2019届高三数学文一轮复习:第四章 三角函数 解三角形 课时跟踪训练19含解析
- 格式:pdf
- 大小:180.41 KB
- 文档页数:8
课时跟踪训练(二十)[基础巩固]一、选择题1.已知α为第二象限角,sin α+cos α=33,则cos2α=( ) A .-53 B .-59 C.59D.53[解析] 由(sin α+cos α)2=13得2sin αcos α=-23, ∵α在第二象限,∴cos α-sin α=-(sin α+cos α)2-4sin αcos α =-153,故cos2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α)=33×⎝⎛⎭⎪⎫-153=-53,选A.[答案] A2.已知sin2α=13,则cos 2⎝ ⎛⎭⎪⎫α-π4=( ) A.13 B.12 C.23D.16[解析] cos 2⎝ ⎛⎭⎪⎫α-π4=1+cos ⎝⎛⎭⎪⎫2α-π22=1+sin2α2=1+132=23. [答案] C3.已知tan ⎝ ⎛⎭⎪⎫α-π6=37,tan ⎝ ⎛⎭⎪⎫π6+β=25,则tan(α+β)的值为( ) A.2941 B.129 C.141D .1[解析] tan(α+β)=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+⎝ ⎛⎭⎪⎫π6+β=tan ⎝ ⎛⎭⎪⎫α-π6+tan ⎝ ⎛⎭⎪⎫π6+β1-tan ⎝ ⎛⎭⎪⎫α-π6·tan ⎝ ⎛⎭⎪⎫π6+β =37+251-37×25=1,故选D. [答案] D4.sin47°-sin17°cos30°cos17°等于( ) A .-32 B .-12 C.12D.32[解析] 原式=sin (30°+17°)-sin17°cos30°cos17° =sin30°cos17°+cos30°sin17°-sin17°cos30°cos17°=sin30°cos17°cos17°=sin30°=12. [答案] C5.已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6 的值是( ) A .-235 B .-45 C.235D.45[解析] cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435⇒32cos α-32sin α=435⇒3⎝ ⎛⎭⎪⎫12cos α-32sin α=435⇒sin ⎝ ⎛⎭⎪⎫π6-α=45,∴sin ⎝ ⎛⎭⎪⎫α+11π6=sin ⎣⎢⎡⎦⎥⎤2π+⎝ ⎛⎭⎪⎫α-π6=sin ⎝ ⎛⎭⎪⎫α-π6=-sin ⎝ ⎛⎭⎪⎫π6-α=-45.[答案] B6.cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=( )A .-18 B .-116 C.116 D.18[解析]cos π9·cos 2π9·cos⎝ ⎛⎭⎪⎫-239π=cos20°·cos40°·cos100°=-cos20°·cos40°·cos80°=-sin20°cos20°cos40°cos80°sin20°=-12sin40°·cos40°·cos80°sin20° =-14sin80°·cos80°sin20°=-18sin160°sin20°=-18sin20°sin20°=-18. [答案] A 二、填空题7.cos10°-3sin10°sin20°=__________. [解析] 原式=2⎝ ⎛⎭⎪⎫12cos10°-32sin10°sin20°=2sin (30°-10°)sin20°=2. [答案] 28.3tan12°-3(4cos 212°-2)sin12°=________. [解析] 原式=3·sin12°cos12°-32(2cos 212°-1)sin12°=23⎝ ⎛⎭⎪⎫12sin12°-32cos12°cos12°2cos24°sin12°=23sin (-48°)2cos24°sin12°cos12°=-23sin48°sin24°cos24°=-23sin48°12sin48°=-4 3. [答案] -4 39.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则α+β=________. [解析] 由已知得tan α+tan β=-3a , tan αtan β=3a +1,∴tan(α+β)=1.又∵α,β∈⎝ ⎛⎭⎪⎫-π2,π2,tan α+tan β=-3a <0,tan αtan β=3a +1>0,∴tan α<0,tan β<0,∴α,β∈⎝ ⎛⎭⎪⎫-π2,0.∴α+β∈(-π,0),∴α+β=-3π4. [答案] -3π4 三、解答题10.(2017·北京西城区5月模拟)已知函数f (x )=tan ⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的定义域;(2)设β∈(0,π),且f (β)=2cos ⎝ ⎛⎭⎪⎫β-π4,求β的值.[解] (1)由x +π4≠k π+π2,得x ≠k π+π4,k ∈Z . 所以函数f (x )的定义域是{x |x ≠k π+π4,k ∈Z }. (2)依题意,得tan ⎝ ⎛⎭⎪⎫β+π4=2cos ⎝ ⎛⎭⎪⎫β-π4,所以sin ⎝ ⎛⎭⎪⎫β+π4cos ⎝ ⎛⎭⎪⎫β+π4=2sin ⎝ ⎛⎭⎪⎫β+π4,整理得sin ⎝⎛⎭⎪⎫β+π4·⎣⎢⎡⎦⎥⎤2cos ⎝ ⎛⎭⎪⎫β+π4-1=0, 所以sin ⎝ ⎛⎭⎪⎫β+π4=0,或cos ⎝ ⎛⎭⎪⎫β+π4=12. 因为β∈(0,π),所以β+π4∈⎝ ⎛⎭⎪⎫π4,5π4.由sin ⎝ ⎛⎭⎪⎫β+π4=0,得β+π4=π,即β=3π4;由cos ⎝⎛⎭⎪⎫β+π4=12,得β+π4=π3,即β=π12.所以β=π12,或β=3π4.[能力提升]11.设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2 B .3α+β=π2 C .2α-β=π2D .2α+β=π2[解析] 由已知,得sin αcos α=1+sin βcos β, ∴sin αcos β=cos α+cos αsin β. ∴sin αcos β-cos αsin β=cos α.∴sin(α-β)=cos α,∴sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α. ∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,∴-π2<α-β<π2,0<π2-α<π2, ∴α-β=π2-α,∴2α-β=π2.故选C. [答案] C12.(2017·河南百校联盟4月联考)已知α为第二象限角,且tan α+tan π12=2tan αtan π12-2,则sin ⎝ ⎛⎭⎪⎫α+5π6等于( )A .-1010 B.1010 C .-31010D.31010[解析] tan α+tan π12=2tan αtan π12-2⇒tan α+tan π121-tan αtan π12=-2⇒tan ⎝⎛⎭⎪⎫α+π12=-2<0,∵α为第二象限角,∴sin ⎝ ⎛⎭⎪⎫α+π12=255,cos ⎝ ⎛⎭⎪⎫α+π12=-55,则sin ⎝ ⎛⎭⎪⎫α+5π6=-sin ⎝ ⎛⎭⎪⎫α-π6=-sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π12-π4=cos ⎝ ⎛⎭⎪⎫α+π12sin π4-sin ⎝ ⎛⎭⎪⎫α+π12cos π4=-31010. [答案] C13.(2017·湖南长沙一模)化简:2sin (π-α)+sin2αcos 2α2=________.[解析] 2sin (π-α)+sin2αcos 2α2=2sin α+2sin α·cos α12(1+cos α)=2sin α(1+cos α)12(1+cos α)=4sin α. [答案] 4sin α14.(2018·河南统考)已知tan α,tan β是lg(6x 2-5x +2)=0的两个实根,则tan(α+β)=________.[解析] 由lg(6x 2-5x +2)=0,得6x 2-5x +1=0,由题意知tan α+tan β=56,tan α·tan β=16,∴tan(α+β)=tan α+tan β1-tan αtan β=561-16=1. [答案] 115.已知sin(2α+β)=2sin β,求证:tan(α+β)=3tan α. [证明] ∵sin(2α+β)=2sin β, ∴sin[(α+β)+α]=2sin[(α+β)-α]. ∴sin(α+β)cos α+cos(α+β)sin α =2sin(α+β)cos α-2cos(α+β)sin α. ∴3cos(α+β)sin α=sin(α+β)cos α. ∴tan(α+β)=3tan α.16.已知cos ⎝⎛⎭⎪⎫π6+α·cos ⎝⎛⎭⎪⎫π3-α=-14,α∈⎝⎛⎭⎪⎫π3,π2.(1)求sin2α的值; (2)求tan α-1tan α的值.[解] (1)cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α=12sin ⎝ ⎛⎭⎪⎫2α+π3=-14,即sin ⎝ ⎛⎭⎪⎫2α+π3=-12,因为α∈⎝ ⎛⎭⎪⎫π3,π2,所以2α+π3∈⎝ ⎛⎭⎪⎫π,4π3,所以cos ⎝ ⎛⎭⎪⎫2α+π3=-32. 所以sin2α=sin ⎝ ⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12.(2)由(1)知tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos2αsin2α=-2×⎝⎛⎭⎪⎫-3212=2 3.[延伸拓展](2018·安徽皖江名校联考)已知在锐角△ABC 中,角α+π6的终边过点P (sin B -cos A ,cos B -sin A ),且cos ⎝ ⎛⎭⎪⎫α+π6=33,则cos2α的值为( ) A.3-26 B .-23-16 C.12-36D .-63-16[解析] ∵△ABC 是锐角三角形,∴A +B >π2,A 、B <π2,∴π2>B >π2-A >0,则sin B >sin ⎝⎛⎭⎪⎫π2-A =cos A ,cos B <cos ⎝⎛⎭⎪⎫π2-A =sin A ,∴sin B -cos A >0,cos B -sin A <0,∴角α+π6为第四象限角,∴sin ⎝ ⎛⎭⎪⎫α+π6=-63,∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π6=cos ⎝ ⎛⎭⎪⎫α+π6cos π6+sin ⎝⎛⎭⎪⎫α+π6·sin π6=12-66,∴cos2α=2cos 2α-1=-63-16,故选D.[答案] D。
