A.50° B.60° C.70°D.80°二、填空题:本大题共5小题,每小题3分,共15分.11.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.12.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.13.【2022·深圳龙岗区】如图,在△ABE中,AE的垂直平分线MN交BE于点C,∠E=30°,且AB=CE,则∠BAE的度数为________.14.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD =2,AC=7,那么△ADC的面积等于________.15.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有________种.三、解答题(一):本大题共3小题,每小题8分,共24分.16.如图,点A,B在直线l同侧,请你在直线l上找出一点P,使得PA+PB的值最小,画出图形.17.如图,在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE.求∠CDE的度数.18.【2022·乐清月考】如图,△ABC和△ADE关于直线MN对称,BC与DE的交点F在直线MN上.若∠BAC=108°,∠BAE=30°,求∠EAF的度数.四、解答题(二):本大题共3小题,每小题9分,共27分.19.【2022·清远清城区校级月考】如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,试说明:PM=PN.20.如图,在2×2的正方形网格中,每个小正方形的边长均为1.请分别在下图中画一个位置不同、顶点都在格点上的三角形,使其与△ABC成轴对称图形.21.【2022·高州校级月考】如图,在△ABC中,DM,EN分别垂直平分AC和BC 交AB于点M,点N.(1)若AB=12 cm,求△MCN的周长;(2)若∠ACB=118°,求∠MCN的度数.五、解答题(三):本大题共2小题,每小题12分,共24分.22.如图,在四边形ABCD中,AC与BD互相垂直平分,点O为垂足.(1)四边形ABCD是不是轴对称图形?如果是,它的对称轴是什么?(2)图中有哪些相等的线段?(3)作出点O到∠BAD两边的垂线段,并说明它们的大小关系.23.在四边形ABCD中,∠BAD=α,∠BCD=180°-α,BD平分∠ABC.(1)如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD,这个性质是__________;(2)问题解决:如图2,试说明:AD=CD;(3)问题拓展:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,试说明:BD+AD=BC.答案一、1.A 2.A 3.A 4.C 5.A 6.A 7.A 8.A9.B 点拨:因为△DEF是由△DEA沿DE折叠而来的,所以AD=FD.因为D是边AB的中点,所以AD=BD.所以BD=FD.所以∠B=∠BFD.因为∠B=65°,所以∠BFD=65°,所以∠BDF=180°-∠B-∠BFD=180°-65°-65°=50°.10.D 点拨:如图,分别作点A关于BC和CD的对称点A′,A″,连接A′A″,交BC于点E,交CD于点F,则A′A″即为△AEF周长的最小值.连接AC.因为∠ABC+∠BCA+∠BAC=180°,∠ADC+∠DCA+∠DAC=180°,∠ABC =90°,∠ADC=90°,∠BCA+∠DCA=∠BCD=50°,所以∠BAC+∠DAC=130°,即∠DAB=130°.所以∠A′+∠A″=180°-∠DAB=50°.易得∠EAA′=∠A′,∠FAA″=∠A″,所以∠EAA′+∠FAA″=50°.所以∠EAF=∠DAB-(∠EAA′+∠FAA″)=130°-50°=80°.二、11.2 12.6 13.90°14.7 点拨:过点D 作DE ⊥AC 于点E .因为AD 平分∠BAC ,所以DE =BD =2.所以S △ADC =12AC ·DE =12×7×2=7.15.5三、16.解:如图所示.17.