高考中的切线题型与参数处理
- 格式:doc
- 大小:288.00 KB
- 文档页数:4
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。
方法:f'(x)为在x=x处的切线的斜率。
题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。
方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。
例题:已知函数f(x)=x-3x。
1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。
提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。
将问题转化为关于x,m的方程有三个不同实数根问题。
答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。
1)求过点(1,-3)与曲线y=x-3x相切的直线方程。
(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。
题型3:求两个曲线y=f(x)、y=g(x)的公切线。
方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例题:求曲线y=x与曲线y=2elnx的公切线方程。
(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。
(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。
切线、公切线与切线逼近型汇编目录题型一:有切点切线方程题型二:无切点型切线关系题型三:“在点”型切线求参题型四:“过点”型切线方程题型五:“过点”型切线条数判断题型六:“过点”型切线条数求参题型七:三角函数型切线综合应用题型八:函数公切线题型九:函数公切线求参数范围题型十:函数公切线条数判断题型十一:公切线综合题型十二:切线逼近求零点题型十三:双切线存在性题型十四:切线逼近:不等式整数解求参题型一:有切点切线方程1(2023·全国·三模)已知定义域为R的函数f x 的图像关于原点对称,且f3-x+f-x=0,若曲线y=f x 在6,f6处切线的斜率为4,则曲线y=f x 在-2022,f-2022处的切线方程为()A.y=-4x-8088B.y=4x+8088C.y=-14x-10112D.y=14x+10112【答案】B【详解】因为定义域为R的函数f x 的图像关于原点对称,所以f0 =0,因为f3-x+f-x=0,f6-x+f3-x=0,两式相减可得,f6-x=f-x,故T=6,故f-2022=f0 =0;因为f -2022=f 0 =f 6 =4,故所求切线方程为y=4x+8088,故选:B.【点睛】本题考查函数的奇偶性和周期性,以及导函数的周期性,求原函数的切线问题,属于较难题.2(21-22高三下·福建莆田·阶段练习)函数f x =ln x+ax3的图象在点P1,f(1)切的切线分别交x 轴,y 轴于A 、B 两点,O 为坐标原点,2OP =OA +OB,则a =()A.-32B.-14C.14D.32【答案】B【详解】f x =ln x +ax 3,f 'x =1x+3ax 2,故f '1 =1+3a ,f 1 =a ,P 1,a ,故切线方程为:y =1+3a x -1 +a ,故A 1+2a1+3a ,0,B 0,-1-2a .2OP =OA +OB ,即2,2a =1+2a 1+3a ,-1-2a ,解得a =-14.故选:B .【点睛】本题考查了切线方程,向量运算,意在考查学生的计算能力和综合应用能力.3(21-22高三上·河南·阶段练习)已知f x 是定义在R 上的单调函数,满足f f x -e x =1,则f x 在(0,f (0))处的切线方程为()A.y =x +1B.y =x -1C.y =-x +1D.y =-x -1【答案】A【分析】由f x 是定义在R 上的单调函数,满足f f x -e x =1,可得f x -e x 为一固定的数,可设a =f x -e x ,则有f a =1,可得函数的解析式,求解出切线斜率和切点,可得答案.【详解】由题意可得f x -e x 为一固定的数,设a =f x -e x ,则有f a =1.由a =f x -e x 可得f x =a +e x ,当x =a 时,有f a =a +e a =1,解得a =0.∴f x =e x , ∴f x =e x .∴f 0 =e 0=1,又f 0 =e 0=1.∴曲线f x 在0,f 0 处的切线方程为y -1=x ,即y =x +1.故选:A .4(2024·海南海口·二模)已知函数f x 的定义域为R ,f x +1 是偶函数,当x <12时,f x =ln 1-2x ,则曲线y =f x 在点2,f 2 处的切线斜率为()A.25B.-25C.2D.-2【答案】C【详解】因为f x +1 是偶函数,所以函数f x 的图象关于x =1对称,则f 2-x =f x ,当x >32时,∴2-x <12,∴f 2-x =ln 1-22-x =ln 2x -3 ,∴f x =ln 2x -3 ,则f x =22x -3,∴f 2 =2,即曲线y =f x 在点2,f 2 处切线的斜率为2.故选:C .5(23-24高二下·山西运城·开学考试)定义在R 上的偶函数f (x )满足f (2-x )+f (x )=0,且当x ∈[0,1)时,f (x )=x -1,则曲线y =f (x )在点-94,f -94 处的切线方程为.【答案】4x -4y +11=0【详解】因为f x 是R 上的偶函数,且f 2-x +f x =0,所以f x =-f 2-x =-f x -2 ⇒f x -2 =-f x ,所以f x -4 =-f x -2 =f x ,即f x 为周期函数,且周期为4.设x ∈1,2 ,则2-x ∈0,1 ,由f x =-f 2-x =-2-x -1 =1-2-x ;设x ∈-3,-2 ,则x +4∈1,2 ,由f x =f x +4 =1-2-x +4 =1--2-x .当x ∈-3,-2 时,f x =-12·1-x -2·-1 =12·1-x -2.所以:f -94=1-94-2=1-12=12,f -94 =12·194-2=1.所以曲线y =f x 在点-94,f -94 处的切线方程为:y -12=1·x +94⇒4x -4y +11=0.故答案为:4x -4y +11=0【点睛】方法点睛:该问题的解决方法可以有两种思路:(1)求出函数在区间-3,-2 上的解析式,可得f -94 和f -94,进而求出所求的切线方程;(2)利用函数的对称性和周期性,先求f -94=f 74 =-f 14 得到切点,再根据f x 的图象关于1,0 点对称,则f x 关于x =1轴对称,所以f -94=f 74 =f 14 得切线斜率,可得所求切线方程.题型二:无切点型切线关系1(2024·湖北·模拟预测)设D =x -a2+e x -2a 2+a +1,其中e ≈2.71828,则D 的最小值为()A.2 B.2+1C.3D.3+1【答案】A【详解】令Q x ,e x ,P a ,2a ,则点Q 在函数f x =e x 图象上,P 在函数g x =2x 的图象上,容易知道g x =2x 图象是抛物线y 2=4x 图象的上半部分,记抛物线焦点为F 1,0 ,过 P 作抛物线的准线l :x =-1的垂线,垂足为M ,如图所示:则D =x -a2+e x -2a 2+a +1=PQ +PM =PQ +PF ≥FQ ,当且仅当P 在线段 FQ 上时,取最小值.设这时Q 点坐标为Q x 0,e x 0,又f x =e x ,所以有e x 0⋅e x 0-0x 0-1=-1⇒e 2x 0=1-x 0,解得x 0=0 ,即该点为0,1 ,所以FQ ≥1-02+0-1 2=2,因此D min =2.故选:A .【点睛】关键点点睛:本题关键点在于数形结合,将D 的值转化为点到点的距离与点到直线的距离之和的问题.2(2020·北京·二模)点P 在函数y =ex 的图象上.若满足到直线y =x +a 的距离为2的点P 有且仅有3个,则实数a 的值为()A.22B.23C.3D.4【答案】C【解析】要满足到直线y =x +a 的距离为2的点P 有且仅有3个,则需要直线与函数y =ex 的图象相交,而且点P 在函数y =ex 的图象上满足在直线一侧一个点到直线距离为2,另外一侧两个点到直线距离为2.于是就涉及到切线问题,需要求导数,求切点.从而解决问题.【详解】过函数y =ex 的图象上点P (x 0,y 0)作切线,使得此切线与直线y =x +a 平行∵y ′=ex ,于是e x 0=1,则x 0=0,y 0=1∴P (0,1),于是当点P 到直线y =x +a 的距离为2时,则满足到直线y =x +a 的距离为2的点P 有且仅有3个,∴d =-1+a1+1=2,解得a =-1或a =3又当a =-1时,函数y =ex 的图象与直线y =x -1相切,从而只有两个点到直线距离为2,所以不满足;故a =3.故选:C .【点睛】本题考查利用导数求切线切点,以及曲线与直线的位置关系的综合应用,难度较大.3(21-22高三·重庆·阶段练习)已知函数f (x )=x -ln x ,若f (x )在x =x 1和x =x 2(x 1≠x 2)处切线平行,则A.1x 1+1x 2>12 B.x 1x 2<128C.x 1+x 2<32D.x 21+x 22>512【答案】D【解析】求函数导数,进而利于导数的几何意义得切线斜率,列方程化简,结合基本不等式可得解.【详解】由f (x )=x -ln x ,得f '(x )=12x-1x(x >0),∴12x 1-1x 1=12x 2-1x 2,整理得:x 2-x 12x 1x 2=x 2-x 1x 1x 2,则1x 1+1x 2=12,∴12=1x 1+1x 2≥21x 1x 2,则1x 1x 2≤116,∴x 1x 2≥256,∵x 1≠x 2,∴x 1x 2>256.∴x 21+x 22>2x 1x 2=512.故选D .【点睛】本题主要考查了导数的几何意义及基本不等式,属于难题.4(2024高三下·全国·专题练习)已知三次函数f x 有三个零点x 1,x 2,x 3,且在点x i ,f x i 处切线的斜率为k i i =1,2,3 ,则1k 1+1k 2+1k 3=.【答案】0【详解】令f x =a x -x 1 x -x 2 x -x 3 ,其中a ≠0,x 1,x 2,x 3互不相等.则f x =a x -x 2 x -x 3 +x -x 1 x -x 3 +x -x 1 x -x 2 .1k 1+1k 2+1k 3=1a 1x 1-x 2 x 1-x 3 +1x 2-x 1 x 2-x 3 +1x 3-x 1 x 3-x 2 =x 2-x 3+x 3-x 1+x 1-x 2a x 1-x 2 x 1-x 3 x 2-x 3=0.故答案为:0.5(23-24高二下·北京·期中)已知函数f x =a x -x 1 x -x 2 x -x 3 a >0 ,设曲线y =f x 在点x i ,f x i 处切线的斜率为k i i =1,2,3 ,若x 1,x 2,x 3均不相等,且k 2=-2,则1k 1+1k 3=.【答案】12/0.5【详解】f x =a x -x 1 x -x 2 x -x 3 +a x -x 1 x -x 2 x -x 3=a 2x -x 1+x 2 x -x 3 +a x -x 1 x -x 2 .由k 2=-2,则a 2x 2-x 1+x 2 x 2-x 3 +a x 2-x 1 x 2-x 2 =2,即a x 2-x 3 x 2-x 1 =-2,又k 1=a x 1-x 2 x 1-x 3 ,k 3=a x 3-x 1 x 3-x 2 ,由于x 1,x 2,x 3均不相等,则1k 1+1k 3=1a x 1-x 2 x 1-x 3 +1a x 3-x 1 x 3-x 2 =x 3-x 2 -x 1-x 2a x 1-x 2 x 1-x 3 x 3-x 2=x 3-x 1-2x 1-x 3=12故答案为:12题型三:“在点”型切线求参1(22-23高二下·广东广州·期末)已知曲线y=x+ln x在点1,1处的切线与曲线y=ax2+a+4x +ln x-1只有一个公共点,则实数a的取值范围是()A.a≥0B.a≥0或a=-1C.