课时跟踪训练(二十) 三角恒等变换[基础巩固]一、选择题1.已知α为第二象限角,sin α+cos α=33,则cos2α=( ) A .-53B .-59C.59D.53 [解析] 由(sin α+cos α)2=13得2sin αcos α=-23,∵α在第二象限, ∴cos α-sin α=-sin α+cos α2-4sin αcos α=-153, 故cos2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α)=33×⎝ ⎛⎭⎪⎫-153=-53,选A.[答案] A2.已知sin2α=13,则cos 2⎝ ⎛⎭⎪⎫α-π4=( ) A.13 B.12 C.23D.16[解析] cos 2⎝ ⎛⎭⎪⎫α-π4=1+cos ⎝ ⎛⎭⎪⎫2α-π22=1+sin2α2=1+132=23.[答案] C3.已知tan ⎝ ⎛⎭⎪⎫α-π6=37,tan ⎝ ⎛⎭⎪⎫π6+β=25,则tan(α+β)的值为( )A.2941B.129C.141D .1[解析] tan(α+β)=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+⎝ ⎛⎭⎪⎫π6+β =tan ⎝ ⎛⎭⎪⎫α-π6+tan ⎝ ⎛⎭⎪⎫π6+β1-tan ⎝ ⎛⎭⎪⎫α-π6·ta n ⎝ ⎛⎭⎪⎫π6+β=37+251-37×25=1,故选D.[答案] D 4.sin47°-sin17°cos30°cos17°等于( )A .-32B .-12C.12D.32[解析] 原式=sin30°+17°-sin17°cos30°cos17°=sin30°cos17°+cos30°sin17°-sin17°cos30°cos17°=sin30°cos17°cos17°=sin30°=12.[答案] C5.已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6 的值是( )A .-235B .-45C.235D.45[解析] cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435⇒32cos α-32sin α=435⇒3⎝ ⎛⎭⎪⎫12cos α-32sin α=435⇒sin ⎝ ⎛⎭⎪⎫π6-α=45,∴sin ⎝ ⎛⎭⎪⎫α+11π6=sin ⎣⎢⎡⎦⎥⎤2π+⎝ ⎛⎭⎪⎫α-π6=sin ⎝⎛⎭⎪⎫α-π6=-sin ⎝ ⎛⎭⎪⎫π6-α=-45. [答案] B6.cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=( )A .-18B .-116C.116D.18[解析] cosπ9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-239π=cos20°·cos40°·cos100°=-cos20°·cos40°·cos80°=-sin20°cos20°cos40°cos80°sin20°=-12sin40°·cos40°·cos80°sin20°=-14sin80°·cos80°sin20°=-18sin160°sin20°=-18sin20°sin20°=-18.[答案] A 二、填空题 7.cos10°-3sin10°sin20°=__________.[解析] 原式=2⎝ ⎛⎭⎪⎫12cos10°-32sin10°sin20°=2sin 30°-10°sin20°=2.[答案] 2 8.3tan12°-34cos 212°-2sin12°=________.[解析] 原式=3·sin12°cos12°-322cos 212°-1sin12°=23⎝ ⎛⎭⎪⎫12sin12°-32cos12°cos12°2cos24°sin12°=23sin -48°2cos24°sin12°cos12°=-23sin48°sin24°cos24°=-23sin48°12sin48°=-4 3.[答案] -4 39.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则α+β=________. [解析] 由已知得tan α+tan β=-3a , tan αtan β=3a +1,∴tan(α+β)=1.又∵α,β∈⎝ ⎛⎭⎪⎫-π2,π2,tan α+tan β=-3a <0,tan αtan β=3a +1>0,∴tan α<0,tan β<0,∴α,β∈⎝ ⎛⎭⎪⎫-π2,0. ∴α+β∈(-π,0),∴α+β=-3π4.[答案] -3π4三、解答题10.(2017·北京西城区5月模拟)已知函数f (x )=tan ⎝⎛⎭⎪⎫x +π4.(1)求f (x )的定义域;(2)设β∈(0,π),且f (β)=2cos ⎝ ⎛⎭⎪⎫β-π4,求β的值.[解] (1)由x +π4≠k π+π2,得x ≠k π+π4,k ∈Z .所以函数f (x )的定义域是{x |x ≠k π+π4,k ∈Z }.(2)依题意,得tan ⎝ ⎛⎭⎪⎫β+π4=2cos ⎝⎛⎭⎪⎫β-π4, 所以sin ⎝ ⎛⎭⎪⎫β+π4cos ⎝⎛⎭⎪⎫β+π4=2sin ⎝ ⎛⎭⎪⎫β+π4,整理得sin ⎝ ⎛⎭⎪⎫β+π4·⎣⎢⎡⎦⎥⎤2cos ⎝ ⎛⎭⎪⎫β+π4-1=0,所以sin ⎝ ⎛⎭⎪⎫β+π4=0,或cos ⎝ ⎛⎭⎪⎫β+π4=12. 因为β∈(0,π),所以β+π4∈⎝ ⎛⎭⎪⎫π4,5π4.由sin ⎝ ⎛⎭⎪⎫β+π4=0,得β+π4=π,即β=3π4;由cos ⎝ ⎛⎭⎪⎫β+π4=12,得β+π4=π3,即β=π12. 所以β=π12,或β=3π4.[能力提升]11.设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .3α+β=π2C .2α-β=π2D .2α+β=π2[解析] 由已知,得sin αcos α=1+sin βcos β,∴sin αcos β=cos α+cos αsin β. ∴sin αcos β-cos αsin β=cos α.∴sin(α-β)=cos α,∴sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α. ∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,∴-π2<α-β<π2,0<π2-α<π2,∴α-β=π2-α,∴2α-β=π2.故选C.[答案] C12.(2017·河南百校联盟4月联考)已知α为第二象限角,且tan α+tan π12=2tan αtan π12-2,则sin ⎝⎛⎭⎪⎫α+5π6等于( )A .-1010B.1010 C .-31010D.31010[解析] tan α+tan π12=2tan αtan π12-2⇒tan α+tanπ121-tan αtanπ12=-2⇒tan ⎝⎛⎭⎪⎫α+π12=-2<0,∵α为第二象限角,∴sin ⎝ ⎛⎭⎪⎫α+π12=255,cos ⎝ ⎛⎭⎪⎫α+π12=-55,则sin ⎝ ⎛⎭⎪⎫α+5π6=-sin ⎝ ⎛⎭⎪⎫α-π6=-sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π12-π4=cos ⎝ ⎛⎭⎪⎫α+π12sin π4-sin ⎝ ⎛⎭⎪⎫α+π12cos π4=-31010.[答案] C13.(2017·湖南长沙一模)化简:2sin π-α+sin2αcos2α2=________.[解析]2sin π-α+sin2αcos 2α2=2sin α+2sin α·cos α121+cos α=2sin α1+cos α121+cos α=4sin α.[答案] 4sin α14.(2018·河南统考)已知tan α,tan β是lg(6x 2-5x +2)=0的两个实根,则tan(α+β)=________.[解析] 由lg(6x 2-5x +2)=0,得6x 2-5x +1=0,由题意知tan α+tan β=56,tan α·tan β=16,∴tan(α+β)=tan α+tan β1-tan αtan β=561-16=1.[答案] 115.已知sin(2α+β)=2sin β,求证:tan(α+β)=3tan α. [证明] ∵sin(2α+β)=2sin β,∴sin[(α+β)+α]=2sin[(α+β)-α]. ∴sin(α+β)cos α+cos(α+β)sin α =2sin(α+β)cos α-2cos(α+β)sin α. ∴3cos(α+β)sin α=sin(α+β)cos α. ∴tan(α+β)=3tan α.16.已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2.(1)求sin2α的值; (2)求tan α-1tan α的值.[解] (1)cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α=12sin ⎝ ⎛⎭⎪⎫2α+π3=-14, 即sin ⎝⎛⎭⎪⎫2α+π3=-12, 因为α∈⎝ ⎛⎭⎪⎫π3,π2,所以2α+π3∈⎝ ⎛⎭⎪⎫π,4π3,所以cos ⎝ ⎛⎭⎪⎫2α+π3=-32.所以sin2α=sin ⎝ ⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12.(2)由(1)知tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos2αsin2α=-2×⎝ ⎛⎭⎪⎫-3212=2 3.[延伸拓展](2018·安徽皖江名校联考)已知在锐角△ABC 中,角α+π6的终边过点P (sin B -cos A ,cos B -sin A ),且cos ⎝⎛⎭⎪⎫α+π6=33,则cos2α的值为( ) A.3-26B .-23-16 C.12-36D .-63-16[解析] ∵△ABC 是锐角三角形,∴A +B >π2,A 、B <π2,∴π2>B >π2-A >0,则sin B >sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,cos B <cos ⎝ ⎛⎭⎪⎫π2-A =sin A ,∴sin B -cos A >0,cos B -sin A <0,∴角α+π6为第四象限角,∴sin ⎝⎛⎭⎪⎫α+π6=-63,∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6=cos ⎝ ⎛⎭⎪⎫α+π6cos π6+sin ⎝⎛⎭⎪⎫α+π6·sin π6=12-66,∴cos2α=2cos 2α-1=-63-16,故选D.[答案] D。