解:因为AB =AC ,AD ⊥BC ,所以AD 平分∠BAC .所以∠CAD =∠BAD =40°.因为AD =AE ,所以∠ADE =12(180°-∠CAD )=70°.因为AD ⊥BC ,所以∠ADC =90°.所以∠CDE =∠ADC -∠ADE =90°-70°=20°.18.解:因为∠BAC =108°,∠BAE =30°,所以∠CAE =108°-30°=78°.由对称性知∠EAF =∠CAF ,所以∠EAF =12∠CAE =39°.四、19.解:因为BD 为∠ABC 的平分线,所以∠ABD =∠CBD .在△ABD 和△CBD 中,{AB =CB ,∠ABD =∠CBD ,BD =BD ,所以△ABD≌△CBD(ASA),所以∠ADB=∠CDB,所以DB为∠ADC的平分线.因为点P在BD上,PM⊥AD,PN⊥CD,所以PM=PN.20.解:画图如下.(答案不唯一)21.解:(1)因为DM,EN分别垂直平分AC和BC交AB于点M,点N,所以AM=CM,BN=CN.因为AB=12 cm,所以△MCN的周长是CM+MN+CN=AM+MN+BN=AB=12 cm.(2)因为∠ACB=118°,所以∠A+∠B=180°-∠ACB=62°.因为DM,EN分别垂直平分AC和BC交AB于点M,点N,所以AM=CM,BN=CN,所以∠A=∠ACM,∠B=∠BCN,所以∠ACM+∠BCN=∠A+∠B=62°.所以∠MCN=∠ACB-(∠ACM+∠BCN)=118°-62°=56°.五、22.解:(1)四边形ABCD是轴对称图形,对称轴是AC所在直线和BD所在直线.(2)相等的线段有:AB=BC=CD=AD,OA=OC,OB=OD.(3)如图,分别过点O作OE⊥AD于点E,OF⊥AB于点F.因为AB=AD,BO=DO,AO=AO,所以△ABO≌△ADO,所以∠BAO=∠DAO.所以AO平分∠BAD.又因为OE⊥AD,OF⊥AB,所以OE=OF.23.解:(1)角平分线上的点到角的两边的距离相等(2)如图1,分别过点D作DE⊥BA交BA延长线于点E,DF⊥BC点于F.因为BD平分∠ABC,DE⊥BE,DF⊥BF,所以DE=DF,∠DEA=∠DFC=90°.因为∠BAD+∠BCD=α+180°-α=180°,∠BAD+∠EAD=180°,所以∠EAD=∠BCD.在△DEA和△DFC中,{∠EAD=∠FCD,∠DEA=∠DFC,DE=DF,所以△DEA≌△DFC(AAS),所以AD=CD.(3)如图2,在BC上截取BK=BD,连接DK.因为△ABC是等腰三角形,∠A=100°,所以∠ABC=∠C=40°.因为BD平分∠ABC,所以∠DBK=12∠ABC=20°.因为BD=BK,所以∠BKD=∠BDK=80°,所以∠A+∠BKD=180°,由(2)的结论得AD=DK.因为∠BKD=180°-∠DKC=180°-(180°-∠KDC-∠C)=∠KDC+∠C=80°,所以∠KDC=∠C=40°.过点K作KE⊥CD于点E,易证△KDE≌△KCE,所以DK=CK,所以AD=DK=CK,所以BD+AD=BK+CK=BC.。
北师大版七年级数学下册第5章生活中的轴对称单元测试题一.选择题(共10小题)1.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.2.如图,△ABC是等边三角形,DE∥BC,若AB=5,BD=3,则△ADE的周长为()A.2B.6C.9D.153.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°4.下列语句:①全等三角形的周长相等;②面积相等的三角形是全等三角形;③成轴对称的两个图形全等;④角是轴对称图形,角平分线是角的对称轴.其中正确的有()A.1个B.2个C.3个D.4个5.如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使PA+PB 最短.下面四种选址方案符合要求的是()A.B.C.D.6.如图,在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为()A.2a B.2.5a C.3a D.4a7.