-1≤a≤0D.a≥-1【答案】B【详解】由题意y=x+ln x得y =1+1x,则y|x=1=2,故曲线y=x+ln x在点1,1处的切线方程为y-1=2(x-1),即2x-y-1=0,而切线2x-y-1=0与曲线y=ax2+a+4x+ln x-1只有一个公共点,即2x-1=ax2+a+4x+ln x-1有且只有一正解,即ax2+a+2x+ln x=0有且只有一正解,令g(x)=ax2+a+2x+ln x,(x>0),则g (x)=2ax+a+2+1x=2ax2+(a+2)x+1x=(2x+1)(ax+1)x,由于x>0,故2x+1>0,当a=0时,g (x)>0,g(x)在(0,+∞)上单调递增,且g(x)=2x+ln x,(x>0),g1e2=2e2-2<0,g(1)=2>0,即g(x)在(0,+∞)上存在唯一零点,即ax2+a+2x+ln x=0有且只有一正解;当a>0时,g (x)>0,g(x)在(0,+∞)上单调递增,由于ax2+a+2x的最小值为-(a+2)24a<0,故当x趋向于0时,g(x)可取到负值,且g(1)=2a+2>0,故g(x)在(0,+∞)上存在唯一零点,即ax2+a+2x+ln x=0有且只有一正解;当a<0时,当0<x<-1a时,g(x)>0,g(x)在0,-1a上单调递增,当x>-1a时,g(x)<0,g(x)在-1a,+∞上单调递减,故g(x)max=g-1 a=-1a-1+ln-1a,令h(x)=ln x+x-1,(x>0),则h(x)在(0,+∞)上单调递增,且h(1)=0,此时要使ax2+a+2x+ln x=0有且只有一正解,故需-1a-1+ln-1a=0,∴a=-1,综合以上可知a≥0或a=-1,故选:B【点睛】难点点睛:根据导数的几何意义求出曲线y=x+ln x的切线方程,要保证切线与曲线y=ax2+a+4x+ln x-1只有一个公共点,关键就是转化为ax2+a+2x+ln x=0有且只有一正解,从而构造函数,分类讨论,结合导数解决问题.2(2022·山西晋城·一模)已知函数f x =ln x -x ,f x 的图像在点P 处的切线l 1与y 轴交于点A ,过点P 与y 轴垂直的直线l 2与y 轴交于点B ,则线段AB 中点M 的纵坐标的最大值是A.1-e2B.e -1C.2ln2-3D.ln2-32【答案】D【详解】设点P (x 0,ln x 0-x 0)(x 0>0),∵f x =ln x -x ,∴f x =1x -1=1-xx ,∴f x 0 =1-x 0x 0,∴切线l 1的方程为y -(ln x 0-x 0)=1-x 0x 0(x -x 0),令x =0,得y =ln x 0-1,故A (0,ln x 0-1),又点B (0,ln x 0-x 0),∴线段AB 中点M 的纵坐标t =12[(ln x 0-1)+(ln x 0-x 0)]=12(2ln x 0-x 0-1),设g (x )=12(2ln x -x -1)(x >0),则g (x )=122x -1 =2-x2x,故当0<x <2时,g (x )>0,g (x )单调递增;当x >2时,g (x )<0,g (x )单调递减.∴g (x )min =g (2)=12(2ln2-3)=ln2-32.选D .3(2022·湖北·一模)已知函数f (x )=e x +ax 2(a ∈R )在点P (m ,f (m ))(m >1)处的切线为l ,若直线l 在y 轴上的截距恒小于1,则实数a 的取值范围是A.-12,+∞ B.[-1,+∞)C.-12,+∞ D.-1,-12【答案】B【详解】根据答案分析此题可用特殊值法:取a =-1,根据题意可得函数的切线方程为:y -(e m +am 2)=(e m +2am )(x -m ),故在y 轴的截距为:(1-m )e m -am 2,所以(1-m )e m -am 2<1恒成立(m >1),故令g (m )=(m -1)e m +am 2+1>0恒成立,g '(m )=m (e m +2a ),显然当a 取-1时,g '(m )>0,故g (m )在m ∈(1,+∞)单调递增,g (m )min =g (1)=0,故g (m )>0恒成立,故a 取-1成立,所以排除ACD ,选B点睛:对于12题这种压轴选择题,我们掌握一些做题技巧,巧借答案可根据备选答案去分析通过排除法轻而易举得出结论4(21-22高二上·河南商丘)设直线l 1、l 2分别是函数f (x )=|ln x |图象上点P 1、P 2处的切线,l 1与l 2垂直相交于点P ,则点P 横坐标的取值范围为()A.0,1B.(0,2)C.0,+∞D.(1,+∞)【答案】A【详解】解:设P 1x 1,y 1 ,P 2x 2,y 2 ,0<x 1<x 2 ,当0<x ≤1时,f (x )=-ln x ,f x =-1x;当x >1时,f (x )=ln x ,f x =1x ,若1<x 1<x 2,则k 1k 2=1x1⋅1x 2=1x 1x 2≠-1,不合题意;若0<x 1<x 2≤1,则k 1k 2=-1x 1⋅-1x 2=1x 1x 2≠-1,不合题意;∴0<x 1<1<x 2,l 1的斜率k 1=-1x 1,l 2的斜率k 2=1x 2,∵l 1与l 2垂直, ∴k 1k 2=-1x 1x 2=-1,即x 1x 2=1,∵直线l 1:y =-1x 1x -x 1 -ln x 1,l 2:y =1x 2x -x 2 +ln x 2,∴联立两直线l 1和l 2方程可得交点P 的横坐标为x =2x 1+x 2,∴x =2x 1+x 2=2x 1+1x1,∵函数y =x +1x 在0,1 上为减函数,且0<x 1<1,∴x 1+1x 1>1+1=2,则0<1x 1+1x1<12,∴0<2x 1+1x1<1.∴点P 横坐标的取值范围为0,1 .故选:A .5(2022全国·二模)设点P 在曲线y =ln x -1x +1上,点Q 在直线y =2x 上,则PQ 的最小值为A.2 B.1C.65D.255【答案】D【详解】先求曲线上切线斜率为2的点的横坐标:令y =1x +1x2=2,解得x =1,代入曲线方程求得y =0,故切点为1,0 ,斜率为2的直线方程为y =2x -1 ,将两条平行直线的方程化为一般式得2x -y =0,2x -y -2=0,故两平行直线的距离为0--25=255.故选D .【点睛】本小题主要考查利用导数求曲线和直线间的最短距离,它的主要思想方法是通过将直线平移到曲线上,使得平行直线和曲线相切,这个时候,两条平行线间的距离,就是曲线上的点和直线上的点的距离的最小值.在求切线的过程中,要把握住切点和斜率两个关键点.属于中档题.题型四:“过点”型切线方程1(22-23高二下·湖北咸宁·开学考试)过原点的直线m ,n 与分别与曲线f x =e x ,g x =ln x 相切,则直线m ,n 斜率的乘积为()A.-1B.1C.eD.1e【答案】B【详解】设f x ,g x 的切点分别为x 1,e x 1,x 2,ln x 2 ,由题意可得f x =e x ,g x =1x,所以f x 在x =x 1处的切线为y -e x 1=e x 1x -x 1 ,g x 在x =x 2处的切线为y -ln x 2=1x 2x -x 2 ,又因为两条切线过原点,所以0-e x 1=e x 10-x 1 0-ln x 2=1x 20-x 2,解得x 1=1x 2=e ,所以直线m ,n 斜率的乘积为f x 1 g x 2 =e 1×1e=1,故选:B2(22-23高三上·黑龙江哈尔滨·期末)过点P 1,0 可以作曲线f x =xe x 的两条切线,切点的横坐标分别为m ,n ,则m 2+n 2的值为()A.1B.2C.5D.3【答案】D【详解】f x =x +1 e x ,设切点为坐标x ,y ,则x +1 e x=y x -1=xe x x -1,即x 2-x -1 e x =0,则x 1+x 2=1,x 1⋅x 2=-1,由题意知x 2-x -1=0有两解,分别为m ,n ,故m 2+n 2=x 12+x 22=x 1+x 2 2-2x 1⋅x 2=1-2×-1 =3,故选:D .3(2022·河南·模拟预测)已知f x =12x 2-12x,过原点作曲线y =f x 的切线,则切点的横坐标为()A.232B.-232C.-32D.32【答案】C 【详解】由f x =12x 2-12x 得:f x =x +12x2;设切点坐标为x 0,12x 20-12x 0,∴f x 0 =x 0+12x 20,则切线方程为:y -12x 20+12x 0=x 0+12x 20x -x 0 ,∵切线过原点,∴-12x 20+12x 0=-x 0x 0+12x 20=-x 20-12x 0,解得:x 0=-32,即切点横坐标为-32.故选:C .4(2022·四川南充·三模)已知函数f x =x +1x,过点P 1,0 作函数y =f x 图象的两条切线,切点分别为M ,N .则下列说法正确的是()A.PM ⊥PNB.直线MN 的方程为2x -y +1=0C.MN =210D.△PMN 的面积为32【答案】C【详解】因为f 1 =1+1=2,所以P 1,0 没有在函数的图象上,fx =1-1x 2=x 2-1x 2,设切点坐标为a ,b a ≠0 ,当a =1时,f 1 =2,x =1不与f x =x +1x相切,所以a ≠1,fa =a 2-1a 2=b a -1, 又因为a +1a =b ,解得a =-1±2,即-1-2,-22 ,-1+2,22 ,所以k PM ×k PN =222+2×222-2=-4≠-1,故A 错误;k NM =22+2222=2,所以直线MN 的方程为y =2x -1 ,即2x -y +2=0,故B 错误;MN =-1+2+1+2 2+22+22 2=210,故C 正确;P 1,0 到直线MN 的距离为d =2-0+24+1=455,所以△PMN 的面积为12MN d =12×210×455=42,故D 错误.故选:C .5(2022·河南商丘·三模)已知曲线y =x ln x -3x 2的一条切线在y 轴上的截距为2,则这条切线的方程为()A.4x -y -2=0B.5x -y -2=0C.4x +y -2=0D.5x +y -2=0【答案】D【详解】函数y =x ln x -3x 2的定义域为0,+∞ ,设切点坐标为x 0,x 0ln x 0-3x 02,因为y =ln x -6x +1,则切线斜率为ln x 0-6x 0+1,所以切线方程为y -x 0ln x 0+3x 20=ln x 0-6x 0+1 x -x 0 ,将点0,2 代入切线方程并整理得3x 20-x 0-2=0,解得x 0=1,或x 0=-23(舍去),所以这条切线的方程为y +3=-5x -1 ,即5x +y -2=0.故选:D .题型五:“过点”型切线条数判断1(2022·全国·模拟预测)过点P 0,b 作曲线y =xe x 的切线,当-4e 2<b <0时,切线的条数是()A.0B.1C.2D.3【答案】D【详解】设切点为m ,me m ,∵y =x +1 e x ,∴切线斜率k =m +1 e m ,∴切线方程为:y -me m =m +1 e m x -m ;又切线过P 0,b ,∴b =me m -m m +1 e m =-m 2e m ;设f m =-m 2e m ,则f m =-m m +2 e m ,∴当m ∈-∞,-2 ∪0,+∞ 时,f m <0;当m ∈-2,0 时,f m >0;∴f m 在-∞,-2 ,0,+∞ 上单调递减,在-2,0 上单调递增,又f -2 =-4e 2,f 0 =0,f m ≤0恒成立,可得f m 图象如下图所示,则当-4e 2<b <0时,y =b 与f m 有三个不同的交点,即当-4e 2<b <0时,方程b =-m 2e m 有三个不同的解,∴切线的条数为3条.