课时跟踪训练(二十) 三角恒等变换[基础巩固]一、选择题1.已知α为第二象限角,sin α+cos α=33,则cos2α=( ) A .-53B .-59C.59D.53 [解析] 由(sin α+cos α)2=13得2sin αcos α=-23,∵α在第二象限, ∴cos α-sin α=-α+cos α2-4sin αcos α=-153, 故cos2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α)=33×⎝ ⎛⎭⎪⎫-153=-53,选A.[答案] A2.已知sin2α=13,则cos 2⎝ ⎛⎭⎪⎫α-π4=( ) A.13 B.12 C.23D.16[解析] cos 2⎝ ⎛⎭⎪⎫α-π4=1+cos ⎝ ⎛⎭⎪⎫2α-π22=1+sin2α2=1+132=23.[答案] C3.已知tan ⎝ ⎛⎭⎪⎫α-π6=37,tan ⎝ ⎛⎭⎪⎫π6+β=25,则tan(α+β)的值为( )A.2941B.129C.141D .1[解析] tan(α+β)=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+⎝ ⎛⎭⎪⎫π6+β =tan ⎝ ⎛⎭⎪⎫α-π6+tan ⎝ ⎛⎭⎪⎫π6+β1-tan ⎝ ⎛⎭⎪⎫α-π6·tan ⎝ ⎛⎭⎪⎫π6+β=37+251-37×25=1,故选D.[答案] D 4.sin47°-sin17°cos30°cos17°等于( )A .-32B .-12C.12D.32[解析] 原式=+-sin17°cos30°cos17°=sin30°cos17°+cos30°sin17°-sin17°cos30°cos17°=sin30°cos17°cos17°=sin30°=12.[答案] C5.已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6 的值是( )A .-235B .-45C.235D.45[解析] cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435⇒32cos α-32sin α=435⇒3⎝ ⎛⎭⎪⎫12cos α-32sin α=435⇒sin ⎝ ⎛⎭⎪⎫π6-α=45,∴sin ⎝ ⎛⎭⎪⎫α+11π6=sin ⎣⎢⎡⎦⎥⎤2π+⎝ ⎛⎭⎪⎫α-π6=sin ⎝⎛⎭⎪⎫α-π6=-sin ⎝ ⎛⎭⎪⎫π6-α=-45. [答案] B6.cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=( )A .-18B .-116C.116D.18[解析] cosπ9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-239π=cos20°·cos40°·cos100°=-cos20°·cos40°·cos80°=-sin20°cos20°cos40°cos80°sin20°=-12sin40°·cos40°·cos80°sin20°=-14sin80°·cos80°sin20°=-18sin160°sin20°=-18sin20°sin20°=-18.[答案] A 二、填空题 7.cos10°-3sin10°sin20°=__________.[解析] 原式=2⎝ ⎛⎭⎪⎫12cos10°-32sin10°sin20°=-sin20°=2.[答案] 2 8.3tan12°-3212°-=________. [解析] 原式=3·sin12°cos12°-3212°-=23⎝ ⎛⎭⎪⎫12sin12°-32cos12°cos12°2cos24°sin12°=23-2cos24°sin12°cos12°=-23sin48°sin24°cos24°=-23sin48°12sin48°=-4 3.[答案] -4 39.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则α+β=________. [解析] 由已知得tan α+tan β=-3a , tan αtan β=3a +1,∴tan(α+β)=1.又∵α,β∈⎝ ⎛⎭⎪⎫-π2,π2,tan α+tan β=-3a <0,tan αtan β=3a +1>0,∴tan α<0,tan β<0,∴α,β∈⎝ ⎛⎭⎪⎫-π2,0. ∴α+β∈(-π,0),∴α+β=-3π4.[答案] -3π4三、解答题10.(2017·北京西城区5月模拟)已知函数f (x )=tan ⎝⎛⎭⎪⎫x +π4.(1)求f (x )的定义域;(2)设β∈(0,π),且f (β)=2cos ⎝ ⎛⎭⎪⎫β-π4,求β的值.[解] (1)由x +π4≠k π+π2,得x ≠k π+π4,k ∈Z .所以函数f (x )的定义域是{x |x ≠k π+π4,k ∈Z }.(2)依题意,得tan ⎝ ⎛⎭⎪⎫β+π4=2cos ⎝⎛⎭⎪⎫β-π4, 所以sin ⎝ ⎛⎭⎪⎫β+π4cos ⎝⎛⎭⎪⎫β+π4=2sin ⎝ ⎛⎭⎪⎫β+π4,整理得sin ⎝ ⎛⎭⎪⎫β+π4·⎣⎢⎡⎦⎥⎤2cos ⎝ ⎛⎭⎪⎫β+π4-1=0,所以sin ⎝ ⎛⎭⎪⎫β+π4=0,或cos ⎝ ⎛⎭⎪⎫β+π4=12. 因为β∈(0,π),所以β+π4∈⎝ ⎛⎭⎪⎫π4,5π4.由sin ⎝ ⎛⎭⎪⎫β+π4=0,得β+π4=π,即β=3π4;由cos ⎝ ⎛⎭⎪⎫β+π4=12,得β+π4=π3,即β=π12. 所以β=π12,或β=3π4.[能力提升]11.设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .3α+β=π2C .2α-β=π2D .2α+β=π2[解析] 由已知,得sin αcos α=1+sin βcos β,∴sin αcos β=cos α+cos αsin β. ∴sin αcos β-cos αsin β=cos α.∴sin(α-β)=cos α,∴sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α. ∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,∴-π2<α-β<π2,0<π2-α<π2,∴α-β=π2-α,∴2α-β=π2.故选C.[答案] C12.(2017·河南百校联盟4月联考)已知α为第二象限角,且tan α+tan π12=2tan αtan π12-2,则sin ⎝⎛⎭⎪⎫α+5π6等于( )A .-1010B.1010 C .-31010D.31010[解析] tan α+tan π12=2tan αtan π12-2⇒tan α+tanπ121-tan αtanπ12=-2⇒tan ⎝⎛⎭⎪⎫α+π12=-2<0,∵α为第二象限角,∴sin ⎝ ⎛⎭⎪⎫α+π12=255,cos ⎝ ⎛⎭⎪⎫α+π12=-55,则sin ⎝ ⎛⎭⎪⎫α+5π6=-sin ⎝ ⎛⎭⎪⎫α-π6=-sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π12-π4=cos ⎝ ⎛⎭⎪⎫α+π12sin π4-sin ⎝ ⎛⎭⎪⎫α+π12cos π4=-31010.[答案] C13.(2017·湖南长沙一模)化简:π-α+sin2αcos2α2=________.[解析]π-α+sin2αcos2α2=2sin α+2sin α·cos α12+cos α=2sin α+cos α12+cos α=4sin α.[答案] 4sin α14.(2018·河南统考)已知tan α,tan β是lg(6x 2-5x +2)=0的两个实根,则tan(α+β)=________.[解析] 由lg(6x 2-5x +2)=0,得6x 2-5x +1=0,由题意知tan α+tan β=56,tan α·tan β=16,∴tan(α+β)=tan α+tan β1-tan αtan β=561-16=1.[答案] 115.已知sin(2α+β)=2sin β,求证:tan(α+β)=3tan α. [证明] ∵sin(2α+β)=2sin β,∴sin[(α+β)+α]=2sin[(α+β)-α]. ∴sin(α+β)cos α+cos(α+β)sin α =2sin(α+β)cos α-2cos(α+β)sin α. ∴3cos(α+β)sin α=sin(α+β)cos α. ∴tan(α+β)=3tan α.16.已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2.(1)求sin2α的值; (2)求tan α-1tan α的值.[解] (1)cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α=12sin ⎝ ⎛⎭⎪⎫2α+π3=-14, 即sin ⎝⎛⎭⎪⎫2α+π3=-12, 因为α∈⎝ ⎛⎭⎪⎫π3,π2,所以2α+π3∈⎝ ⎛⎭⎪⎫π,4π3,所以cos ⎝ ⎛⎭⎪⎫2α+π3=-32.所以sin2α=sin ⎝ ⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12.(2)由(1)知tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos2αsin2α=-2×⎝ ⎛⎭⎪⎫-3212=2 3.[延伸拓展](2018·安徽皖江名校联考)已知在锐角△ABC 中,角α+π6的终边过点P (sin B -cos A ,cos B -sin A ),且cos ⎝⎛⎭⎪⎫α+π6=33,则cos2α的值为( ) A.3-26B .-23-16 C.12-36D .-63-16[解析] ∵△ABC 是锐角三角形,∴A +B >π2,A 、B <π2,∴π2>B >π2-A >0,则sin B >sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,cos B <cos ⎝ ⎛⎭⎪⎫π2-A =sin A ,∴sin B -cos A >0,cos B -sin A <0,∴角α+π6为第四象限角,∴sin ⎝ ⎛⎭⎪⎫α+π6=-63,∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π6=cos ⎝ ⎛⎭⎪⎫α+π6cos π6+sin ⎝⎛⎭⎪⎫α+π6·sin π6=12-66,∴cos2α=2cos 2α-1=-63-16,故选D.[答案] D本文档仅供文库使用。