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=5,则DF的长度是()A.6B.5C.4D.38.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°9.如图,在△ABC中,BD平分∠ABC,ED∥BC,若AB=4,AD=2,则△AED的周长是()A.6B.7C.8D.1010.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.2二.填空题(共8小题)11.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=cm.12.在△ABC中,∠A=60°,要使是等边三角形,则需要添加一条件是.13.如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是.14.如图所示,AOB是一钢架,设∠AOB=α,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,若最多能添加这样的钢管4根,则α的取值范围是.15.如图,已知P是∠ACB平分线CD上一点,PM⊥CA,PN⊥CB,垂足分别是M、N,如果PM =4,那么PN=.16.如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分別交AB、BC 于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为17.在△ABC中,∠ABC=∠ACB,把这个三角形折叠,使得点B与点A重合,折痕分别交直线AB,AC于点M,N,若∠ANM=50°,则∠B的度数为.18.常见的汉字中,列举三个是轴对称图形的字:.三.解答题(共9小题)19.如图,在△ABC中,∠ABC、∠ACB的平分线交于点E,过点E作EF∥BC,交AB于点M,交AC于点N.求证:MN=MB+NC.20.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.21.在△ABC中,AB=AC.D为△ABC外一点,且∠ABD=∠ACD=60°.求证:CD=AB﹣BD.22.如图,在长方形纸片ABCD中,AD=4,AB=8,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长.23.如图,AC=AB,DC=DB,AD与BC相交于O.求证:AD垂直平分BC.24.下面的方格图是由边长为1的42个小正方形拼成的,△ABC的顶点A、B、C均在小正方形的顶点上.(1)作出△ABC关于直线m对称的△A′B′C′;(2)求△ABC的面积.25.在△ABC中,AB=AC,点D在边BC上,点E在边AC上,且AD=AE.(1)如图1,当AD是边BC上的高,且∠BAD=30°时,求∠EDC的度数;(2)如图2,当AD不是边BC上的高时,请判断∠BAD与∠EDC之间的关系,并加以证明.26.如图,已知△ABC中,∠A的平分线与△ABC的外角∠EBC的平分线交于点P.(1)在AB的延长线上截取BE=BC,连结CE、BF相交于点H,求证:BP⊥CE;(2)作PG∥AD,交BC于F,交AE于点G,则线段GF、FC和GA三条线段之间有什么等量关系?并证明你的结论.参考答案与试题解析一.选择题(共10小题)1.解:观察选项可得:只有C是轴对称图形.故选:C.2.解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=5,BD=3,∴AD=AB﹣BD=2,∴△ADE的周长为6,故选:B.3.解:在△ABD和△BCE中,,∴△ABD≌△BCE,∴∠1=∠CBE,∵∠2=∠1+∠ABE,∴∠2=∠CBE+∠ABE=∠ABC=60°.故选:D.4.解:①全等三角形的周长相等,故正确;②面积相等的三角形不一定是全等三角形,故错误;③成轴对称的两个图形全等,故正确;④角平分线是角的对称轴所在的直线,故错误,故选:B.5.解:根据题意得,在公路l上选取点P,使PA+PB最短.则选项A符合要求,故选:A.6.