故选:D .2(2024·北京海淀·一模)已知f x =x 3,x ≤0lg x +1 ,x >0,函数f (x )的零点个数为m ,过点(0,2)与曲线y =f (x )相切的直线的条数为n ,则m ,n 的值分别为()A.1,1B.1,2C.2,1D.2,2【答案】B【详解】令f x =0,即x ≤0时,x 3=0,解得x =0,x >0时,lg x +1 =0,无解,故m =1,设过点(0,2)与曲线y =f (x )相切的直线的切点为x 0,y 0 ,当x <0时,f x =3x 2,则有y -x 30=3x 20x -x 0 ,有2-x 30=3x 20-x 0 ,整理可得x 30=-1,即x 0=-1,即当x 0<0时,有一条切线,当x >0时,f x =lg e x +1,则有y -lg x 0+1 =lg ex 0+1x -x 0 ,有2-lg x 0+1 =lg ex 0+1-x 0 ,整理可得2+lg e x 0+2-x 0+1 lg x 0+1 =0,令g x =2+lg e x +2-x +1 lg x +1 x >0 ,则g x =2-lg x +1 ,令g x =0,可得x=99,故当x∈0,99时,g x >0,即g x 在0,99上单调递增,当x∈99,+∞时,g x <0,即g x 在99,+∞上单调递减,由g99=2+lg e×99+2-200=99lg e>0,g0 =2-0=2>0,故g x 在x∈0,99上没有零点,又g999=2+lg e×999+2-1000×3=999lg e-1000<0,故g x 在99,999上必有唯一零点,即当x0>0时,亦可有一条切线符合要求,故n=2.故选:B.3(23-24高三上·湖北·期中)函数f(x)=x3+(a-1)x2-x+b为R上的奇函数,过点P-1 2 ,1作曲线y=f(x)的切线,可作切线条数为()A.1B.2C.3D.不确定【答案】A【详解】f(-x)=-x3+(a-1)x2+x+b=-f x =-x3-(a-1)x2+x-b,故a=1,b=0,f(x)=x3-x,f (x)=3x2-1,设切点为M x0,y0,则f (x0)=3x02-1=y0-1x0+12,且f(x0)=x30-x0=y0,整理得到x0+14x20-x0+1=0,解得x0=-1,f (-1)=2,故切线方程为y=2x+2,故选:A4(2023·吉林通化·模拟预测)若过点a,b可作曲线y=x2-2x的两条切线,则点a,b可以是()A.0,0B.1,1C.3,0D.3,4【答案】C【详解】设切点坐标为t,t2-2t,对函数y=x2-2x求导可得y =2x-2,所以,切线斜率为k=2t-2,所以,曲线y=x2-2x在点t,t2-2t处的切线方程为y-t2-2t=2t-2x-t,即y=2t-2x-t2,将点a,b的坐标代入切线方程可得b=2t-2a-t2,即t2-2at+2a+b=0,因为过点a,b可作曲线y=x2-2x的两条切线,则关于t的方程t2-2at+2a+b=0有两个不等的实数解,所以,Δ=4a2-42a+b>0,即a2-2a-b>0,即b<a2-2a,对于点0,0,0=02-2×0,A不满足;对于点1,1,1>12-2×1,B不满足;对于点3,0,0<32-2×3,C满足;对于点3,4,4>32-2×3,D不满足.故选:C.5(2024·全国·模拟预测)过坐标原点作曲线f x =e x x2-2x+2的切线,则切线共有() A.1条 B.2条 C.3条 D.4条【答案】A【详解】设切点为x0,e x0x20-2x0+2,由f x =e x x2-2x+2可得f x =x2e x,则过坐标原点的切线的斜率k=e x0x20-2x0+2x0=x20e x0,故x30-x20+2x0-1=0,即x0-1x20+2=0,解得x0=1,故过坐标原点的切线共有1条.故选:A.题型六:“过点”型切线条数求参1(23-24高二下·河北保定·期中)已知函数f x =x+1e x,若过P-1,t可做两条直线与函数f x 的图象相切,则t的取值范围为()A.4e ,+∞B.4eC.0,4eD.0,4e∪0 【答案】B【详解】设过点P-1,t的直线与函数f x =x+1e x的图象相切时的切点为a,b,则b=a+1e a,因为f x =x+1e x,f x =e x-x+1e xe2x=-xe x,所以切线方程为y-a+1e a=-ae ax-a,又P-1,t在切线上,所以t-a+1e a=-ae a-1-a,整理得t=(a+1)2e a,则过点P-1,t的直线与函数f x =x+1e x的图象相切的切线条数即为直线y=t与曲线g a =(a+1)2e a的图象的公共点的个数,因为g a =2a+1e a-(a+1)2e ae2a=-a+1a-1e a,令g a =0,得a=±1,所以,当a <-1时,g a <0,g a 单调递减;当-1<a <1时,g a >0,g a 单调递增;当a >1时,g a <0,g a 单调递减,因为g -1 =0,g 1 =4e,当a →+∞时g a →0,所以,函数g a 的图象大致如图:所以当t =4e时,图像有两个交点,切线有两条.故选:B .【点睛】关键点点睛:依题意求出切线方程,本题关键是将过点P -1,t 的直线与函数f x =x +1e x的图象相切的切线条数转化为直线y =t 与曲线g a =(a +1)2e a 的图象的公共点的个数,在利用导数研究函数g a 的图象.2(2023·全国·模拟预测)若过点m ,n 可作函数y =2x +1xx >0 图象的两条切线,则必有()A.0<2m +1m<n B.0<n <2m C.2m <n <2m +1mD.n <2m【答案】C【详解】设切点为a ,2a +1a,a >0,又y =2-1x 2,所以切线斜率k =2-1a 2,所以切线方程为y -2a +1a =2-1a 2x -a ,又切线过点m ,n ,则n -2a +1a =2-1a2m -a ,a >0,即2m -n a 2+2a -m =0,由过点m ,n 可作两条切线,所以2m -n a 2+2a -m =0有两个正根,即2m -n ≠0Δ=22-42m -n ⋅-m >0-22m -n >0-m 2m -n >0,整理可得2m <n <2m +1m ,故选:C.3(2023·江西九江·一模)已知函数f(x)=13x3+ax2+bx-b+43(a,b∈R),点P(1,0)位于曲线y=f(x)的下方,且过点P可以作3条直线与曲线y=f(x)相切,则a的取值范围是()A.-53,+∞B.-53,1C.(-1,+∞)D.(1,+∞)【答案】D【详解】解:f (x)=x2+2ax+b,设切点为(x0,f(x0)),则切线斜率为f x0,切线方程为y-f(x0)=f (x0)(x-x0),由于切线过点P(1,0),∴-f(x0)=f (x0)(1-x0),整理得23x30+(a-1)x20-2ax0-43=0.构造函数g(x)=23x3+(a-1)x2-2ax-43,∴y=g(x)有三个不同的零点,g (x)=2x2+2(a-1)x-2a=2(x-1)(x+a),易知a≠-1,g(1)⋅g(-a)<0,即-53-a13a3+a2-43<0,即a+5 3(a-1)(a+2)2>0,又因为点P(1,0)在曲线下方,∴f(1)>0,即a>-5 3,解得a>1,故选:D.4(22-23高二下·山西晋中·阶段练习)已知过点A a,0作曲线y=x ln x的切线有且仅有两条,则实数a的取值范围为()A.0,+∞B.1,+∞C.1e,+∞D.e,+∞【答案】B【详解】设切点为x0,y0,对函数y=x ln x求导得y =ln x+1,所以,切线斜率为k=ln x0+1=y0x0-a=x0ln x0x0-a,整理得a=x0ln x0+1,关于x0的方程a=x0ln x0+1有两个不等的实根.令函数f x =xln x+1,由题意可得x>0ln x+1≠0,解得x>0且x≠1e,所以,函数f x 的定义域为0,1 e∪1e,+∞,且f x =ln x1+ln x2,当x∈0,1 e时,f x <0,f x <0;当1e<x<1时,f x >0,f x <0;当x>1时,f x >0,f x >0,所以f x 在0,1 e上单调递减,在1e,1上单调递减,在1,+∞上单调递增.f x极小值=f1 =1.作出函数y=a与函数f x 的图象如下图所示:由图可知,当a>1时,直线y=a与函数f x 的图象有两个交点,因此,实数a的取值范围是1,+∞.故选:B.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由f x =0分离变量得出a=g x ,将问题等价转化为直线y=a与函数y=g x 的图象的交点问题.5(22-23高三·四川南充·期中)已知函数f x =xe x,过点a,b作曲线f x 的切线,当0<a<2时,可作两条切线,则b的取值为()A.4-ae2或ae aB.4-ae2或aeC.2-ae2或ae aD.2-ae2或ae【答案】A【详解】由f(x)=xe x,可得f (x)=1-xe x,设切点坐标为x0,y0,所以y0=x0e x0,则切线的斜率为k=1-x0e x0,切线方程为y-x0e x0=1-x0e x0x-x0,当0<a<2时,由切线方程为y-x0e x0=1-x0e x0x-x0得b-x0e x0=1-x0e x0a-x0,则b=x20+1-x0ae x0,设t x =x2+1-xae x,则t x =2+ax-x2-2ae x=x-a2-xe x,因为0<a<2,所以当x∈a,2时t x >0,t x 单调递增,所以当x∈-∞,a时t x <0,t x 单调递减,所以当x∈2,+∞时t x <0,t x 单调递减,x=a时,t x 有极小值为t a =a2+1-aae a=ae a>0,x=2时,t x 有极大值为t2 =4+1-2ae2=4-ae2>0,可画出函数t x 的大致图象,结合图象若作两条切线,则b的取值为4-ae2或ae a.故选:A.题型七:三角函数型切线综合应用1(23-24高三上·浙江温州·)已知0<x1<x2<x3<4π,函数f x =sin x在点x i,sin x ii=1,2,3处的切线均经过坐标原点,则()A.tan x1x1<tan x3x3B.tan x1x1>tan x3x3C.x1+x3<2x2D.x1+x3>2x2【答案】C【详解】由题意知,f (x)=cos x,则f (x1)=cos x1,f (x2)=cos x2,f (x3)=cos x3,所以曲线f(x)在点(x1,sin x1),(x2,sin x2),(x3,sin x3)处的切线方程分别为y-sin x1=cos x1(x-x1),y-sin x2=cos x2(x-x2),y-sin x3=cos x3(x-x3),因为切线均过原点,所以sin x1=x1cos x1,sin x2=x2cos x2,sin x3=x3cos x3,即x1=tan x1,x2=tan x2,x3=tan x3,得tan x1x1=tan x2x2=tan x3x3=1,故AB错误;由tan x1x1=tan x2x2=tan x3x3=1,得tan x i=x i(i=1,2,3),画出函数y=tan x与y=x图象,如图,设A x 1,tan x 1 ,B x 2,tan x 2 ,C x 3,tan x 3 ,如上图易知:D (x 2-π,tan x 2),E (x 2+π,tan x 2),由正切函数图象性质k AD <k EC ,得tan x 2-tan x 1x 2-π-x 1<tan x 3-tan x 2x 3-x 2-π,即x 2-x 1x 2-π-x 1<x 3-x 2x 3-x 2-π,又x 2-π-x 1>0,x 3-x 2-π>0,所以(x 2-x 1)(x 3-π-x 2)<(x 3-x 2)(x 2-π-x 1),即x 1π+x 3π<2πx 2,解得x 1+x 3<2x 2,故C 正确,D 错误.