课时跟踪训练(二十一)[基础巩固]一、选择题1.(2017·洛阳市高三第一次统一考试)下列函数中,是周期函数且最小正周期为π的是( )A .y =sin x +cos xB .y =sin 2x -3cos 2xC .y =cos|x |D .y =3sin x 2cos x2[解析] 对于A ,函数y =sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4的最小正周期是2π,不符合题意;对于B ,函数y =sin 2x -3cos 2x =12(1-cos2x )-32(1+cos2x )=1-32-1+32cos2x 的最小正周期是π,符合题意;对于C ,y =cos|x |=cos x 的最小正周期是2π,不符合题意;对于D ,函数y =3sin x 2cos x 2=32sin x 的最小正周期是2π,不符合题意.选B.[答案] B2.y =|cos x |的一个单调增区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2 B .[0,π]C.⎣⎢⎡⎦⎥⎤π,3π2 D.⎣⎢⎡⎦⎥⎤3π2,2π [解析] 将y =cos x 的图象位于x 轴下方的图象关于x 轴对称,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.[答案] D3.函数f (x )=2sin(ωx +φ)(ω>0)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6的值为( )A .2或0B .-2或2C .0D .-2或0[解析] 因为函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,所以该函数图象关于直线x =π6对称,因为在对称轴处对应的函数值为最大值或最小值,所以选B.[答案] B4.(2017·辽宁沈阳二中月考)如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0成中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3D.π2[解析] ∵函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎪⎫4π3,0成中心对称,∴2·4π3+φ=k π+π2(k ∈Z ),∴φ=k π-13π6(k ∈Z ).由此易得|φ|min =π6.故选A.[答案] A5.(2018·安徽江淮十校联考)已知函数y =2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象经过点(0,1),则该函数图象的一条对称轴方程为( )A .x =-π12 B .x =-π6 C .x =π6D .x =π12[解析] 把(0,1)代入函数表达式,知sin φ=12.因为|φ|<π2,所以φ=π6.当2x +π6=π2+k π(k ∈Z )时,函数取得最值,解得对称轴方程为x =π6+k π2(k ∈Z ).令k =0得x =π6.故选C.[答案] C6.(2017·河北石家庄二模)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π12,f ′(x )是f (x )的导函数,则函数y =2f (x )+f ′(x )的一个单调递减区间是( )A.⎣⎢⎡⎦⎥⎤π12,7π12 B.⎣⎢⎡⎦⎥⎤-5π12,π12 C.⎣⎢⎡⎦⎥⎤-π3,2π3 D.⎣⎢⎡⎦⎥⎤-π6,5π6 [解析] 由题意,得f ′(x )=2cos ⎝⎛⎭⎪⎫2x +π12,所以y =2f (x )+f ′(x )=2sin ⎝⎛⎭⎪⎫2x +π12+2cos ⎝⎛⎭⎪⎫2x +π12=22sin ⎝⎛⎭⎪⎫2x +π12+π4=22·sin ⎝⎛⎭⎪⎫2x +π3.由2k π+π2≤2x +π3≤2k π+3π2(k ∈Z ),得k π+π12≤x ≤k π+7π12(k ∈Z ),所以函数y =2f (x )+f ′(x )的一个单调递减区间为⎣⎢⎡⎦⎥⎤π12,7π12,故选A.[答案] A二、填空题7.若函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.[解析] 由题意知,1<πk <2,即k <π<2k . 又k ∈N *,所以k =2或k =3. [答案] 2或38.函数y =tan ⎝⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是________.[解析] 由2x +π4=k π(k ∈Z )得, x =k π2-π8(k ∈Z ).∴函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是⎝ ⎛⎭⎪⎫k π2-π8,0,k∈Z .[答案] ⎝ ⎛⎭⎪⎫k π2-π8,0,k ∈Z9.若函数f (x )=2sin(2x +φ),且f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫-π12,则函数f (x )图象的对称轴方程为________.[解析] 易知函数f (x )的最小正周期为π,而f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫-π12,所以f (x )图象的一条对称轴方程为x =π12,故函数f (x )图象的对称轴方程为x =k π2+π12(k ∈Z ).[答案] x =k π2+π12(k ∈Z ) 三、解答题10.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32,求f (x )的单调递增区间.[解] ∵f (x )的最小正周期为π, 则T =2πω=π,∴ω=2. ∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,φ=π2+k π,k ∈Z , ∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32时,sin ⎝ ⎛⎭⎪⎫2×π6+φ=32, 即sin ⎝ ⎛⎭⎪⎫π3+φ=32.又∵0<φ<2π3,∴π3<π3+φ<π. ∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.令2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 得k π-5π12≤x ≤k π+π12,k ∈Z . ∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12,k ∈Z .[能力提升]11.若函数y =cos2x 与函数y =sin(2x +φ)在⎣⎢⎡⎦⎥⎤0,π4上的单调性相同,则φ的一个值为( )A.π6 B.π4 C.3π4D.3π2[解析] 由于函数y =cos2x 与函数y =sin(2x +φ)在⎣⎢⎡⎦⎥⎤0,π4上的单调性相同,函数y =cos2x 在⎣⎢⎡⎦⎥⎤0,π4上单调递减,故函数y =sin(2x +φ)在⎣⎢⎡⎦⎥⎤0,π4上单调递减, 故2×π4+φ≤2k π+3π2,且φ≥2k π+π2,k ∈Z .解得2k π+π2≤φ≤2k π+π,k ∈Z .取k =0得π2≤φ≤π.故选C. [答案] C12.当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得最小值,则函数y =f ⎝⎛⎭⎪⎫3π4-x 是( )A .奇函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称B .偶函数且图象关于点(π,0)对称C .奇函数且图象关于直线x =π2对称D .偶函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称[解析] 由题意可知φ=2k π-3π4(k ∈Z ), 可得f (x )=A sin ⎝ ⎛⎭⎪⎫x -3π4, 则y =f ⎝ ⎛⎭⎪⎫3π4-x =A sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫3π4-x -3π4 =A sin(-x )=-A sin x ,所以函数y =f ⎝ ⎛⎭⎪⎫3π4-x 是奇函数,且其图象关于直线x =π2+k π(k ∈Z )对称,故选C.[答案] C13.(2018·福建厦门一中期中)给出下列四个命题:①f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4图象的对称轴方程为x =k π2+3π8,k ∈Z ;②若函数y =2cos ⎝ ⎛⎭⎪⎫ax -π3(a >0)的最小正周期是π,则a =2;③函数f (x )=sin x cos x -1的最小值为-32;④函数y =sin ⎝ ⎛⎭⎪⎫x +π4在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数.其中正确命题的个数是( )A .1B .2C .3D .4[解析] ①由2x -π4=k π+π2,k ∈Z ,得x =k π2+3π8,k ∈Z ,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4图象的对称轴方程为x =k π2+3π8,k ∈Z ,①正确;②若函数y =2cos ⎝⎛⎭⎪⎫ax -π3(a >0)的最小正周期是π,则2πa =π,即a=2,②正确;③函数f (x )=sin x cos x -1=12sin2x -1,最小值为-32,③正确;④当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,x +π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,∴函数y =sin ⎝ ⎛⎭⎪⎫x +π4在⎣⎢⎡⎦⎥⎤-π2,π2上不是单调函数,④错误. ∴正确命题的个数是3.故选C. [答案] C14.(2015·天津卷)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.[解析] f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,因为函数f (x )的图象关于直线x =ω对称,所以f (ω)=2sin ⎝ ⎛⎭⎪⎫ω2+π4=±2,所以ω2+π4=π2+k π,k ∈Z ,即ω2=π4+k π,k ∈Z ,又函数f (x )在区间(-ω,ω)内单调递增,所以ω2+π4≤π2,即ω2≤π4,取k =0,得ω2=π4,所以ω=π2.[答案] π215.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6. (1)求函数f (x )的最小正周期和图象的对称轴方程;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π2上的最值.[解] (1)∵f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6, ∴周期T =2π2=π.由2x -π6=π2+k π,k ∈Z ,得x =π3+k π2,k ∈Z ,∴f (x )图象的对称轴方程为x =π3+k π2,k ∈Z .(2)∵x ∈⎣⎢⎡⎦⎥⎤-π6,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π2,5π6, ∵f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,∴当x =π3时,f (x )max =1.又∵f ⎝ ⎛⎭⎪⎫-π6=-1<f ⎝ ⎛⎭⎪⎫π2=12,∴当x =-π6时, f (x )min =-1.16.