解:∵折叠∴∠B=∠EDB=30°,∠FDC=∠C=90°,∴∠FED=60°,∠EFD=60°,∴△DEF是等边三角形,∴DE=EF=DF=a,∴△DEF的周长为3a,故选:C.7.解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DF=DE=5,故选:B.8.解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.9.解:∵ED∥BC,∴∠EDB=∠CBD,∵BD平分∠ABC,∴∠CBD=∠ABD,∴∠EDB=∠ABD,∴DE=BE,∴AE+ED+AD=AE+BE+AD=AB+AD=4+2=6,即△AED的周长为6,故选:A.10.解:如图所示,n的最小值为3,故选:C.二.填空题(共8小题)11.解:延长ED交BC于M,延长AD交BC于N,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∵BE=6,DE=2,∴DM=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=2,∴BN=4,∴BC=2BN=8,故答案为8.12.解:∵在△ABC中,∠A=60°,∴要使是等边三角形,则需要添加一条件是:AB=AC或AB=BC或AC=BC.故答案为:此题答案不唯一,如AB=AC或AB=BC或AC=BC.13.解:∵DE∥AB,BD平分∠ABC,∴∠EBD=∠ABD=∠EDB,∴DE=BE=5cm,∵AB=AC,DE∥AB,∴∠C=∠ABE=∠DEC,∴DC=DE=5cm,且CE=3cm,∴DE+EC+CD=5cm+3cm+5cm=13cm,即△CDE的周长为13cm,故答案为:13cm.14.解:∵OE=EF,∴∠EOF=∠EFO=α,∴∠GEF=∠EOF+∠EFO=2α,同理可得∠GFH=3α,∠HGB=4α,∵最多能添加这样的钢管4根,∴4α<90°,5α≥90°,∴18°≤α<22.5°,故答案为18°≤α<22.5°.15.解:∵P是∠ACB平分线CD上一点,PM⊥CA,PN⊥CB,∴PN=PM=4,故答案为4.16.解:∵∠B+∠BMN+∠BNM=180°,∴∠BMN+∠BNM=180°﹣50°=130°,∵M在PA的中垂线上,∴MA=MP,∴∠MAP=∠MPA,同理,∠NCP=∠NPC,∵∠BMN=∠MAP+∠MPA,∠BNM=∠NPC+∠NCP,∴∠MPA+∠NPC=×130°=65°,∴∠APC=180°﹣65°=115°,故答案为:115°.17.解:①如图1所示:由折叠可得MN⊥AB,则∠AMN=90°,∵∠ANM=50°,∴∠A=180°﹣90°﹣50°=40°,∴∠B=(180°﹣40°)÷2=70°;②如图2所示:由折叠可得MN⊥AB,则∠AMN=90°,∵∠ANM=50°,∴∠NAM=40°,∵∠B=∠C,∵∠B+∠C=∠NAM=40°,∴∠B=20°,故答案为:70°或20°.18.解:列举三个是轴对称图形的字:日、中、工等.故答案为:日、中、工等.三.解答题(共9小题)19.证明:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN,∵MN=ME+EN,∴MN=BM+CN.20.证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在△DCF和△DEB中,,∴△DCF≌△DEB,(SAS),∴BD=DF.21.证明:延长BD到E,使BE=BA,连接AE,CE.∵∠ABD=60°,∴△ABE为等边三角形.∴AE=AB=AC=BE,∠ACE=∠AEC;∠AEB=60°;又∵∠ACD=60°,则∠AEB=∠ACD;∴∠DEC=∠DCE,DC=DE.∴BD+DC=BD+DE=BE=AB,∴DC=AB﹣BD.22.解:根据折叠可知:DE=BE,长方形纸片ABCD中,AD=4,AB=8,所以AE=8﹣DE,在Rt△ADE中,根据勾股定理,得DE2=AE2+AD2,DE2=(8﹣DE)2+42,解得:DE=5.答:DE的长为5.23.证明:∵AB=AC,∴点A在BC的垂直平分线上,∵DC=DB,∴点D在BC的垂直平分线上,∴AD垂直平分BC.24.