故选:C【点睛】关键点点睛:证明选项CD 的关键是根据tan x i =x i (i =1,2,3)构造新函数tan x =x ,通过转化的思想和数形结合思想分析是解题的关键.2(2023·湖北武汉·二模)已知直线y =kx +t 与函数y =A sin ωx +φ A >0,ω>0 的图象恰有两个切点,设满足条件的k 所有可能取值中最大的两个值分别为k 1和k 2,且k 1>k 2,则()A.k 1k 2>73 B.53<k 1k 2<73 C.75<k 1k 2<53 D.k 1k 2<75【答案】B【详解】∵对于任意A >0,ω>0,φ∈R ,k1k 2的范围恒定,∴只需考虑y =sin x 的情况,设k 1对应的切点为x 1,sin x 1 ,x 1,sin x1 ,x 1<x 1,设k 2对应的切点为x 2,sin x2 ,x 2,sin x 2 ,x 2<x 2,∵sin x =cos x ,∴k 1=cos x 1=cos x 1,k 2=cos x 2=cos x 2,∴只需考虑x 1+x 1=2π,x 2+x 2=4π,其中-π2<x 2<x 1<0的情况,则k 1=sin x 1-sin x 1x 1-x 1=sin 2π-x 1 -sin x 12π-x 1 -x 1=-2sin x 12π-2x 1,k 2=sin x 2-sin x 2x2-x 2=sin 4π-x 2 -sin x 24π-x 2 -x 2=-2sin x 22π-2x 2,其中-π2<x 2<x 1<0,∴k 1k 2=sin x 1sin x 2⋅4π-2x 22π-2x 1=sin x 1sin x 2⋅2π-x 2π-x 1;又-2sin x 12π-2x 1=cos x 1,-2sin x 24π-2x 1=cos x 2,∴sin x 1=x 1-π cos x 1,sin x 2=x 2-2π cos x 2;令f x =tan x -x +π-π2<x <0 ,则fx =1cos 2x -1=sin 2x cos 2x =tan 2x >0,∴f x 在-π2,0 上单调递增,f 0 >0,设f x 0 =tan x 0-x 0+π=0,x 0<0⇒π-x 0 cos x 0+sin x 0=0,∴-π2<x 2<x 1<x 0,又sin x 2<sin x 1<0,∴0<sin x 1sin x 2<1,∴k 1k 2=sin x 1sin x 2⋅2π-x 2π-x 1<2π-x 2π-x 1<2π+π2π+π3=5243=158<73;令h x =sin x π-x -π2<x <x 0 ,则hx =π-x cos x +sin x π-x2,令t x =π-x cos x +sin x -π2<x <x 0 ,则t x =-π-x sin x >0,∴t x 在-π2,x 0 上单调递增,∴t x <t x 0 =π-x 0 cos x 0+sin x 0=0,即h x <0,∴h x 在-π2,x 0 上单调递减,∴sin x 1π-x 1<sin x 2π-x 2,∴sin x 1sin x 2>π-x 1π-x 2,∴k 1k 2=sin x 1sin x 2⋅2π-x 2π-x 1>π-x 1π-x 2⋅2π-x 2π-x 1=2π-x 2π-x 2=1+ππ-x 2>1+π3π2=53;综上所述:53<k 1k 2<73.故选:B .【点睛】关键点点睛:本题考查导数与三角函数综合应用问题,解题关键是能够采用特殊值的方式,考虑不含变量的函数y =sin x 的情况,采用构造函数的方式对所求式子进行放缩,从而求得k 1k 2的范围.3(23-24高三上·安徽·阶段练习)将函数y =12sin x +x x ∈0,π2 的图象绕着原点沿逆时针方向旋转θ角得到曲线Γ,已知曲线Γ始终保持为函数图象,则tan θ的最大值为()A.12B.23C.1D.32【答案】B 【详解】由题设y =12cos x +1,在原点处的切线斜率k =y x =0=12cos0+1=32, 所以切线方程为y =32x ,设切线倾斜角为α∈0,π2 ,则tan α=32,当y =12sin x +x 绕着原点沿逆时针方向旋转时,始终保持为函数图象,则θ+α≤π2,故θ≤π2-α,显然θ为锐角,所以tan θ≤tan π2-α=cos αsin α=1tan α=23,故tan θ的最大值为23.故选:B4(23-24高三上·江苏南通·阶段练习)已知函数f x =a sin x +b cos x 图象上有一最低点11π6,-2 ,将此函数的图象向左平移π3个单位长度得y =g x 的图象,若函数g x 的图象在x =x 03π2<x 0<2π 处的切线与g x 的图象恰好有三个公共点,则tan x 0-x 0的值是.【答案】-3π【详解】f x =a sin x +b cos x =a 2+b 2sin x +φ ,因为函数f x =a sin x +b cos x 图象上有一最低点11π6,-2 ,所以a 2+b 2=2,且sin 11π6+φ=-1,所以11π6+φ=3π2+2k π,所以φ=-π3+2k π,k ∈Z ,所以f x =2sin x -π3+2k π =2sin x -π3,将函数f x 的图象向左平移π3个单位长度得y =g x 的图象,,则g x =2sin x ,如图,结合g (x )=2sin x 的图象及对称性可知,g (x )=2sin x 在x =x 03π2<x 0<2π 处的切线经过点3π,0 ,设切点为x 0,2sin x 0 ,则g x =2cos x ,所以2cos x 0=2sin x 0-0x 0-3π=2sin x 0x 0-3π,整理得tan x 0=sin x 0cos x 0=x 0-3π,所以tan x 0-x 0=-3π.故答案为:-3π.【点睛】关键点点睛:处理本题的关键点是找到切线与g x 的图象有3个交点时,该切线过点3π,0 ,再利用导数处理即可.5(23-24高三上·河南南阳·阶段练习)已知函数f (x )=sin (ωx +φ)(ω>0且0≤φ≤π2),其中f (x )的最小正周期T >π,且f -7π6=f π6 =12,函数f (x )的图象在x =x 0π2<x 0<π 处的切线与f (x )的图象恰好有3个公共点,则tan x 0-x 0=.【答案】-2π【详解】因为f -7π6 =f π6 ,则f (x )的图象关于x =-7π6+π62=-π2对称,或者π6--7π6=4π3=nT n∈N*;若π6--7π6=4π3=nT n∈N*:因为f(x)的最小正周期T>π,所以T=4π3,即T=2πω=4π3,解得ω=32,即f(x)=sin32x+φ,此时fπ6=sin32×π6+φ=sinπ4+φ=12,又0≤φ≤π2,则π4≤π4+φ≤3π4,所以sinπ4+φ≥22,与sinπ4+φ=12矛盾,不合题意;所以f(x)的一条对称轴为x=-π2,即-π2ω+φ=kπ+π2k∈Z,所以φ=kπ+π2+π2ω,0≤φ≤π2;因为T>π,所以T=2π|ω|=2πω>π,即0<ω<2,所以π2<π2+π2ω<3π2,又因为0≤φ≤π2,所以k=-1,则-π2ω+φ=-π2,因为0<ω<2,则0<π6ω<π3,又0≤φ≤π2,所以0<π6ω+φ<5π6,又fπ6=sinπ6ω+φ=12,则π6ω+φ=π6①又因为-π2ω+φ=-π2②,联立①②解得ω=1,φ=0,所以f(x)=sin x.如图,结合f(x)=sin x的图象及对称性可知,f(x)=sin x在x=x0处的切线经过点(2π,0),切点为x0,sin x0,则f (x)=cos x,所以cos x0=sin x0-0x0-2π,整理得tan x0=sin x0cos x0=x0-2π,所以tan x0-x0=-2π.故答案为:-2π.【点睛】关键点点睛:处理本题的关键点是找到切线与y=sin x的图象有3个交点时,该切线过点2π,0,再利用导数处理即可.题型八:函数公切线对函数 f(x)与g(x),如果要求它们的图象的公切线,只需分别写出两条切线:y-f(x1)=f (x1)(x-x1))和y-g(x2)=g (x2)(x-x2)再令 f (x)=g (x)f(x1)-x1f (x)=g(x2)-x2g (x2),消去一个变量后,再讨论得到的方程的根的个数即可。
抛物线中的切线问题一、考情分析对于抛物线特别是抛物线x 2=2py p ≠0 ,可以化为函数y =x 22p,从而可以借组导数研究求性质,这种关联使得可以把抛物线与导数的几何意义交汇,这是圆锥曲线中的一大亮点,也是圆锥曲线解答题的一个热点.二、解题秘籍(一)利用判别式求解抛物线中的切线问题求解直线抛物线相切问题,可以把直线方程与抛物线方程联立整理成一个一元二次方程,然后利用Δ=0求解.【例1】(2023届河南省新未来高三上学期联考)已知抛物线C :y 2=2px p >0 ,直线l 1,l 2都经过点P -p2,0 .当两条直线与抛物线相切时,两切点间的距离为4.(1)求抛物线C 的标准方程;(2)若直线l 1,l 2分别与抛物线C 依次交于点E ,F 和G ,H ,直线EH ,FG 与抛物线准线分别交于点A ,B ,证明:PA =PB .【解析】(1)设经过点P -p 2,0 的直线为l :y =k x +p2 ,由y 2=2px y =k x +p 2消去y ,得k 2x 2+k 2-2 px +k 2p 24=0,Δ=k 2-2 2p 2-4×k 2⋅k 2p 24=4p 2-k 2+1 ,当直线l 与抛物线C 相切时,Δ=0,∵p >0,∴k =±1,所以x 2-px +p 24=0,解得x =p 2,∴切点为p 2,p ,p 2,-p ,又∵两切点间的距离为4,∴2p =4,即p =2,∴抛物线C 的标准方程为y 2=4x ;(2)设点E x 1,y 1 ,F x 2,y 2 ,G x 3,y 3 ,H x 4,y 4 ,设直线l 1:x =k 1y -1,直线l 2:x =k 2y -1,联立y 2=4x x =k 1y -1 消去x ,得y 2-4k 1y +4=0,则y 1y 2=4,同理,y 3y 4=4,故y 1=4y 2,y 4=4y 3,直线EH 的方程为y -y 1y 4-y 1=x -x 1x 4-x 1,令x =-1,得y A -y 1y 4-y 1=1-y 214y 244-y 214,整理得y A =y 1y 4-4y 1+y 4,同理,y B =y 2y 3-4y 2+y 3,所以y A =4y 2⋅4y 3-44y 2+4y 3=4-y 2y 3y 2+y 3=-y B ,∴PA =PB .(二)利用导数几何意义求解抛物线中的切线问题求解抛物线x 2=2py 在其上一点P x 1,y 1 处的切线方程,可先把x 2=2py 化为y =x 22p ,则y =xp,则抛物线x 2=2py 在点P x 1,y 1 处的切线斜率为x 1p ,切线方程为y -y 1=x1px -x 1 .【例2】(2023届湖南省三湘名校教育联盟高三上学期联考)在直角坐标系xoy 中,已知抛物线C :x 2=2py p >0 ,P 为直线y =x -1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B ,当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.【解析】(1)当P 在y 轴上时,即P 0,-1 ,由题意不妨设A x 0,y 0 x 0>0 则B -x 0,y 0 ,设过点P 的切线方程为y =kx -1,与x 2=2py 联立得x 2-2pkx +2p =0,由直线和抛物线相切可得Δ=4p 2k 2-8p =0,x 0x 0=x 20=2p ,所以x 0=2p 由x 20=2py 0得y 0=1,∴A 2p ,1 ,B -2p ,1 ,由OA ⊥OB 可得2p ⋅-2p +1×1=0,解得p =12,∴抛物线C 的方程为x 2=y ;(2)x 2=y ,∴y =2x ,设A x 1,y 1 ,B x 2,y 2 ,则y -y 1=2x 1x -x 1 ,又x 21=y 1,所以y -y 1=2x 1x -2y 1即2x 1x =y +y 1,同理可得2x 2x =y +y 2,又P 为直线y =x -1上的动点,设P t ,t -1 ,则2x 1t =t -1+y 1,2x 2t =t -1+y 2,由两点确定一条直线可得AB 的方程为2xt =t -1+y ,即y -1=2t x -12 ,∴直线AB 恒过定点M 12,1 ,∴点O 到直线AB 距离的最大值为OM =12 2+1=52.(三)抛物线中与切线有关的性质过抛物线焦点弦的两端点作抛物线的切线,则(1)切线交点在准线上(2)切线交点与弦中点连线平行于对称轴(3)切线交点与焦点弦的两端点连线垂直(4)切线交点与焦点连线与焦点弦垂直(5)弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴.反之:(1)过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点,该点与焦点连线垂直于过两切点的弦(2)过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.【例3】已知抛物线C :x 2=2py (p >0)的焦点为F ,过F 的直线l 与C 相交于A ,B 两点,PA ,PB 是C 的两条切线,A ,B 是切点.当AB ∥x 轴时,|AB |=2.(1)求抛物线C 的方程;(2)证明:|PF |2=|AF |⋅|FB |.【解析】(1)由题意,F 0,p 2 ,当AB ∥x 轴时,将y =p2代入x 2=2py 有x 2=p 2,解得x =±p ,又AB =2故2p =2,解得p =1.故抛物线C 的方程为x 2=2y .(2)由(1),设A x 1,y 1 ,B x 2,y 2 ,直线l 的方程为y =kx +12,联立抛物线方程有x 2-2kx -1=0,故x 1+x 2=2k ,x 1x 2=-1.