(2015·重庆卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性.[解] (1)f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos2x )=12sin2x -32cos2x -32 =sin ⎝ ⎛⎭⎪⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增, 当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减.综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减.[延伸拓展](2017·湖南省湘中名校高三联考)已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z )B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) [解析] 因为f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,即⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫π3+φ=1,所以φ=k π+π6(k ∈Z ).因为f ⎝ ⎛⎭⎪⎫π2>f (π),所以sin(π+φ)>sin(2π+φ),即sin φ<0,所以φ=-56π+2k π(k ∈Z ),所以f (x )=sin ⎝ ⎛⎭⎪⎫2x -56π,所以由三角函数的单调性知2x -5π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),得x ∈⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ),故选C.[答案] C。
❶ 理解同角三角函数的基本关系式:sin 2x +cos 2x =1,sin x=tan x . ❷ 能利用单位圆中的三角函数线推导出 ±α,π±α 的正弦、余弦、正切的诱小值以及与 x 轴的交点等),理解正切函数在区间⎝-2,2⎭内的单调性..A.- B .- 9 9章末总结知识点考纲展示任意角的概念与弧度制、任意角的三角函数同角三角函 数的基本关 系式与诱导公式和与差的三 角函数公式简单的三角 恒等变换三角函数的 图象与性质函数 y = A sin(ω x +φ) 的图象及三 角函数模型 的简单应用正弦定理和 余弦定理解三角形应 用举例❶ 了解任意角的概念.❷ 了解弧度制的概念,能进行弧度与角度的互化.❸ 理解任意角三角函数(正弦、余弦、正切)的定义.cos xπ2导公式.❶ 会用向量的数量积推导出两角差的余弦公式.❷ 能利用两角差的余弦公式导出两角差的正弦、正切公式.❸ 能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍 角的正弦、余弦、正切公式,了解它们的内在联系.能运用公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式, 但对这三组公式不要求记忆).❶ 能画出 y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性. ❷ 理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最⎛ π π⎫❶ 了解函数 y =A sin(ωx +φ)的物理意义;能画出函数 y =A sin(ωx +φ)的图象,了解参数 A ,ω,φ 对函数图象变化的影响.❷ 了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一 些简单实际问题.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关 的实际问题.一、点在纲上,源在本里 考点考题4(2017· 高考全国卷Ⅲ,T 4,5 分)已知 sin α-cos α=3,则 sin 2α=考源三角函数的基本关系( )7 2 9 92 7 C. D.必修 4 P 146A 组T 6(2)(2017· 高考全国卷Ⅱ,T 3,5 分)函数 f (x )=sin ⎝2x +3⎭的最小正周期A.4π B .2π C .πD. A. B .1 C. D. sin ⎝2x + 3 ⎭,则下面结论正确的是( 分别为 a ,b ,c 已知△. ABC 的面积为 .1.(必修 4 P 146A 组 T 6(3)改编)已知 sin 2θ= ,则 sin 4θ+cos 4θ 的值为()3A . 9C . 9三角函数 的周期三角函数 值域三角函数 图象正余弦定理与面积公式 的应用⎛ π⎫为( )π 21 π π(2017· 高考全国卷Ⅲ,T 6,5 分)函数 f (x )=5sin(x +3)+cos(x -6)的最大值为( )6 3 15 5 5(2017·高考全国卷Ⅰ,T 9,5 分)已知曲线 C 1:y =cos x ,C 2:y =⎛ 2π⎫ )A .把 C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把π得到的曲线向右平移6个单位长度,得到曲线 C 2B .把C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把 π得到的曲线向左平移12个单位长度,得到曲线 C 21C .把 C 1 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得π到的曲线向右平移6个单位长度,得到曲线 C 21D .把 C 1 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得π到的曲线向左平移12个单位长度,得到曲线 C 2(2017· 高考全国卷Ⅱ,T 16,5 分△) ABC 的内角 A ,B ,C 的对边分 别为 a ,b ,c ,若 2b cos B =a cos C +c cos A ,则 B =________.(2017· 高考全国卷Ⅲ,T 15,5 分△) ABC 的内角 A ,B ,C 的对边分 别为 a ,b ,c .已知 C =60°,b = 6,c =3,则 A =________.(2017· 高考全国卷Ⅰ,T 17,12 分△) ABC 的内角 A ,B ,C 的对边 a 23sin A(1)求 sin B sin C ;必修 4 P 35 例2(2)必修 4 P 143A 组T 5必修 4 P 55 练习T 2(2)必修 5 P 18 练习T 3 必修 5 P 10A 组 T 2(1)必修 5 P 20B 组T 1(2)若 6cos B cos C =1,a =△3,求 ABC 的周长.二、根置教材,考在变中 一、选择题24 92 35 B.7 D.解析:选D.因为sin2θ=,所以sin4θ+cos4θ=(sin2θ+cos2θ)2-2sin2θcos2θ=1-sin22θ=1-×=.故选D.2.(必修4P147A组T12改编)已知函数f(x)=sin⎝x+6⎭+sin⎝x-6⎭+cos x+a的最大值为解析:选A.f(x)=sin x cos+cos x sin+sin x cos-cos x sin+cos x+a=3sin x+cos x3.(必修4P69A组T8改编)已知tanα=3,则sin⎝2α+4⎭的值为(10B.-2A.2C.D.-sin2α+cos2α1+tan2α1+32522⎛34⎫π⎫cos2α-sin2α1-tan2α1-324=-,所以sin⎝2α+4⎭=-=-⎛52⎝55⎭sin2α+cos2α1+tan2α1+322.选B.4.(必修4P58A组T2(3)改编)如图是y=A sin(ωx+φ)⎝ω>0,-2<φ<2⎭的部分图象,则A.y=2sin⎝x+6⎭B.y=2sin⎝2x-6⎭C.y=2sin⎝x+3⎭D.y=2sin⎝2x+6⎭解析:选D.由题图知=-⎝-12⎭=.所以T=π,所以ω==2.当x=-时,y=0,⎧⎪A sin⎛-π+φ⎫=0,所以φ=,A=2.所以y=2sin⎝2x+6⎭.故选D.⎝6⎭π⎛π⎫当x=0时,y=1.所以⎨⎪⎩A sinφ=12132 147299⎛π⎫⎛π⎫1,则a的值为()A.-1C.1B.0D.2ππππ6666π+a=2sin(x+6)+a,所以f(x)max=2+a=1.所以a=-1.选A.⎛π⎫10)721072102sinαcosα2tanα2×33解析:选B.因为tanα=3,所以sin2α====,cos2α===(sin2α+cos2α)=210⎛ππ⎫其解析式为()⎛π⎫⎛π⎫⎛π⎫⎛π⎫Tπ⎛π⎫π2ππ464T1265.(必修5P18练习T1(1)改编△)在锐角ABC中,a=2,b=3,S△ABC=22,则c=() A.2B.3解析:选 B.由已知得 ×2×3×sin C =2 2,所以 sin C = .由于 C <90°,所以 cos C= 1-sin 2C = .由余弦定理得 c 2=a 2+b 2-2ab cos C =22+32-2×2×3× =9,所以 c =3,A . 3 C . 即 3a cos A =b · +c · =a ,所以 cos A = ,又 0<A <π.所以 sin A = .又 b =2,所以 a sin B =b sin A =2× = .故选 C.cos 80° sin 80° cos 80°sin 80°cos 80°cos 80°- sin 80°⎭ 4sin (60°-80°) 2⎝ 2 1 sin 160° sin 160° =-4sin 20°=-4.( c 4解析:由题意得⎨2 ⎪ C .4D. 171 2 22 31 13 3故选 B.6.(必修 5 P 18 练习 T 3 改编△)已知 ABC 三内角 A 、B 、C 的对边分别为 a ,b ,c ,3a cos A =b cos C +c cos B ,b =2,则 a sin B =()434 2 32 B. 2D .6 2解析:选 C.因为 3a cos A =b cos C +c cos B ,a 2+b 2-c 2 a 2+c 2-b 22ab 2ac1 2 23 32 2 4 23 3二、填空题3 17.(必修 4 P 146A 组 T 5(1)改编)sin 80°- =______.解析:⎛ 3 1 ⎫ 2= =2sin 20°答案:-4 8. 必修 5 P 20A 组 T 11(3)改编△) ABC 的三内角 A ,B ,C 的对边分别为 a ,b , .A =120°,a =7,△S ABC = 153,则 b +c =________.⎧⎪1bc sin 120°=15 34,⎪⎩b 2+c 2-2bc cos 120°=72⎧bc =15即⎨ ,所以 b 2+c 2+2bc =64.所以 b +c =8.⎪⎩b 2+c 2+bc =49答案:82 1 π9.