解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=3×3﹣×1×3﹣×2×1﹣×2×3=3.5.25.解:(1)∵AD是边BC上的高,∴∠ADC=90°,∵AB=AC,∴AD是∠BAC的角平分线,∴∠BAD=∠CAD,∵∠BAD=30°,∴∠CAD=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°;(2)∠BAD=2∠EDC,理由:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,∴∠B+∠BAD=∠ADC=∠ADE+∠EDC=∠AED+∠∠EDC=∠C+2∠EDC,∴∠BAD=2∠EDC.26.证明:(1)∵BE=BC,PB是∠EBC的平分线,∴BP⊥CE;(2)GA=GF+FC;理由:连接PC,作PM⊥AE于M,PN⊥BC于N,PK⊥AD于K,∵PA是∠A的平分线,PB是∠EBC的平分线,∴PM=PN=PK,∴PC是∠DCE的平分线,∴∠DCP=∠PCB,∵PG∥AD,∴∠CAP=∠APG,∠DCP=∠CPG,∵∠PAC=∠PAG,∴∠PAG=∠APG,∠CPG=∠PCB,∴AG=GP,CF=FP,∴GA=GF+FP=GF+FC;。
初中七年级数学下册《生活中的轴对称》专项测试题及答案分析第五章生活中的轴对称专项测试题(二)一、单项选择题(本大题共有15 小题,每题 3 分,共 45 分)1、在以下图所示的水解环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形的是()A. B. C. D.2、如图,在正方形网格上有一个,画对于直线的对称图形(不写画法) .A. B.C. D.3、赏识下边的图案,指出它们中间不是轴对称图形的是().A. B. C. D.4、若点在线段的垂直均分线上,,则( ).A. B. C. 没法确立 D.5、若的三边,,知足,那么的形状是()A. 锐角三角形B. 等边三角形C. 直角三角形D. 等腰三角形6、如图,一个长方形纸片沿折叠后,点、分别落在点、的地点,若,则等于()A..B..C..D..7、在以下图形中,是轴对称图形的是()A. B. C. D.8、如图,对折矩形纸片,使与重合获得折痕,将纸片展平;再一次折叠,使点落到上点处,并使折痕经过点,展平纸片后的大小为()A. B. C. D.9、如图,由个小正方形构成的田字格中,的极点都是小正方形的极点,则田字格上画与成轴对称的三角形,且极点都是小正方形的极点,则这样的三角形(不包括自己)共有()A. 个B.个C.个D.个10 、如图,与对于直线轴对称,则以下结论中错误的选项是()A.的连线被垂直均分B.C.D.11 、以下说法中,正确的选项是()A.周长相等的两个三角形必定对于某条直线之间对称B.面积相等的两个三角形必定对于某条直线之间对称C.两个全等三角形必定对于某条直线对称D.对于某条直线对称的两个三角形必定全等12、如图,用数学的目光赏识这个蝴蝶图案,它的一种数学美表此刻蝴蝶图案的().A. 数形联合B. 随机性C. 用字母表示数D. 轴对称性13 、到三角形三个极点的距离都相等的点是这个三角形的()A. 三条边的垂直均分线的交点B. 三条中线的交点C. 三条角均分线的交点D. 三条高的交点14、以下三角形:①有两个角等于;②有一个角等于的等腰三角形;③三个外角(每个极点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.此中是等边三角形的有()A. ①②③④B. ①③C. ①②④D. ①②③15、如图,中,,,均分,,则图中等腰三角形的个数()A. 个B.个C.个D.个二、填空题(本大题共有 5 小题,每题 5 分,共 25 分)16 、以下说法中,正确的选项是(填序号)① 轴对称图形只有一条对称轴;② 轴对称图形的对称轴是一条线段;③ 两个图形成轴对称,这两个图形是全等图形;④ 全等的两个图形必定成轴对称;⑤轴对称图形是指一个图形,而轴对称是指两个图形而言.17 、角是轴对称图形,它的对称轴是().18、如图,在正三角形网格中,已有两个小正三角形被涂黑,再将图中其他小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.19 、如图,已知,为两边、的中点,将沿线段折叠,使点落在点处,若,则度.20 、在直线、角、线段、等边三角形四个图形中,对称轴最多的是______,它有_______条对称轴;最少的是 _______,它有 _______条对称轴.