又抛物线方程y =12x 2,故y =x ,故切线PA 的方程为y -12x 21=x 1x -x 1 ,即y =x 1x -12x 21,同理可得切线PB 的方程为y =x 2x -12x 22,联立y =x 1x -12x 21y =x 2x -12x 22可得x 1-x 2 x =12x 21-x 22 ,解得x =12x 1+x 2 ,代入y =x 1x -12x 21有y =12x 1x 1+x 2 -12x 21=12x 1x 2,代入韦达定理可得P k ,-12.故当k =0时有l ⊥PF ,当k ≠0时,因为k FP =-12-12k -0=-1k,故k FP ⋅k l =-1,也满足l ⊥PF .故l ⊥PF 恒成立.又k PA ⋅k PB =x 1x 2=-1,故PA ⊥PB .所以∠PAB +∠PBA =90∘,∠PAF +∠APF =90∘,故∠PBF =∠APF ,故Rt △PBF ∼Rt △APF ,故BFPF=PF AF ,即PF 2=AF ⋅BF ,即得证.【例4】已知直线l 过原点O ,且与圆A 交于M ,N 两点,MN =4,圆A 与直线y =-2相切,OA 与直线l 垂直,记圆心A 的轨迹为曲线C .(1)求C 的方程;(2)过直线y =-1上任一点P 作C 的两条切线,切点分别为Q 1,Q 2,证明:①直线Q 1Q 2过定点;②PQ 1⊥PQ 2.【解析】(1)如图,设A (x ,y ),因为圆A 与直线y =-2相切,所以圆A 的半径为|y +2|.由圆的性质可得|OA |2+|ON |2=|AN |2,即x 2+y 2+4=(y +2)2,化简得x 2=4y .因为O 与A 不重合,所以y ≠0,所以C 的方程为x 2=4y (y ≠0).(2)证明:①由题意可知Q 1,Q 2与O 不重合.如图,设P (t ,-1),Q 1x 1,y 1 ,则x 21=4y 1,因为y =x2,所以切线PQ 1的斜率为x 12,故x12=y 1+1x 1-t,整理得tx 1-2y 1+2=0.设Q 2x 2,y 2 ,同理可得tx 2-2y 2+2=0.所以直线Q 1Q 2的方程为tx -2y +2=0,所以直线Q1Q 2过定点(0,1).②因为直线Q 1Q 2的方程为tx -2y +2=0,由tx -2y +2=0,x 2=4y ,消去y 得x 2-2tx -4=0,所以x 1+x 2=2t ,x 1x 2=-4.又PQ 1 ⋅PQ 2=x 1-t x 2-t +y 1+1 y 2+1=x 1x 2-t x 1+x 2 +t 2+tx 1+22+1 tx 2+22+1 =x 1x 2-t x 1+x 2 +t 2+t 2x 1+2 t2x 2+2 =x 1x 2-t x 1+x 2 +t 2+t24x 1x 2+t x 1+x 2 +4=1+t24x 1x 2+t 2+4=0,所以PQ 1⊥PQ 2.三、跟踪检测1.(2023届云南省名校高三上学期月考)已知抛物线E :x 2=2py p >0 的焦点为F ,斜率为k k ≠0 的直线l 与E 相切于点A .(1)当k =2,AF =5时,求E 的方程;(2)若直线l 与l 平行,l 与E 交于B ,C 两点,且∠BAC =π2,设点F 到l 的距离为d 1,到l 的距离为d 2,试问:d1d 2是否为定值?若是,求出定值;若不是,说明理由.【解析】(1)由x 2=2py 得y =x 22p ,则y =x p,令xp =2,则x =2p ,即x A =2p ,y A =2p 22p=2p 则AF =2p +p2=5,所以p =2,故抛物线E 的方程为x 2=4y .(2)设A 2pt 0,2pt 20 ,B 2pt 1,2pt 21 ,C 2pt 2,2pt 22 ,则切线l 的斜率k =2pt 0p=2t 0,则切线l 的方程为:y -2pt 02=2t 0x -2pt 0 ,即y =2t 0x -2pt 20,k BC =2pt 12-2pt 222pt 1-2pt 2=t 1+t 2.直线l 的方程为y -2pt 21=t 1+t 2 x -2pt 1 ,化简得y =t 1+t 2 x -2pt 1t 2,因为l ∥l ,所以t 1+t 2=2t 0,由∠BAC =π2得2pt 12-2pt 022pt 1-2pt 0⋅2pt 22-2pt 022pt 2-2pt 0=-1,则t 1+t 0 t 2+t 0 =-1,即t 1t 2=-1-3t 20,即l :2t 0x -y +2p +6pt 02=0.由F 0,p 2 ,则d 1=3p 2+6pt 20 4t 20+1=3p 2+6pt 204t 20+1,d 2=-p 2-2pt 204t 20+1=p 2+2pt 204t 20+1,所以d 1d 2=3p 12+2t 20 p 12+2t 20 =3.故d1d 2是定值,定值为3.2.(2023届河南省北大公学禹州国际学校高三上学期月考)已知抛物线C 的顶点在坐标原点,焦点在y 轴的正半轴上,直线l :mx +y -1=0经过抛物线C 的焦点.(1)求抛物线C 的方程;(2)若直线l 与抛物线C 相交于A ,B 两点,过A ,B 两点分别作抛物线C 的切线,两条切线相交于点P ,求△ABP 面积的最小值.【解析】(1)由题意,设抛物线C 的方程为x 2=2py p >0 ,因为直线l :mx +y -1=0经过0,1 ,即抛物线C 的焦点F 0,p2,所以p2=1,解得p =2,所以抛物线C 的方程为x 2=4y .(2)设A x 1,y 1 、B x 2,y 2 ,联立方程组x 2=4y mx +y -1=0 ,整理得x 2+4mx -4=0,因为Δ=16m 2+16>0,且x 1+x 2=-4m ,x 1x 2=-4,y 1+y 2=x 214+x 224=x 1+x 2 2-2x 1x 24=4m 2+2,y 1y 2=x 214×x 224=-4 216=1所以AB =y 1+y 2+p =41+m 2 ,由x 2=4y ,可得y =x 24,则y =x 2,所以抛物线C 经过点A 的切线方程是y -y 1=x 12x -x 1 ,将y 1=x 214代入上式整理得y =x 12x -x 214,同理可得抛物线C 经过点B 的切线方程为y =x 22x -x 224,联立方程组y =x 12x -x 214y =x 22x -x 224,解得x =x 1+x 22,y =x 1x 24,所以x =-2m ,y =-1,所以P -2m ,-1 到直线mx +y -1=0的距离d =m ×-2m -1-1m 2+1=2m 2+1,所以△ABP 的面积S =12AB d =12×4×1+m 2 ×2m 2+1=4m 2+1 32,因为m 2+1≥1,所以S ≥4,即当m =0时,S =4,所以△ABP 面积的最小值为4.3.(2022届浙江省绍兴市高三上学期12月选考)已知抛物线C 的焦点是0,14 ,如图,过点D 22,t(t ≤0)作抛物线C 的两条切线,切点分别是A 和B ,线段AB 的中点为M .(1)求抛物线C 的标准方程;(2)求证:直线MD ⎳y 轴;(3)以线段MD 为直径作圆,交直线AB 于MN ,求|AB |-|MN ||AB |+|MN |的取值范围.【解析】(1)设抛物线的方程为x 2=2py p >0 ,由题意可得p 2=14,所以p =12,所以抛物线方程y =x 2.(2)由(1)y =x 2,因为y =2x ,设A (x 1,y 1),B (x 2,y 2),直线AD 的方程为y =2x 1x -x 21,直线BD 的方程为y =2x 2x -x 22,联立上述两直线方程,得D 点坐标D x 1+x 22,x 1x 2 ,又因为M 点为线段AB 的中点,所以M 点坐标M x 1+x 22,1-x 1x 2 ,因为x D =x M ,所以直线MD ⎳y 轴:(3)因为点D 22,t (t ≤0),所以x 1+x 22=22,x 1x 2=t ,则M 22,1-t ,圆心22,12,直线AB 的斜率为k =x 21-x 22x 1-x 2=x 1+x 2=2,直线AB 方程为y =2x -t ,y =x 2y =2x -t ,得x 2-2x +t =0,Δ=2-4t ,|AB |=1+k 2⋅Δ=6(1-2t ),圆心到直线AB 的距离为d =1-2t 23,半径r =|MD |2=1-2t2,|MN |=2r 2-d 2=63(1-2t ),令1-2t =m ≥1,|AB |-|MN ||AB |+|MN |=3-m 3+m =-1+6m +3在m ≥1时单调递减,|AB |-|MN ||AB |+|MN |∈-1,12 .4.(2022届山东省济宁市高三上学期期末)已知抛物线E :y 2=2px (p >0)上一点C 1,y 0 到其焦点F 的距离为2.(1)求实数p 的值;(2)若过焦点F 的动直线l 与抛物线交于A 、B 两点,过A 、B 分别作抛物线的切线l 1、l 2,且l 1、l 2的交点为Q ,l 1、l 2与y 轴的交点分别为M 、N .求△QMN 面积的取值范围.【解析】(1)因为点C 1,y 0 到其焦点F 的距离为2,由抛物线的定义知1+p2=2解得p =2(2)由上问可知,抛物线方程E :y 2=4x设A y 214,y 1 ,B y 224,y 2,(y 1≠0,y 2≠0),设l :x =ty +1,联立y 2=4x x =ty +1 ,得y 2-4ty -4=0,判别式Δ=16t 2+16>0,故t ∈R y 1+y 2=4t ,y 1y 2=-4设l 1:y -y 1=k x -y 214联立方程组y 2=4xy -y 1=k x -y 214,消x 得ky 2-4y +4y 1-ky 21=0,所以Δ=16-4k 4y 1-ky 21 =44-4ky 1+k 2y 21 =0所以k =2y 1则l 1:y -y 1=2y 1x -y 214,即y =2y 1x +y 12,令x =0,得M 0,y 12,同理l 2:y =2y 2x +y 22,N 0,y 22,联立y =2y 1x +y12y =2y 2x +y 22,得交点Q 的横坐标为x Q =y 1y 24=-1,∴S △QMN =12MN ⋅x Q =12y 12-y 22×1=14y 1+y 2 2-4y 1y 2=t 2+1≥1∴△QMN 面积的取值范围是1,+∞ .5.(2022届百校联盟高三上学期12月联考)已知曲线C 上任意一点到F 1(-1,0),F 2(1,0)距离之和为433,抛物线E :y 2=2px 的焦点是点F 2.(1)求曲线C 和抛物线E 的方程;(2)点Q x 0,y 0 x 0<0 是曲线C 上的任意一点,过点Q 分别作抛物线E 的两条切线,切点分别为M ,N ,求△QMN 的面积的取值范围.【解析】(1)依题意,曲线C 是以F 1(-1,0),F 2(1,0)为左右焦点,长轴长为433的椭圆,则短半轴长b 有b 2=232-12=13,曲线C 的方程为:x 243+y 213=1,即3x 24+3y 2=1,在y 2=2px 中,p 2=1,即p =2,所以曲线C 的方程为:3x 24+3y 2=1,抛物线E 的方程为:y 2=4x .(2)显然,过点Q 的抛物线E 的切线斜率存在且不为0,设切线方程为:y -y 0=k (x -x 0),由y -y 0=k (x -x 0)y 2=4x消去x 并整理得:k4⋅y 2-y +y 0-kx 0=0,依题意,Δ=1-k (y 0-kx 0)=x 0k 2-y 0k +1=0,设二切线斜率为k 1,k 2,则k 1+k 2=y 0x 0,k 1k 2=1x 0,设斜率为k 1的切线所对切点M (x 1,y 1),斜率为k 2的切线所对切点N (x 2,y 2),因此,y 1=2k 1,y 2=2k 2,于是得M 1k 21,2k 1 ,N 1k 22,2k 2 ,NM =1k 21-1k 22,2k 1-2k 2,直线MN 上任意点P (x ,y ),MP =x -1k 21,y -2k 1,由MP ⎳NM 得:2k 1-2k 2 x -1k 21 -1k 21-1k 22y -2k 1 =0,化简整理得:2x -k 1+k 2k 1k 2y +2k 1k 2=0,则直线MN 的方程为:2x -y 0y +2x 0=0,点Q 到直线MN 的距离d =|4x 0-y 20|4+y 2,|MN |=1k 21-1k 222+2k 1-2k 2 2=1k 1-1k 2 21k 1+1k 22+4 =k 1+k 2k 1k 22-4k 1k 2k 1+k 2k 1k 2 2+4 =(y 20-4x 0)(y 20+4),则△QMN 的面积S △QMN =12|MN |⋅d =12⋅(y 20-4x 0)(y 20+4)⋅|4x 0-y 20|4+y 20=12(y 20-4x 0)32,而点Q x 0,y 0 x 0<0 在曲线C 上,即y 20=13-14x 20,-23≤x 0<0,y 20-4x 0=-14x 20-4x 0+13在x 0∈-23,0 上单调递减,当x 0=0时,(y 20-4x 0)min =13,当x 0=-23时,(y 20-4x 0)max =83,于是有13<y 20-4x 0≤83,则39<(y 20-4x 0)32≤164123,有318<S △QMN ≤84123所以△QMN 的面积的取值范围是318,84123.6.