(必修 4 P 56 练习 T 3 改编)关于函数 f (x )=3sin(2x -4)的下列结论:①f (x )的一个周期是-8π;②f (x )的图象关于 x = 对称;③f (x )的图象关于点⎝2,0⎭对称;- ,上单调递增;④f (x )在⎝2 2⎭⑤f (x )的图象可由 g (x )= cos x 向右平移 个单位得到.解析:f (x )的最小正周期 T = =4π.所以 f (x )的一个周期为-8π.①正确.f ⎝2⎭=0,故②错误.③正确.由 2k π- < x - <2k π+ ,k ∈Z ,得4k π- <x <4k π+ π. - , - , .故④正确.令 k =0 得,- <x < π.⎝ 2 2⎭ ⎝ 2 2 ⎭x +g (x )= cos x = sin ⎝2 2⎭x +π) ,(=sin⎦⎣2 x - = sin x -,f (x )= sin ⎝2 4⎭ ⎣2⎝ 2⎭⎦所以 g (x )的图象向右平移 -(-π)= π 即可得到 f (x )的图象.故⑤错误,即①③④正确.(2)将函数 f (x )的图象向左平移 个单位,再将所得图象上各点的横坐标伸长为原来的 3 倍,纵坐标不变,得到函数 y =g (x )的图象,若 α 为锐角,g (α)= - 2,求 cos α.ωx - ·解:(1)f (x )=4sin cos ωx -2 2cos 2ωx = 2(sin 2ωx -cos 4⎭ cos ωx =2 2sin ωx ·⎝ 2ωx - - 2,2ωx )- 2=2sin4⎭⎝由于 f (x )在 x = 处取得最值,因此 2ω· - =k π+ ,k ∈Z ,所以 ω=2k + ,π2⎛π ⎫⎛ π π⎫2 1 π3 2 8其中正确的结论有____________(填上全部正确结论的序号).2π1 2⎛π⎫π 1 π π2 2 4 2π 3 2 2π 3 ⎛ π π⎫ ⎛ π 3π⎫2 22 1 2 ⎛1 π⎫3 2 3 2 ⎡1 ⎤ 3 2 ⎛1 π⎫ 2 ⎡1⎛ π⎫⎤ 3 3 π 32 2答案:①③④三、解答题π π10.(必修 4 P 147A 组 T 10 改编)已知函数 f (x )=4sin(ωx -4)·cos ωx 在 x =4处取得最值,其中 ω∈(0,2).(1)求函数 f (x )的最小正周期;π3643⎛ π⎫⎛ π⎫ π π π π 34 4 4 2 2因为 ω∈(0,2),所以 ω= ,因此,f (x )=2sin ⎝3x -4⎭- 2,所以 T = .个 单 位 , 得 到h (x ) = 2sin ⎣3⎝x +36⎭-4⎦ - 2 = 2sin ⎝3x -6⎭- 2的图象,再将 h (x )图象上各点的横坐标伸长为原来的 3 倍,纵坐标不变,得到 g (x )=2sin ⎝x -6⎭-⎛ 故 g (α)=2sin ⎝α-6⎭- 2= - 2,可得 sin ⎝α-6⎭= ,因为 α 为锐角,所以- <α- < ,因此 cos ⎝α-6⎭=⎛2⎫2= 5, π π⎫ π⎫ π⎫ π π 5 3 2 1 15-2 故 cos α=cos ⎝α-6+6⎭=cos ⎝α-6⎭cos -sin ⎝α-6⎭sin = ⎛ ⎛ ⎛ 6 6 3 2 3 2 6①+②得 m 2= ,所以 m = 6,即 BC = 6.sin ∠ACE sin ∠EAC sin ∠BCE sin ∠CBE 且 BC = ,所以 = = .所以 BE = 6AE ,所以 AE = ( 6-1).32⎛ π⎫ 2π 3(2) 将 函 数 f (x ) 的 图 象 向 左 平 移 π 36 ⎡ ⎛ π ⎫ π⎤⎛ π⎫⎛ π⎫2的图象,π⎫ 4 3⎛ π⎫ 2 3π π π6 6 3⎛ π⎫ 1-⎝3⎭ 3× - × = .11.(必修 5 P 20A 组 T 13 改编)D 为△ABC 的边 BC 的中点.AB =2AC =2AD =2. (1)求 BC 的长;(2)若∠ACB 的平分线交 AB 于 E ,求 △S ACE . 解:(1)由题意知 AB =2,AC =AD =1. 设 BD =DC =m .在△ADB 与△ADC 中, 由余弦定理得AB 2=AD 2+BD 2-2AD · B D cos ∠ADB , AC 2=AD 2+DC 2-2AD · D C cos ∠ADC . 即 1+m 2-2m cos ∠ADB =4,① 1+m 2+2m cos ∠ADB =1.②3 22(2)在△ACE 与△BCE 中,由正弦定理得AE EC BE EC= , = ,由于∠ACE =∠BCE ,AC AE AC 6sin ∠BAC sin ∠CBABE BC 6252AB ·AC 2×2×1=- ,所以 sin ∠BAC = ,= ×1× ( 6-1)× = .AB 2+AC 2-BC 2 22+12-( 6)2又 cos ∠BAC = =1 154 41所以 △S ACE =2AC · AE ·sin ∠BAC1 2 15 3 10- 15 2 5 4 20。
2019 高考数学文一轮复习含答案一、选择题1.下列函数中,最小正周期为 π且图象关于原点对称的函数是 ()A . y = cos 2x + πB .y = sin 2x + π22C .y = sin 2x + cos 2xD . y = sin x + cos xπ2π解析: 选 A. y =cos 2x + 2 =- sin 2x ,最小正周期 T = 2 = π,且为奇函数 ,其图象关于π原点对称 ,故 A 正确; y =sin 2x +2 = cos 2 x ,最小正周期为π,且为偶函数 ,其图象关于y 轴对称 ,故 B 不正确; C 、 D 均为非奇非偶函数 ,其图象不关于原点对称 ,故 C 、 D 不正确.2.函数 f(x)= 3sin 2x - π在区间 0, π上的值域为 ( )6 2A . -3,3B. - 3, 3222 C . -3 3,3 3D. -3 3, 3222解析:选 B. 当 x ∈ 0, π ππ 5π ,sin 2x - π 1,故 3sin 2x -π2 时,2x - ∈ - , 6 ∈ - ,166 6 62 ∈ - 3, 3 ,即此时函数 f(x) 的值域是-3, 3 .22ππ3.若函数 y =cos ωx+ 6 (ω∈ N * ) 图象的一个对称中心是 6, 0 ,则 ω的最小值为 () A . 1 B .2 C .4D . 8πωπ π ω= 6k + 2(k ∈ Z ),又 ω∈ N * ,所以 ωmin = 2,解析:选 B. 由题意知+ = k π+ (k ∈ Z )?662故选 B.π4.函数 y = tan x + sin x - |tan x - sin x|在区间 ,3π内的图象是 ()2 2解析: 选 D. y = tan x + sin x - |tan x - sin x|π2tan x , x ∈, π,2=结合选项图形知 , D 正确.3π2sin x , x ∈ π, 2 .5. (2018 ·州第三次调研惠 )函数 y =cos 2x + 2sin x 的最大值为 ( )12019 高考数学文一轮复习含答案3A . 4B .13C .2D . 2解析: 选 C. y = cos 2x + 2sin x =- 2sin 2x + 2sin x + 1.2213法一: 设 t = sin x(- 1≤ t ≤ 1),则原函数可以化为 y =- 2t + 2t + 1=- 2 t -+ ,所以当 t =1时,函数取得最大值322.法二:设 t = sin x(- 1≤ t ≤ 1),则原函数可以化为y =- 2t 2+ 2t + 1,y ′=- 4t + 2.当 1≤ t ≤ 12 时, y ′≤ 0;当- 1≤ t ≤1时, y ′≥ 0.2当 t = 1时 y 取得最小值 , y min =- 2×1 2 + 2×1+ 1= 3,选 C.2 2 2 26. (2018 ·州综合测试广 (一 )) 已知函数 f(x)= sin(ωx+ φ)+ cos(ωx+ φ)(ω> 0, 0<φ< π)是π奇函数,直线 y = 2与函数 f( x)的图象的两个相邻交点的横坐标之差的绝对值为2,则 ()πA . f(x)在 0, 4 上单调递减π 3πB .f(x)在 8, 8上单调递减πC .f(x)在 0, 4 上单调递增π 3πD . f(x)在,上单调递增88解析:选 D.f(x)= sin( ωx+ φ)+ cos(ωx+φ)= 2sin(ωx+ φ+ π 0< φ< π且 f(x)为奇4 ),因为函数 ,所以 φ= 3πωx ,又直线 y =2与函数 f(x)的图象的两个相邻交点4 ,即 f(x)=- 2sinππ2π π的横坐标之差的绝对值为 2,所以函数 f(x)的最小正周期为 2,由ω=2,可得 ω= 4,故 f( x) =- 2sin 4 x ,由 π 3π k π π k π 3π π2k π+ ≤ 4x ≤ 2k π+ ,k ∈ Z ,即 + ≤ x ≤ + ,k ∈ Z ,令 k =0,得8 2 2 2 8 28 ≤x ≤ 3π π 3π8,,此时 f(x)在 8 8 上单调递增 ,故选 D.二、填空题π7.已知函数f(x)=- 2sin(2x + φ)(|φ|< π),若 f 8 =- 2 ,则 f(x)的单调递减区间是________.π解析: 当 x = 8时, f(x)有最小值- 2,π π所以 2× + φ=- + 2k π,8222019 高考数学文一轮复习含答案即 φ=- 34π+ 2k π,k ∈ Z ,又因为 |φ|< π,所以 φ=- 34π.所以 f(x)=- 2sin(2x -34π).ππ由- + 2k π≤ 2x -3π≤ + 2k π,242π5 π+ k π,k ∈ Z ,得 + k π≤x ≤8 8π5所以函数 f(x)的单调递减区间为 + k π,8π+ k π,k ∈ Z .8答案: π 5+ k π, π+ k π, k ∈ Z8 8π8.若函数 f(x)= sin(ωx+φ)(ω> 0 且 |φ|< 2)在区间π等于 ________.1 减少到- 1,则 f 4π πω+φ= + 2k π解析: 由题意知6 2, k ∈ Z ,2π3πω+ φ=+ 2k π32π解之得 ω= 2, φ=6+ 2k π,ππ又因为 |φ|< ,所以 φ= .2 6所以 f(x)= sin 2x + π6 .所以 f π π π π3=sin + = cos =42×4 662.π 2π6, 3 上是单调减函数,且函数值从答案:32π9.已知函数 f(x) =3sin ωx-6 (ω>0)和 g(x)=3·cos(2x +φ)的图象的对称中心完全相同,若 x ∈ 0, π,则 f(x)的取值范围是 ________. 2解析: 由两三角函数图象的对称中心完全相同,可知两函数的周期相同 ,故 ω= 2,所π以 f(x)= 3sin 2x - 6 ,π ππ 5π当 x ∈ 0, 2 时,- 6≤ 2x -6≤ 6 ,所以- 1≤ sin π≤ 1,故 f(x)∈ - 3, 3 .22x - 6232019 高考数学文一轮复习含答案答案: - 3, 3210. (2018 ·家庄质量检测石 (一 ))若函数 f(x)= 3sin(2 x +θ)+ cos(2x + θ)(0< θ< π)的图象π π π关于2, 0 对称,则函数 f( x)在 -4, 6 上的最小值是 ________.