三、解答题(本大题共有 3 小题,每题 10 分,共 30 分)21 、如图,、为的边、上的两定点,在上求作一点,使的周长最短 .22 、如图,平面直角坐标系中,的三个极点坐标分别为,,.请画出对于直线作轴对称变换获得的,点的坐标为23 、如图,是的外接圆,弦交于点,连结,且,.求的度数.第五章生活中的轴对称专项测试题(二) 答案部分一、单项选择题(本大题共有15 小题,每题 3 分,共 45 分)1、【答案】 C【分析】解:依据题意,可知是轴对称图形,其他图形均不知足轴对称图形的条件. 故答案为:2、【答案】 D【分析】解:分别作对于的对称点,连结,则为所求三角形 .故答案应选:3、【答案】 A【分析】解:四个图案中,为小鸟身体侧面的图案不是轴对称图形.故答案是:.4、【答案】 A【分析】解:由于线段垂直均分线的点到线段两头点的距离相等,因此,因此.故答案为:.5、【答案】 D【分析】解:=0,或或,即或或,因此三角形必定是等腰三角形.6、【答案】 C【分析】解:,,,由折叠的性质可知,.故正确答案是:.7、【答案】 D【分析】解:依据轴对称图形的定义能够获得:第一个图形是轴对称图形;第二个图形不是轴对称图形;第三个图形不是轴对称图形;第四个图形不是轴对称图形.8、【答案】 B【分析】解:以下图:由题意可得,,,则,故,则,,,,.9、【答案】 B【分析】解:以下图:切合题意的有个三角形.10 、【答案】 D【分析】解:与不是对应线段,不必定平行,故错误;与对于直线轴对称,则,,正确;与对于直线轴对称,则,,正确;与对于直线 MN 轴对称,与的对应点,的连线被垂直均分,正确.11 、【答案】 D【分析】解:依据对称的性质,对于某条直线对称的两个三角形必定全等,正确.12、【答案】 D【分析】解:用数学的目光赏识这个蝴蝶图案,它的一种数学美表此刻蝴蝶图案的对称性.13、【答案】 A【分析】解:到三角形三个极点的距离都相等的点是这个三角形的三条边的垂直平分线的交点.14、【答案】 A【分析】解:①两个角为度,则第三个角也是度,则其是等边三角形,故正确;②这是等边三角形的判断,故正确;③三个外角相等则三个内角相等,则其是等边三角形,故正确;④依据等边三角形三线合一性质,故正确.因此都正确.15、【答案】 A【分析】解:,是等腰三角形,,均分,,,,,在中,,为等腰三角形,在中,,是等腰三角形,在中,,是等腰三角形,在中,,是等腰三角形,因此共有个等腰三角形.二、填空题(本大题共有 5 小题,每题 5 分,共 25 分)16 、以下说法中,正确的选项是(填序号)①轴对称图形只有一条对称轴;②轴对称图形的对称轴是一条线段;③两个图形成轴对称,这两个图形是全等图形;④全等的两个图形必定成轴对称;⑤轴对称图形是指一个图形,而轴对称是指两个图形而言 .【答案】③⑤【分析】解:①错误,轴对称图形可有一条对称轴也可有多条对称轴;②错误,轴对称图形的对称轴是一条直线;③正确,两个图形成轴对称,这两个图形必定是全等图形;④错误,全等的两个图形不必定成轴对称;轴对称还得有地点关系;⑤正确,轴对称图形是指一个图形,而轴对称是指两个图形而言.故③⑤正确 .故正确答案为:③⑤.17 、角是轴对称图形,它的对称轴是().【答案】角均分线所在的直线【分析】解:角的对称轴是角的均分线所在的直线.故答案为:角的均分线所在的直线.18、如图,在正三角形网格中,已有两个小正三角形被涂黑,再将图中其他小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.【答案】 3【分析】解:以下图:将图中其他小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.故答案为:.19 、如图,已知,为两边、的中点,将沿线段折叠,使点落在点处,若,则度.【答案】 70【分析】解:由折叠的性质知,,点是的中点,,由折叠可知,,,.