(2022届四川省达州高三上学期诊断)过定点0,1 的动圆始终与直线l :y =-1相切.(1)求动圆圆心的轨迹C 的方程;(2)动点A 在直线l 上,过点A 作曲线C 的两条切线分别交x 轴于B ,D 两点,当△ABD 的面积是32时,求点A 坐标.【解析】(1)设动圆圆心坐标为x ,y ,因为过定点0,1 的动圆始终与直线l :y =-1相切,可得-x 2+y -1 2=y +1 ,化简得x 2=4y ,即动圆圆心的轨迹方程C :x 2=4y .(2)设动点A x 0,-1 ,根据题意过点A 作曲线C 的切线斜率存在,设为k k ≠0 ,所以切线方程为y =k x -x 0 -1,联立方程组x 2=4y ,y =k x -x 0 -1 ,整理得x 2-4kx +4kx 0+4=0,且Δ=k 2-kx 0-1=0,因为k 2-kx 0-1=0有两不等实根,所以有两条切线,斜率分别设为k 1,k 2,所以k 1+k 2=x 0,k 1k 2=-1,切线y =k 1x -x 0 -1交x 轴于点B x 0+1k 1,0 ,切线y =k 2x -x 0 -1交x 轴于点D x 0+1k 2,0 ,所以S △ABD =12x 0+1k 1-x 0-1k 2×1=12k 2-k 1k 1k 2=12k 1+k 22-4k 1k 2k 1k 2=32,即12x 02+41=32,解得x 0=±5,所以点A 坐标为5,-1 或-5,-1 .7.(2022届四川省成都市高三上学期考试)已知抛物线C :x 2=2py p >0 的焦点为F .且F 与圆M :x 2+y +42=1上点的距离的最小值为4.(1)求抛物线的方程;(2)若点P 在圆M 上,PA ,PB 是C 的两条切线.A ,B 是切点,求△PAB 面积的最大值.【解析】(1)抛物线C 的焦点为F 0,p 2 ,FM =p2+4,所以,F 与圆M :x 2+(y +4)2=1上点的距离的最小值为p2+4-1=4,解得p =2;所以抛物线的方程为x 2=4y .(2)抛物线C 的方程为x 2=4y ,即y =x 24,对该函数求导得y =x 2,设点A x 1,y 1 ,B x 2,y 2 ,P x 0,y 0 ,直线PA 的方程为y -y 1=x 12x -x 1 ,即y =x 1x2-y 1,即x 1x -2y 1-2y =0,同理可知,直线PB 的方程为x 2x -2y 2-2y =0,由于点P 为这两条直线的公共点,则x 1x 0-2y 1-2y 0=0x 2x 0-2y 2-2y 0=0,所以,点A 、B 的坐标满足方程x 0x -2y -2y 0=0,所以,直线AB 的方程为x 0x -2y -2y 0=0,联立x 0x -2y -2y 0=0y =x 24,可得x 2-2x 0x +4y 0=0,由韦达定理可得x 1+x 2=2x 0,x 1x 2=4y 0,所以AB =1+x 022⋅x 1+x 22-4x 1x 2=1+x 022⋅4x 20-16y 0=x 20+4 x 20-4y 0点P 到直线AB 的距离为d =x 20-4y 0x 2+4,所以,S △PAB =12AB ⋅d =12x 20+4 x 20-4y 0 ⋅x 20-4y 0x 20+4=12x 20-4y 0 32,∵x 20-4y 0=1-y 0+4 2-4y 0=-y 20-12y 0-15=-y 0+6 2+21,由已知可得-5≤y 0≤-3,所以,当y 0=-5时,△PAB 的面积取最大值12×2032=205.8.(2022届山西省怀仁市高三上学期期中)已知抛物线C :y 2=2px p >0 的焦点为F ,准线与x 轴交于D点,过点F 的直线与抛物线C 交于A ,B 两点,且FA ⋅FB =FA +FB .(1)求抛物线C 的方程;(2)设P ,Q 是抛物线C 上的不同两点,且PF ⊥x 轴,直线PQ 与x 轴交于G 点,再在x 轴上截取线段GE =GD ,且点G 介于点E 点D 之间,连接PE ,过点Q 作直线PE 的平行线l ,证明l 是抛物线C 的切线.【解析】(1)解:设过点F 的直线方程为y =k x -p2,A x 1,y 1 ,B x 2,y 2 ,联立y =k x -p2 y 2=2px,得k 2x 2-pk 2+2p x +k 2p 24=0,则x 1+x 2=pk 2+2p k 2,x 1⋅x 2=p 24,所以FA +FB =x 1+p 2+x 2+p 2=2pk 2+2pk 2,FA ⋅FB =x 1+p 2 x 2+p 2 =p 22+p 2k 2+2 2k 2,因为FA ⋅FB =FA +FB ,所以2pk 2+2p k 2=p 22+p 2k 2+2 2k 2,化简得p 2-2p 1+1k2 =0,所以p =2,当过点F 的直线斜率不存在时,则FA =FB =p ,故FA +FB =2p ,FA ⋅FB =p 2,又因为FA ⋅FB =FA +FB ,则p 2=2p ,所以p =2,综上所述,p =2,所以y 2=4x ;(2)证明:不妨设点P 在第一象限,则P 1,2 ,D -1,0 ,F 1,0 ,设直线PQ 的方程为y -2=m x -1 ,m ≠0,Q x 3,y 3 ,联立y -2=m x -1 y 2=4x ,消元整理得m 24y 2-y -m +2=0,则2+y 3=4m ,即y 3=4-2mm 故x 3=2-m 2m 2,即Q 2-m 2m 2,4-2m m,当y =0时,x =-2m +1,则G -2m+1,0 ,又因GE =GD ,且点G 介于点E 点D 之间,则G 为DE 的中点,所以E -4m+3,0 ,则直线PE 的斜率为24m-2=m2-m ,因为直线PE 平行直线l ,所以直线l 的斜率为m2-m,故直线l 的方程为y -4-2m m =m 2-m x -2-m 2m 2,即y =m 2-m x +2-m m ,联立y =m 2-m x +2-mm y 2=4x,消元整理得m 42-m y 2-y +2-m m =0,Δ=1-4×m 42-m⋅2-mm =0,所以直线l 与抛物线只有一个交点,有直线l 斜率不为0,所以l 是抛物线C 的切线.9.已知抛物线C :x 2=2py ,点M -4,4 在抛物线C 上,过点M 作抛物线C 的切线,交x 轴于点P ,点O 为坐标原点.(1)求P 点的坐标;(2)点E 的坐标为-2,-1 ,经过点P 的直线交抛物线于A ,B 两点,交线段OM 于点Q ,记EA ,EB ,EQ 的斜率分别为k 1,k 2,k 3,是否存在常数λ使得k 1+k 2=λk 3.若存在,求出λ的值,若不存在,请说明理由.【解析】(1)因为M -4,4 在抛物线C 上,所以-4 2=8p ,所以p =2所以抛物线C 的方程为x 2=4y ,即y =14x 2,则y =12x ,所以切线的斜率为12×(-4)=-2,所以过点M 的切线方程为y =-2x +4 +4,即y =-2x -4联立y =-2x -4y =0,解得P 点的坐标为-2,0(2)由题意可知过点P 的直线的斜率存在,设为y =kx +2k ,线段OM 所在的直线为y =-x ,联立y =kx +2k y =-x,解得Q 点坐标为-2k k +1,2kk +1,所以k 3=2k k +1+1-2k k +1+2=3k +12设A x 1,x 214 ,B x 2,x 224,联立y =kx +2kx 2=4y ,得x 2-4kx -8k =0,所以x 1+x 2=4k ,x 1x 2=-8k .则k 1+k 2=x 214+1x 1+2+x 224+1x 2+2=14x 1x 2x 1+x 2 +x 1+x 2 +12x 21+x 22 +4x 1x 2+2x 1+x 2 +4=-8k 2+4k +1216k 2+16k +4-8k +8k +4=12k +44=3k +1所以k 1+k 2=2k 3,即存在λ=2满足条件.10.如图,已知A x 1,y 1 、B x 2,y 2 为二次函数y =ax 2(a >0)的图像上异于顶点的两个点,曲线y =ax 2在点A x 1,y 1 、B x 2,y 2 处的切线相交于点P x 0,y 0 .(1)利用抛物线的定义证明:曲线y =ax 2上的每一个点都在一条抛物线上,并指出这条抛物线的焦点坐标和准线方程;(2)求证:x 1、x 0、x 2成等差数列,y 1、y 0、y 2成等比数列;(3)设抛物线y =ax 2焦点为F ,过P 作PH 垂直准线l ,垂足为H ,求证:∠BPH =∠APF .【解析】(1)证明:令F 0,14a ,直线l :y =-14a,曲线y =ax 2上任意一点P x 0,ax 02,又a >0,则点P x 0,ax 02 到直线l 的距离d =ax 02+14a,则PF =x 02+ax 02-14a 2=x 02+ax 02 2-x 022+14a 2=ax 02 2+x 022+14a 2=ax 02+14a 2=ax 02+14a =ax 02+14a=d ,即曲线y =ax 2上任意一点到点F 0,14a 的距离与到直线l :y =-14a的距离相等,且点F 0,14a 不在直线l :y =-14a上,所以曲线y =ax 2上的每一个点都在一条抛物线上,抛物线的方程即为y =ax 2,焦点坐标为F 0,14a,准线方程为y =-14a;(2)解:对于y =ax 2,则y =2ax ,所以y |x =x 1=2ax 1,y |x =x 2=2ax 2,即过点A x 1,y 1 、B x 2,y 2 的切线方程分别为y -y 1=2ax 1x -x 1 、y -y 2=2ax 2x -x 2 ,又y 1=ax 12,y 2=ax 22,所以y =2ax 1x -ax 12、y =2ax 2x -ax 22,由y =2ax 1x -ax 12y =2ax 2x -ax 22 ,解得x =x 1+x 22y =ax 2x 1,即P x 1+x 22,ax 2x 1 ,即x 0=x 1+x 22,y 0=ax 2x 1,又y 02=a 2x 22x 12=y 1⋅y 2,所以x 1、x 0、x 2成等差数列,y 1、y 0、y 2成等比数列;(3)解:由(2)可知k BP =2ax 2,k AP =2ax 1,F 0,14a ,所以k PF =y 0-14ax 0=ax 2x 1-14a x 1+x 22,如图,设AP ,PF ,PB 与x 轴分别交于点C 、D 、E ,则tan ∠ACx =2ax 1,tan ∠BEx =2ax 2,tan ∠FDx =ax 2x 1-14ax 1+x 22,又∠BPH =π2-π-∠BEx =∠BEx -π2,∠FPA =∠FDx -∠ACx ,所以tan ∠BPH =tan ∠BEx -π2 =-1tan ∠BEx=-12ax 2,tan ∠FPA =tan ∠FDx -∠ACx =tan ∠FDx -tan ∠ACx1+tan ∠FDx tan ∠ACx=ax 2x 1-14a x 1+x 22-2ax11+ax 2x 1-14a x 1+x 22⋅2ax 1=ax 2x 1-14a -2ax 1⋅x 1+x 22x 1+x 22+ax 2x 1-14a ⋅2ax 1=-14a-ax 12x 1+x 22+2a 2x 12x 2-x 12=-14a -ax 12x 22+2a 2x 12x 2=-14a-ax 1212x 2+4a 2x 12x 2 =-1+4a 2x 12 2ax 21++4a 2x 12 =-12ax 2,即tan ∠BPH =tan ∠FPA ,所以∠BPH =∠FPA ;11.已知抛物线x 2=2py (p >0)上的任意一点到P (0,1)的距离比到x 轴的距离大1.