解析: f(x)= 3sin(2x + θ)+ cos(2x +θ)= 2sin 2x + θ+π,则由题意 ,知 fπ= 2sin( π+ θ 62 π 5π π π上是减函数 ,所以 + )= 0,又 0< θ< π, 所以 θ= ,所以 f( x)=- 2sin 2x , f(x)在 - ,4 6 6 4π π π π函数 f( x)在 -4, 6 上的最小值为 f 6 =- 2sin 3=- 3.答案: - 3三、解答题π11. (2017 ·考北京卷高 )已知函数 f( x)=3cos(2x - 3)- 2sin xcos x.(1) 求 f(x)的最小正周期;(2) 求证:当 x ∈ π π1 .- , 时, f(x)≥-4 4 2 解: (1)f(x)=332 cos 2x + 2sin 2x - sin 2x1 3cos 2x= sin 2x +22π= sin(2x + 3).2π 所以 f(x)的最小正周期T == π.2ππ(2)证明: 因为- 4≤ x ≤4,π π 5π所以- ≤ 2x + ≤6.63ππ 1 .所以 sin(2x + )≥ sin(-)=-236所以当 x ∈ π π1 .[- , ]时, f(x)≥ -4 4 212.(2016 ·高考北京卷 )已知函数 f(x)= 2sin ωxcos ω x + cos 2ωx( ω>0) 的最小正周期为π.(1)求 ω的值;(2)求 f(x)的单调递增区间.解: (1)因为 f(x)= 2sin ωxcos ωx + cos 2ωxπ= sin 2ωx + cos 2ωx = 2sin(2 ωx+ 4),2ππ所以 f(x)的最小正周期T =2ω= ω.42019 高考数学文一轮复习含答案π依题意,ω=π,解得ω=1.π(2)由 (1) 知 f(x)= 2sin(2 x+4).函数 y=sin x 的单调递增区间为ππ[2kπ-, 2kπ+ ](k∈Z ).22πππ由 2kπ-≤ 2x+≤ 2kπ+ (k∈Z ),242得 kπ-3ππ≤ x≤ kπ+(k∈Z ).88所以 f(x)的单调递增区间为[kπ-3ππ, kπ+](k∈Z ).885。
2019 高考数学文一轮复习含答案一、选择题πα=()1,且 ≤ α≤ π,则 cos1. (2018 石·家庄质量检测 (二 ))若 sin( π- α)= 322 22 2A . 3B .- 3C .- 4 9 2D . 49 2解析: 选 B. 因为 sin( π- α)= sin α=1π22 3,且 ≤ α≤ π, 所以 cos α=-,故选 B.232.已知 tan(α- π)= 3,且 α∈ π 3π,则 sin α+ π), = (4 2 2244 A. 5B .- 533 C.5D .- 533解析: 选 B. 由 tan(α- π)= ? tan α= .44π 3π,又因为 α∈ 2 2 ,所以 α为第三象限的角 , sin α+ π42 = cos α=- .54,θ∈ π,则 sin θ-cos θ的值为 ( )3.已知 sin θ+ cos θ= 30,422A. 3B .- 311 C.3D .- 3解析: 选 B.因为 (sin θ+ cos θ)2= sin 2θ+ cos 2θ+ 2sin θ·cos θ= 1+2sin θcos θ=169,所以722 222sin θcos θ= 9,则 (sin θ- cos θ) = sin θ+ cos θ- 2sin θcos θ= 1- 2sin θcos θ= 9.又因为π 2 θ∈ 0, 4 ,所以 sin θ< cos θ, 即 sin θ-cos θ< 0,所以 sin θ- cos θ=- 3.4.已知 f(x)= asin( πx + α)+bcos( πx + β)+ 4,若 f(2 018)=5,则 f(2 019)的值是 ()A . 2B .3C .4D . 5解析: 选 B. 因为 f(2 018) = 5,所以 asin(2 018 π+ α)+ bcos(2 018 π+ β)+ 4= 5,即 asin α+ bcos β=1.所以 f(2 019) = asin(2 019 π+ α)+ bcos(2 019 π+β)+ 4=- asin α- bcos β+ 4=- 1+ 4=13.θ π11- sin θ)5.当 θ为第二象限角,且 sin+= 时,θ的值是 ( 2 2 3θcos - sin2 2 A . 1 B .- 1C .± 1D . 0θ πθ 1,解析: 选 B. 因为 sin+=1,所以 cos =22 32 3θ θ θ所以 在第一象限 ,且 cos<sin,222θ θ所以1- sin θ -( cos 2-sin 2)θ = θθ =- 1.θcos -sin2cos - sin2226.若 sin θcos θ= 1 ,则 tan θ+ cos θ)2 的值是 (sin θA .- 2B .21C .± 2D . 2解析: 选 B.tan θ+ cos θ sin θ cos θ1= 2.sin = + =θ cos θ sin θ cos θsin θ二、填空题π7.已知函数 f(x) =2cos 3x , x ≤ 2 000,则 f(f(2 018)) =________.x - 18,x > 2 000,解析: f(2 018) =2 018- 18= 2 000, f(f(2 018))= f(2 000)= 2cos2 00023 π= 2cos 3π=- 1.答案: - 18.已知 sin(3 π- α)=- 2sin( π+ α),则 sin αcos α= ________.2π 解析: 因为 sin(3 π- α)=sin( π- α)=- 2sin(2+ α),所以 sin α=- 2cos α, 所以 tan α=- 2,sin αcos α = tan α = - 22则 sin αcos α= 2 2 2 (-2)2 + =- .sin α+ cos α tan α+ 1 15答案: -25sin[ ( k + 1) π+ α] ·cos[( k + 1) π- α]9.若 f(α)=(k ∈ Z ),则 f(2 018) = ________.sin ( k π- α) ·cos ( k π+ α)解析: ① 当 k 为偶数时 ,设 k = 2n(n ∈ Z ),原式= sin ( 2n π+ π+ α) ·cos ( 2n π+ π- α)sin (- α)· cos α=sin ( π+ α) ·cos ( π- α)=- 1;- sin α· cos α2②当 k 为奇数时 ,设 k = 2n + 1(n ∈ Z ),原式= sin[ ( 2n + 2) π+ α] ·cos[(2n + 2) π-α]sin[ ( 2n + 1) π- α] ·cos[(2n + 1) π+α]sin α· cos (- α)=sin ( π- α) ·cos ( π+ α)=- 1.综上所述 ,当 k ∈ Z 时, f(α)=- 1,故 f(2 018) =- 1. 答案: - 110.已知 sin α+ 2cos α= 3,则 tan α= ________.解析: 因为 sin α+ 2cos α= 3,所以 (sin α+ 2cos α)2= 3,所以 sin 2α+ 22sin αcos α+ 2cos 2α= 3,2α+ 2 2sin αcos α+ 2cos 2α所以 sin22= 3,sin α+ cos α所以 tan 2α+ 2 2 2tan α+ 2= 3,tan α+ 1所以 2tan 2α- 2 2tan α+1= 0,所以 tan α= 22.2答案: 2三、解答题5πsin+ α211.已知 sin α= 2 5 5,求 tan(α+ π)+ 5π的值.cos - α2解: 因为 sin α=2 55> 0,所以 α为第一或第二象限角.5πsin + αcos α2tan(α+ π)+ 5π= tan α+ sin αcos - α2= sin α cos α 1.+ =cos α sin α sin αcos α(1)当 α是第一象限角时 ,cos α= 25,1- sin α= 5原式= 1 5= .sin αcos α 2(2)当 α是第二象限角时 ,cos α=-1-sin 2α=- 5,5 原式=1 =- 5 .sin αcos α 2112.已知 x ∈ (- π, 0), sin x + cos x = 5.(1)求 sin x -cos x 的值;(2)求 sin 2x + 2sin 2x 的值. 1- tan x3解: (1)由 sin x + cos x =15,平方得 sin 2x + 2sin xcos x +cos2x = 251,24整理得 2sin xcos x =-.所以 (sin x - cos x)2= 1- 2sin xcos x =4925.由 x ∈ (- π, 0),知 sin x<0,又 sin x + cos x>0,所以 cos x>0, sin x - cos x<0 ,7故 sin x - cos x =- 5.(2)sin 2x +2sin 2x = 2sin x ( cos x + sin x ) 1- tan xsin x1-cos x=2sin xcos x ( cos x + sin x )cos x - sin x-24× 125 5 24=7 =- 175.54。