正确答案是:.20 、在直线、角、线段、等边三角形四个图形中,对称轴最多的是______,它有_______条对称轴;最少的是 _______,它有 _______条对称轴.【答案】直线、无数、角、【分析】解:直线:任何与直线垂直的直线都是直线的对称轴,有无数条对称轴;角的对称轴是角的角均分线所在的直线,只有一条对称轴;线段的对称轴是线段的中垂线和自己,有两条对称轴;等边三角形的对称轴是各边的中垂线,有 3 条对称轴.故:对称轴最多的是直线,它有无数条对称轴;最少的是,它有条对称轴.三、解答题(本大题共有 3 小题,每题 10 分,共 30 分)21 、如图,、为的边、上的两定点,在上求作一点,使的周长最短 .【分析】解:如图,作点对于的对称点,连结,交于点,点是所求的点.22 、如图,平面直角坐标系中,的三个极点坐标分别为,,.请画出对于直线作轴对称变换获得的,点的坐标为【分析】解:( 1)所作图形以下:点的坐标为.23 、如图,是的外接圆,弦交于点,连结,且,.求的度数.【分析】解:在和中,(),,又,,为等边三角形,.。
七年级下册数学生活中的轴对称综合题北师版
一、单选题(共10道,每道10分)
1.下列轴对称图形中,对称轴的条数为3个的图形是()
A.圆
B.等腰三角形
C.正方形
D.等边三角形
答案:D
试题难度:三颗星知识点:轴对称图形
2.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格占为顶点的三角形,这样的三角形
共有()个.
A.2
B.3
C.4
D.5
答案:D
试题难度:三颗星知识点:轴对称的性质
3.如图,在△A BC中,点O是∠ABC的平分线与线段BC的垂直平分线OD
的交点,OF⊥AB于点F,OE⊥AC于点E,则下列结论中不一定成立的是()
A.OB=OC
B.OD=OF
C.OA=OB=OC
D.BD=DC
答案:C
试题难度:三颗星知识点:角平分线的性质;垂直平分线的性质
4.如图,已知线段AB的端点A在直线l上(AB与l不垂直)请在直线l 上另找一点C,使△ABC是等腰三角形,这样的点能找()个
A.1
B.2
C.3
D.4
答案:D
试题难度:三颗星知识点:等腰三角形的判定
5.如图,AB=AC,DE垂直平分AB,交AB与D,交AC于E,若∠A=38°,则∠EBC=____;若△ABC的周长等于28,BC=8,则△BCE的周长为()
A.31°;28
B.33°;20
C.33°;18
D.31°;20
答案:C
试题难度:三颗星知识点:等腰三角形的性质
6.如图,四边形ABCD沿直线l对折后互相重合,如果AD∥BC,有下列结
论:①AB∥CD②AB=CD③AB⊥BC④AO=OC,其中正确的结论有()
A.1个
B.2个
C.3个
D.4个
答案:C
试题难度:三颗星知识点:轴对称的性质
7.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中
()
A.
B.
C.
D.
答案:B
试题难度:三颗星知识点:翻折变换(折叠问题)
8.如图,点P关于OA、OB的对称点分别为C、D,连结CD,交OA于M,交
OB于N,若△PMN的周长=8厘米,则CD为()厘米.
A.8
B.4
C.10
D.6
答案:A
试题难度:三颗星知识点:翻折变换(折叠问题)
9.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多
次反射),那么该球最后将落入的球袋是()
A.1号袋
B.2号袋
C.3号袋
D.4号袋
答案:B
试题难度:三颗星知识点:轴对称的性质
10.跟我学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC剪下△ABC,展开即可得到一个五角星.若想得到一个正五角星(如图④,正五角星的5个角都是36°),则在图③中应沿什么角度剪即∠ABC的度数为()
A.126°
B.108°
C.90°
D.72°
答案:A
试题难度:三颗星知识点:剪纸问题
希望以上资料对你有所帮助,附励志名言3条:
1、宁可辛苦一阵子,不要苦一辈子。
2、为成功找方法,不为失败找借口。
3、蔚蓝的天空虽然美丽,经常风云莫测的人却是起落无从。
但他往往会成为风云人物,因为他经得起大风大浪的考验。