(1)求抛物线的方程;(2)若过点(0,2)的直线l 与抛物线交于A ,B 两点,过A ,B 两点分别作抛物线的切线,两条切线交于点Q ,求△QAB 重心G 的轨迹方程.【解析】(1)由抛物线的定义可得p =2,∴抛物线的方程为x 2=4y ;(2)由题意可得直线AB 的斜率存在,设其为k ,设A x 1,y 1 ,B x 2,y 2 ,则直线AB 的方程为y =kx +2;代入抛物线方程得x 2-4kx -8=0,则有x 1+x 2=4k ,x 1x 2=-8,∵y =x 24,∴y=x 2,∴l AQ :y -y 1=x 12x -x 1 ,即y =x 12x -x 214①同理可得l BQ :y =x 22x -x 224②,①-②有x 1-x 22 x =x 21-x 224,得x Q =x 1+x 22=2k ,∴y Q =kx 1-x 214=kx 1-y 1=-2.∴Q (2k ,-2)又y 1+y 2=k x 1+x 2 +4=4k 2+4,设G (x ,y ),则x =x 1+x 2+x Q3=2ky =y 1+y 2+y Q 3=4k 2+23,消k 得y =x 2+23,所以G 的轨迹方程为y =13x 2+23.12.已知抛物线C :x 2=2py p >0 的焦点为F ,点P -2,y 0 为抛物线上一点,抛物线C 在点P 处的切线与y 轴相交于点Q ,且△FPQ 的面积为2.(1)求抛物线的方程.(2)若斜率不为0的直线l 过焦点F ,且交抛物线C 于A ,B 两点,线段AB 的中垂线与y 轴交于点M ,证明:MF AB为定值.【解析】(1)将P -2,y 0 代入x 2=2py 得,y 0=2p 设抛物线的切线方程为y =k (x +2)+2p,代入x 2=2py 整理得:x 2-2pkx -(4pk +4)=0由题知Δ=4p 2k 2+4pk +4=0,解得k =-2p又y Q =2k +2p ,所以FQ =p 2-2k -2p 所以S △FPQ =p 2-2k -2p =p 2+2p=2,解得p =2所以抛物线C 的方程为x 2=4y(2)记AB 中点为N ,A (x 1,y 1),B (x 2,y 2),N (x 3,y 3)设直线AB 方程为y =mx +1,代入x 2=4y 整理得:x 2-4mx -4=0,则x 1+x 2=4m ,x 1x 2=-4所以AB =m 2+1(x 1+x 2)2-4x 1x 2=4(m 2+1)因为N 为AB 中点,所以x 3=x 1+x 22=2m ,y 3=2m 2+1所以直线MN 的方程为y -(2m 2+1)=-1m(x -2m )则y M =2m 2+3所以MF =2m 2+2所以MF AB =2m 2+24(m 2+1)=1213.(2022届新未来4月联考)已知直线l :x -ky +k -1=0与抛物线C :y 2=2px (p >0)交于A ,B 两点,过A ,B 两点且与抛物线C 相切的两条直线相交于点D ,当直线l ⊥x 轴时,|AB |=4.(1)求抛物线C 的标准方程;(2)求|OD |的最小值.【解析】(1)当直线l ⊥x 轴时,x =1,代入y 2=2px 解得y =±2p ,∴|AB |=22p =4,得p =2,∴抛物线C 的标准方程为y 2=4x ;(2)设A x A ,y A ,B x B ,y B ,D x D ,y D .联立x -ky +k -1=0,y 2=4x ,得y 2-4ky +4k -4=0.∴y A +y B =4k ,y A ⋅y B =4k -4①,∵直线l :x -ky +k -1=0恒过点(1,1),且与抛物线有两个交点,点(1,1)在抛物线上,∴k ≠0,当直线AD 和直线BD 斜率存在时,设直线AD :y =mx +n ,联立y =mx +n ,y 2=4x ,∴my 2-4y +4n =0,Δ=16-4m ⋅4n =0,∴m ⋅n =1,∴y A =2m ,同理,设直线BD :y =ax +b ,则ab =1,y B =2a,联立y =mx +n ,y =ax +b , ∴x D =1am ,y D =1a +1m.由①可知2m +2a =4k ,2m ⋅2a =4k -4,∴1m +1a -2ma=2,即y D -2x D =2,∴点D 在直线2x -y +2=0上.当直线AD 或直线BD 斜率不存在时,即直线l 过原点时,k =1,过原点的切线方程为x =0,易知另外一点为(4,4),过点(4,4)的切线方程设为x -4=t (y -4),联立x -4=t (y -4)y 2=4x,得y 2-4ty +16t -16=0,Δ=16t 2-416t -16 =0,解得t =2,即切线方程y =12x +2.此时交点D 的坐标为(0,2),在直线2x -y +2=0上,故OD 的最小值为原点到直线2x -y +2=0的距离,即25=255.14.过原点O 的直线与拋物线C :y 2=2px (p >0)交于点A ,线段OA 的中点为M ,又点P 3p ,0 ,PM ⊥OA .在下面给出的三个条件中任选一个填在横线处,并解答下列问题:①OA =46,②PM =23;③△POM 的面积为62.(1)______,求拋物线C 的方程;(2)在(1)的条件下,过y 轴上的动点B 作拋物线C 的切线,切点为Q (不与原点O 重合),过点B 作直线l 与OQ 垂直,求证:直线l 过定点.注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)由题意知直线OA 的斜率存在且不为0,设其方程为y =kx k ≠0 ,由y 2=2px ,y =kx 得x =0,y =0 或x =2p k 2,y =2p k,即O 0,0 ,A 2p k 2,2p k所以线段OA 的中点M p k 2,p k.因为PM ⊥OA ,所以直线PM 的斜率存在,k PM =p kpk 2-3p =k1-3k 2.所以k 1-3k2⋅k =-1,解得k =±22,所以直线OA 的方程为x ±2y =0,A 4p ,±22p .若选①,不妨令A 4p ,22p ,由OA =46,得4p2+22p 2=46,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .若选②,因为PM ⊥OA ,PM =23,所以点P 到直线OA 的距离为23,即3p12+±2 2=23,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .若选③,不妨令A 4p ,22p ,因为OM =12OA =124p 2+22p 2=6p ,点P 到直线OA 的距离PM =3p12+±22=3p ,所以S △POM =12OM ⋅PM =12×6p ×3p =62,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .(2)由题意可知切线BQ 的斜率存在且不为0.设B 0,b b ≠0 ,切线BQ 的方程为y =k 1x +b ,由y =k 1x +b ,y 2=4x得k 1y 2-4y +4b =0,(*)所以Δ=-4 2-4×k 1×4b =0,解得k 1=1b,所以方程(*)的根为y =2b ,代入y 2=4x 得x =b 2,所以切点b 2,2b ,于是k OQ =2b b2=2b ,则k l =-b2,所以直线l 的方程为y =-b 2x +b ,即y =-b2x -2 ,所以当b 变化时,直线l 恒过定点2,0 .15.已知抛物线x 2=2py (y >0),其焦点为F ,抛物线上有相异两点A x 1,y 1 ,B x 2,y 2 .(1)若AF ⎳x 轴,且经过点A 的抛物线的切线经过点(1,0),求抛物线方程;(2)若p =2,且|AF |+|BF |=4,线段AB 的中垂线交x 轴于点C ,求△ABC 面积的最大值.【解析】(1)抛物线x 2=2py (y >0),焦点坐标为0,p2,因为AF ⎳x ,所以y A =p 2,所以x A =p ,又y =x 22p ,所以y =x p,所以过A 点的切线的斜率k =1,所以切线方程为y -p 2=x -p ,令y =0得x =p2=1,所以p =2,所以x 2=4y(2)若p =2,则抛物线为x 2=4y ,焦点为0,1 ,准线方程为y =-1,因为|AF |+|BF |=4,所以y A +1+y B +1=4,所以y A +y B =2,设直线AB 的方程为y =kx +m ,联立x 2=4y 得x 2-4kx -4m =0,Δ=16k 2+16m >0所以x 1+x 2=4k ,x 1x 2=-4m ,所以y 1+y 2=kx 1+kx 2+2m =4k 2+2m =2,即m =1-2k 2,所以Δ=16k 2+161-2k 2 >0,解得-1<k <1,当k =0时,直线方程为y =1,则A 2,0 ,B -2,0 ,所以AB 的中垂线恰为y 轴,则C 0,0 ,所以S △ABC =12×4×1=2,当-1<k <1,且k ≠0时,又AB 的中点坐标为x 1+x 22,y 1+y 22 =2k ,1 ,所以AB 的中垂线l 的方程为y =-1kx -2k +1,令y=0得x =3k ,所以C 3k ,0 ,所以C 到AB 的距离d =3k 2+m k 2+1,又AB=k 2+116k 2+16m ,所以S △ABC =12AB d =2k 2+m ×3k 2+m =21-k 2×1+k 2 =21-k 2 1+k 2 2令1-k 2=t ,则t ∈0,1 ,f t =t 2-t 2=t 3-4t 2+4t ,因为f t =3t 2-8t +4=t -2 3t -2 ,所以当t ∈0,23 时f t >0,f t 在0,23 上单调递增,当t ∈23,1 时f t <0,f t 在23,1 上单调递减,所以f t max =f 23 =3227所以S △ABC max =23227=869>2所以S △ABC max =86916.设抛物线C :x 2=2py (p >0)的焦点为F ,点P m ,2 (m >0)在抛物线C 上,且满足PF =3.(1)求抛物线C 的标准方程;(2)过点G 0,4 的直线l 与抛物线C 交于A ,B 两点,分别以A ,B 为切点的抛物线C 的两条切线交于点Q ,求三角形PQG 周长的最小值.【解析】(1)由抛物线定义,得PF =2+p2=3,得p =2,∴抛物线C 的标准方程为x 2=4y ;(2)设A x 1,y 1 ,B x 2,y 2 ,直线l 的方程为y =kx +4,∴联立y =kx +4x 2=4y,消掉x ,得x 2-4kx -16=0,Δ>0,∴x 1+x 2=4k ,x 1x 2=-16,设A ,B 处的切线斜率分别为k 1,k 2,则k 1=x 12,k 2=x22,∴在点A 的切线方程为y -y 1=x 12x -x 1 ,即y =x 1x 2-x 124①,同理,在B 的切线方程为y =x 2x 2-x 224②,由①②得:x Q =x 1+x 22=2k ,代入①或②中可得:y Q =kx 1-x 214=y 1-4-y 1=-4,∴Q 2k ,-4 ,即Q 在定直线y =-4上,设点G 关于直线y =-4的对称点为G ,则G 0,-12 ,由(1)知P 22,2 ,∵PQ +GQ =PQ +G Q ≥G P =251,即P ,Q ,G 三点共线时等号成立,∴三角形PQG 周长最小值为GP +G P =251+23.17.已知圆C :x 2+y -2 2=1与定直线l :y =-1,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线l 1:y =-2上一个动点,过点P 作轨迹E 的两条切线,切点分别为A 、B .①求证:直线AB 过定点;②求证:∠PCA =∠PCB .