单元质检四三角函数、解三角形(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017浙江湖州模拟)已知角θ的终边经过点P(4,m),且sin θ=,则m等于()A.-3B.3C.D.±32.(2017浙江杭州模拟)已知α是第四象限角,sin α=-,则tan α=()A.-B.C.-D.3.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定的值为()4.(2017浙江杭州四校联考)已知-<α<0,sin α+cos α=,则-A. B. C. D.5.已知△ABC中,a,b,c分别为角A,B,C所对的边,且a=4,b+c=5,tan A+tan B+tan A·tan B,则△ABC的面积为()A. B.3 C. D.6.(2017浙江名校联考)下列四个函数:y=sin|x|,y=cos|x|,y=|tan x|,y=-ln|sin x|,以π为周期,在上单调递减且为偶函数的是()A.y=sin|x|B.y=cos|x|C.y=|tan x|D.y=-ln|sin x|7.(2017昆明模拟)将函数f(x)=sin x-cos x的图象沿着x轴向右平移a(a>0)个单位后的图象关于y 轴对称,则a的最小值是()A. B. C. D.8.(2017浙江绍兴期中)f(x)=A cos(ωx+φ)(A,ω>0)的图象如图所示,为得到g(x)=-A sin的图象,可以将f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度9.已知函数f(x)=2sin(ωx+φ)+1,其图象与直线y=-1相邻两个交点的距离为π.若f(x)>1对于任意的x∈-恒成立,则φ的取值范围是()A. B. C. D.10.(2017云南师大附中模拟)已知函数f(x)=|sin x|·cos x,则下列说法正确的是()A.f(x)的图象关于直线x=对称B.f(x)的周期为πC.若|f(x1)|=|f(x2)|,则x1=x2+2kπ(k∈Z)D.f(x)在区间上单调递减二、填空题(本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.将答案填在题中横线上)11.(2017浙江绍兴调研)设函数f(x)=2sin(ωx+)(ω>0,x∈R),最小正周期T=π,则实数ω=,函数f(x)的图象的对称中心为,单调递增区间是.12.已知0<α<,sin α=,tan(α-β)=-,则tan β-=.13.函数f(x)=2sin(ωx+φ)ω>0,|φ|<的图象如图所示,则ω=,φ=.14.在△ABC中,D是AC边的中点,A=,cos ∠BDC=,△ABC的面积为3则sin ∠ABD=,BC=.15.下列命题:①函数y=sin的单调减区间为,kπ+,k∈Z;②函数y=x-sin 2x图象的一个对称中心为;③函数y=sin-在区间-上的值域为-;④函数y=cos x的图象可由函数y=sin的图象向右平移个单位得到;⑤若方程sin-a=0在区间上有两个不同的实数解x1,x2,则x1+x2=.其中正确命题的序号为.16.(2017福建三明质检改编)已知函数f(x)=sin(x+φ)-2cos(x+φ)(0<φ<π)的图象关于直线x=π对称,则cos 2φ=.17.(2017浙江衢州高三考试)已知△ABC的面积为1,∠A的平分线交对边BC于D,AB=2AC,且AD=kAC,k∈R,则当k=时,边BC的长度最短.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤)18.(14分)(2017浙江金华十校联考)如图,在平面直角坐标系xOy中,以x轴正半轴为始边的锐角α与钝角β的终边与单位圆分别交于点A,B两点,x轴正半轴与单位圆交于点M,已知S△OAM=,点B的纵坐标是.(1)求cos(α-β)的值;(2)求2α-β的值.19.(15分)(2017浙江金华期末)在△ABC中,角A,B,C所对的边分别为a,b,c,若2cos 2B=4cos B-3.(1)求角B的大小;(2)若S△ABC=,a sin A+c sin C=5sin B,求边b.20.(15分)(2017浙江温州模拟)已知函数f(x)=x-2cos2+1.(1)求f(x)的单调递增区间;(2)求f(x)在区间上的最值.21.(15分)如图,在△ABC中,AB=2,cos B=,点D在线段BC上.(1)若∠ADC=π,求AD的长;(2)若BD=2DC,△ACD的面积为,求的值.22.(15分)(2017浙江宁波高三)已知函数f(x)=cos x·(sin x-cos x)+,x∈R.(1)求f(x)的最小正周期和单调递增区间;(2)若函数g(x)=f(x+a)为偶函数,求|a|的最小值.答案:1.B sin θ=,解得m=3.2.C因为α是第四象限角,sin α=-,所以cos α=-,故tan α==-3.B由正弦定理得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin(π-A)=sin2A,sin A=sin2A.∵A∈(0,π),∴sin A>0,∴sin A=1,即A=4.B∵sin α+cos α=,∴1+2sin αcos α=2sin αcos α=-,∴(cos α-sin α)2=1+,又∵-<α<0,∴cos α>0>sin α,∴cos α-sin α=,,故选B.--化简得5.C∵tan C=-tan(A+B)=--tan A+tan B+tan C=tan A tan B tan C,∴tan C=C=60°.cos C=(a2+b2-c2),把a=4,b+c=5,C=60°代入解得b=,所以S=ab sin C=故选C.6.D A:y=sin|x|在上单调递增,故A错误;B:y=cos|x|=cos x周期为T=2π ,故B 错误;C:y=|tan x|在上单调递增,故C错误;D:f(x+π )=-ln |sin(x+π )|=-ln|sin x|,周期为π ,当x时,y=-ln(sin x),在上单调递减,故D正确,故选D.7.B依题意得f(x)=2sin-,因为函数f(x-a)=2sin--的图象关于y轴对称,所以sin--=±1,a+=kπ+,k∈Z,即a=kπ+,k∈Z,因此正数a的最小值是,选B.8.D由题意可得A=1,T=,解得ω=2,∴f(x)=A cos(ωx+φ)=cos(2x+φ).再由五点法作图可得2+φ=,∴φ=-,∴f(x)=cos-=cos 2-,g(x)=-sin=cos=cos 2,而-,故将f(x)的图象向左平移个单位长度,即可得到函数g(x)的图象,故选D.9.A由条件可知函数f(x)的周期为π,则ω=2,f(x)=2sin(2x+φ)+1.由f(x)=2sin(2x+φ)+1>1,得sin(2x+φ)>0,从而可知2kπ<2x+φ<2kπ+π,k∈Z.故有---,即---解得10.D由函数f(x)在区间[0,2π]上的解析式可知f(x)=-(k∈Z)且f(x)是偶函数,故函数的图象关于直线x=kπ ,k∈Z对称,故A错误;f(x)的周期为2π ,故B错误;若|f(x1)|=|f(x2)|,则x1=x2+(k∈Z),故C错误;f(x)在区间上单调递减,故D正确.故选D.11.2-(k∈Z)-(k∈Z)由T==π ,∴ω=2,f(x)=2sin,令2sin=0,得2x+=kπ (k∈Z),∴x=,对称中心为-(k∈Z).由2kπ-2x+2kπ+(k∈Z),得kπ-x≤kπ+(k∈Z),∴单调递增区间为-(k∈Z).12.3∵0<α<,sin α=,∴cos α=-,tan α=∵tan(α-β)=---,解得tan β=3.=------13.2由题中图象可知T=π,ω=,则ω=2.∵函数经过点(π,1),∴1=2sin(2×π+φ),sin φ=,∵|φ|<,故φ=146过B作BH⊥AC于H,则cos∠BDH=,设DH=2k(k>0),则BD=k,∴BH=-k,在Rt△ABH中,∠A=,∴AH==k,∴AD=3k,AC=6k,又S△ABC=AC×BH=6k k=3k2=3,解得k=1,∴BC=6,在△ABD中,,,解得sin ∠ABD=故答案为:,6.15.①②⑤①令+2kπ≤2x++2kπ,解得+2kπ≤x+kπ,k∈Z,故①正确;②y=cos 2x-sin 2x=2cos,令2x+=kπ+,解得x=+kπ,k=0时函数的一个对称中心为,②正确;③y=sin-,当-x,-x-,结合正弦函数的图象可得-y≤1,③错误;④由函数y=sin的图象向右平移个单位得到y=sin x的图象,故④错误;⑤令y=sin,当x时,2x+,若使方程有两解,则两解关于x=对称,则x1+x2=,故⑤正确.16由题意可得f(x)=x+φ-γ),其中sin γ=,cos γ=, 当x=π时,x+φ-γ=π+φ-γ=kπ+2φ=2kπ-π+2γ,据此可知cos 2φ=cos(2kπ-π+2γ)=-cos 2γ=sin 2γ-cos 2γ=17设AC=a.由题意,2a·a·sin ∠BAC=1,∴sin ∠BAC=,求BC最短时k的值,考虑A为锐角或直角时即可,∴cos ∠BAC=-,∴由余弦定理可得BC2=5a2-4-,设a2=t>0,则f(t)=5t-4-,f'(t)=5--,t>,f'(t)>0,函数单调递增,0<t<,f'(t)<0,函数单调递减,∴t=时,函数f(t)取得最小值,即BC=,∴cos ∠BAC==2cos2∠CAD-1,∴cos ∠CAD=,∴k=cos ∠CAD=故答案为18.解(1)由题意,OA=OM=1,∵S△OAM=和α为锐角,∴sin α=,cos α=,又点B的纵坐标是,∴sin β=,cos β=-,∴cos(α-β)=cos αcos β+sin αsin β=-=-(2)∵cos 2α=2cos2α-1=2-1=-,sin 2α=2sin α·cos α=2,∴2,∴2α--,∵sin(2α-β)=sin 2α·cos β-cos 2α·sin β=-,故2α-β=-19.解(1)△ABC中,2cos 2B=4cos B-3,∴2(2cos2B-1)=4cos B-3,即4cos2B-4cos B+1=0,解得cos B=,又B∈(0,π),∴B=;(2)由面积公式得S△ABC=ac sin B=ac sin ,解得ac=4,又a sin A+c sin C=5sin B,∴a2+c2=5b,由余弦定理,得b2=a2+c2-2ac cos B=5b-2×4=5b-4,∴b2-5b+4=0,解得b=1或b=4,又a2+c2=5b≥2ac=8, ∴b,故b=4.20.解(1)函数f(x)=cos 2x-2cos2+1=cos 2x-cos=cos 2x+sin 2x=2sin;令2kπ-2x+2kπ+,k∈Z,解得kπ-x≤kπ+,k∈Z,∴f(x)的单调递增区间为-(k∈Z); (2)当x时,2x+,∴sin-,∴f(x)在区间上的最大值为2,最小值为-;且x=时f(x)取得最大值2,x=时f(x)取得最小值-21.解法一`(1)在三角形中,∵cos B=,∴sin B=在△ABD中,由正弦定理得,又AB=2,∠ADB=,sin B=AD=(2)∵BD=2DC,∴S△ABD=2S△ADC,S△ABC=3S△ADC,又S△ADC=,∴S△ABC=4∵S△ABC=AB·BC sin∠ABC,∴BC=6.在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BC·cos∠ABC.∴AC=4∵S△ABD=AB·AD sin∠BAD,S△ADC=AC·AD·sin∠CAD,S△ABD=2S△ADC,=2,=2=4解法二(1)同解法一.(2)∵BD=2DC,∴S△ABC=3S△ADC=4,又∵S△ABD=AB·BC sin∠ABC,∴BC=6,∴BD=4,CD=2.在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BC·cos∠ABC,∴AC=4在△ABD中,由正弦定理得,即sin∠BAD==2sin∠ADB,同理在△ACD中,由正弦定理得sin∠CAD=又∵sin∠ADB=sin∠ADC,=422.解(1)f(x)=cos x(sin x-cos x)+=sin x cos x-(2cos 2x-1)=sin 2x-cos 2x=sin-,所以函数f(x)的最小正周期T==π.由2kπ-2x-2kπ+,k∈Z,得kπ-x≤kπ+,所以函数f(x)的单调递增区间为-,k∈Z.(2)由题意,得g(x)=f(x+α)=sin-,因为函数g(x)为偶函数,所以2α-=kπ+=,k∈Z,当k=-1时,|α|的最小值为。