【解析】(1)依题意知:M 到C 0,2 的距离等于M 到直线y =-2的距离,∴动点M 的轨迹是以C 为焦点,直线y =-2为准线的抛物线,设抛物线方程为x 2=2py p >0 ,则p2=2,则p =4,即抛物线的方程为x 2=8y ,故:动圆圆心M 的轨迹E 的方程为:x 2=8y ;(2)①由x 2=8y 得:y =18x 2,∴y =14x ,设A x 1,18x 21、B x 2,18x 22 ,P t ,-2 ,其中x 1≠x 2,则切线PA 的方程为y -18x 21=x 14x -x 1 ,即y =14x 1x -18x 21,同理,切线PB 的方程为y =14x 2x -18x 22,由y =14x 1x -18x 21y =14x 2x -18x 22 ,解得x =x 1+x 22y =x 1x 28 ,∴t =x 1+x 22-2=x 1x 28,即x 1+x 2=2t x 1x 2=-16 ,∵A x 1,18x 21、B x 2,18x 22 x 1≠x 2 ,∴直线AB 的方程为y -18x 21=18x 22-18x 21x 2-x 1x -x 1 ,化简得y =x 1+x 28x -x 1x 28,即y =t4x +2,故直线AB 过定点0,2 ;②由①知:直线AB 的斜率为k AB =t4,(i )当直线PC 的斜率不存在时,直线AB 的方程为y =2,∴PC ⊥AB ,∴∠PCA =∠PCB ;(ii )当直线PC 的斜率存在时,∵P t ,-2 、C 0,2 ,∴直线PC 的斜率k PC =-2-2t -0=-4t ,∴k AB ⋅k PC =t 4×-4t=-1,∴PC ⊥AB ,∴∠PCA =∠PCB .综上所述:∠PCA =∠PCB 得证.18.设抛物线C :x 2=2py p >0 ,其焦点为F ,准线为l ,点P 为C 上的一点,过点P 作直线l 的垂线,垂足为M ,且MF =FP ,FM ⋅FP=2.(1)求抛物线C 的方程;(2)设点Q 为C 外的一点且Q 点不在坐标轴上,过点Q 作抛物线C 的两条切线,切点分别为A ,B ,过点Q 作y 轴的垂线,垂足为S ,连接AS ,BS ,证明:直线AS 与直线BS 关于y 轴对称.【解析】(1)∵PM =PF =FM ,∴△PFM 为等边三角形,∴∠FMP =∠PFM =60°,又FM ⋅FP=FM ⋅FP cos ∠PFM =FM 2cos60°=2,∴FM =2设直线l 交y 轴于N 点,则在Rt △MNF 中∠NMF =30°,NF =1=p ,∴C 的方程为x 2=2y(2)设点Q a ,b a ≠0,b ≠0 ,A x 1,y 1 ,B x 2,y 2 ,又C 的方程为x 2=2y 可化为y =x 22,∴y =x所以过点A 且与C 相切的直线的斜率为x 1,过点B 且与C 相切的直线的斜率为x 2,所以直线QA 的方程为y-y1=x1x-x1,直线QB的方程为y-y2=x2x-x2.又直线QA与QB均过点Q,b-y1=x1a-x1,b-y2=x2a-x2,又x21=2y1,x22=2y2,∴y1=ax1-b,y2=ax2-b,所以直线AB的方程为y=ax-b,联立方程y=ax-b和x2=2y得方程组x2=2y,y=ax-b,消去y得x2-2ax+2b=0,∵b≠0,∴x1≠0,x2≠0,∵x1x2=2b,又S0,b,则直线AS的斜率k1=y1-bx1;直线BS的斜率k2=y2-bx2,∴k1+k2=x1+x2x1x22-bx1x2,∵x1x22-b=0,∴k1+k2=0,所以直线AS与直线BS关于y轴对称.。
切线【题型一】求切线基础型:给切点求切线【解题关键和模板】基本规律以曲线上的点(x 0,f (x 0))(已知x 0为具体值)为切点的切线方程的求解步骤:①求出函数f (x )的导数f ′(x );②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.【典例分析】1、已知函数()2sin 1xf x x =+,则曲线()y f x =在点()0,0处的切线的方程为__________.2、已知函数3)(x x f =,则曲线()y f x =在点()0,0处的切线的方程为__________.【题型二】求切线基础型:有切线无切点求切点或参数【解题关键和模板】基本规律以曲线上的点(x 0,f (x 0))(x 0为未知值,可以设出来)为切点的切线方程的求解步骤:①求出函数f (x )的导数f ′(x );②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.【典例分析】1、曲线()32f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为()A .()1,0B .()2,8C .()1,0和()1,4--D .()2,8和()1,4--2、已知曲线3y x =在点(),a b 处的切线与直线310x y ++=垂直,则a 的取值是()A .-1B .±1C .1D .3±【题型三】无切点多参【解题关键和模板】基本规律思维同上,依旧是设切点,待定系数求解方程(组)【典例分析】若直线2y x b =+是曲线2ln y a x =的切线,且0a >,则实数b 的最小值是______.【题型四】“过点”型切线【解题关键和模板】基本规律()0000000000001,)2=f x f x k=f x y )y b a -y ()5a b -y ()-y (x y y k x x k x k x x ''⇒=-=-=-⇒、设切点:P(x 、()3、y=()()。
专题36 切线与切点弦问题【方法技巧与总结】1、点()00 M x y ,在圆222x y r +=上,过点M 作圆的切线方程为200x x y y r +=.2、点()00 M x y ,在圆222x y r +=外,过点M 作圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为200x x y y r +=.3、点()00 M x y ,在圆222x y r +=内,过点M 作圆的弦AB (不过圆心),分别过 A B ,作圆的切线,则两条切线的交点P 的轨迹方程为直线200x x y y r +=.4、点()00 M x y ,在圆222()()x a y b r -+-=上,过点M 作圆的切线方程为()()200()()x a x a y b y b r --+--=.5、点()00 M x y ,在圆222()()x a y b r -+-=外,过点M 作圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为()()200()()x a x a y b y b r --+--=.6、点()00 M x y ,在圆222()()x a y b r -+-=内,过点M 作圆的弦AB (不过圆心),分别过 A B ,作圆的切线,则两条切线的交点P 的轨迹方程为()()200()()x a x a y b y b r --+--=.7、点()00 M x y ,在椭圆2222x y a b +=1(0)a b >>上,过点M 作椭圆的切线方程为00221x x y y a b +=.8、点()00 M x y ,在椭圆2222x y a b +=1(0)a b >>外,过点M 作椭圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为00221x x y ya b+=. 9、点()00 M x y ,在椭圆2222x y a b+=1(0)a b >>内,过点M 作椭圆的弦AB (不过椭圆中心),分别过A B ,作椭圆的切线,则两条切线的交点P 的轨迹方程为直线02x x a +021y yb=. 10、点()00 M x y ,在双曲线2222x y a b -=1(0 0)a b >>,上,过点M 作双曲线的切线方程为00221x x y y a b -=.11、点()00 M x y ,在双曲线22x a-221(0 0)y a b b =>>,外,过点M 作双曲线的两条切线,切点分别为A B ,,则切点弦AB 的直线方程为00221x x y ya b-=. 12、点()00 M x y ,在双曲线22x a -221(0 0)y a b b =>>,内,过点M 作双曲线的弦AB (不过双曲线中心),分别过 A B ,作双曲线的切线,则两条切线的交点P 的轨迹方程为直线00221x x y ya b-=. 13、点()00 M x y ,在抛物线2y =2(0)px p >上,过点M 作抛物线的切线方程为()00y y p x x =+.14、点()00 M x y ,在抛物线2y =2(0)px p >外,过点M 作抛物线的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为()00y y p x x =+.15、点()00 M x y ,在抛物线2y =2(0)px p >内,过点M 作抛物线的弦AB ,分别过 A B ,作抛物线的切线,则两条切线的交点P 的轨迹方程为直线()00y y p x x =+.【题型归纳目录】 题型一:切线问题 题型二:切点弦过定点问题题型三:利用切点弦结论解决定值问题 题型四:利用切点弦结论解决最值问题 题型五:利用切点弦结论解决范围问题 【典例例题】 题型一:切线问题例1.已知平面直角坐标系中,点(4,0)到抛物线21:2(0)C y px p =>准线的距离等于5,椭圆22222:1(0)x y C a b a b+=>>,且过点. (1)求1C ,2C 的方程;(2)如图,过点(E m ,0)(2)m >作椭圆2C 的切线交1C 于A ,B 两点,在x 轴上取点G ,使得AGE BGE ∠=∠,试解决以下问题:①证明:点G 与点E 关于原点中心对称;②若已知ABG ∆的面积是椭圆2C 四个顶点所围成菱形面积的16倍,求切线AB 的方程.【解析】(1)解:因为点(4,0)到抛物线1C 的准线2px =-的距离等于5, 所以452p +=,解得2p =,所以抛物线1C 的方程为24y x =; 因为椭圆2C,且过点,所以222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪-=⎪⎪⎩,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=;(2)①证明:因为2m >,且直线AB 与椭圆2C 相切, 所以直线AB 的斜率存在,设直线AB 的方程为()y k x m =-, 联立22()14y k x m x y =-⎧⎪⎨+=⎪⎩,得22222(41)8440k x k mx k m +-+-=, 因为直线AB 与椭圆2C 相切,所以△42222644(41)(44)0k m k k m =-+-=,即2214k m =-,联立2()4y k x m y x=-⎧⎨=⎩,得2440ky y km --=,设1(A x ,1)y ,2(B x ,2)y ,则12124,4y y y y m k+==-;设(,0)G t ,因为AGE BGE ∠=∠,所以0AG BG k k +=, 则12120y yx t x t+=--,即211212()0x y x y t y y +-+=, 即121212()()04y y y y t y y +-+=,又120y y +≠,所以124y y t m ==-,即(,0)G m -, 即点G 与点E 关于原点中心对称;②解:椭圆2C 四个顶点所围成菱形面积为122242S a b ab =⨯⨯==,所以ABG ∆的面积为16464⨯=,则1211||||222ABG S GE y y ∆=-=⨯==,令64,即22(4)256m m m -+=, 即42342560m m m -+-=,即42(256)(4)0m m m -+-=, 即22(4)[(16)(4)]0m m m m -+++=, 即32(4)(51664)0m m m m -+++=,因为2m >,所以4m =,2211412k m ==-,k =所以直线AB 的方程为4)y x =-. 例2.某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性质:椭圆2222:1(0)x y C a b a b +=>>在任意一点0(M x ,0)y 处的切线方程为00221xx yy a b+=.现给定椭圆22:143x y C +=,过C 的右焦点F 的直线l 交椭圆C 于P ,Q 两点,过P ,Q 分别作C 的两条切线,两切线相交于点G . (1)求点G 的轨迹方程;(2)若过点F 且与直线l 垂直的直线(斜率存在且不为零)交椭圆C 于M ,N 两点,证明:11||||PQ MN +为定值.【解析】(1)解:设直线PQ 为1x ty =+,1(P x ,1)y ,2(Q x ,2)y , 易得在P 点处切线为11143x x y y +=,在Q 点处切线为22143x x y y+=, 由11221,431,43x x y yx x y y ⎧+=⎪⎪⎨⎪+=⎪⎩得2112214()y y x x y x y -=-,又111x ty =+,221x ty =+,可得4x =,故点G 的轨迹方程4x =.(2)证明:联立l 的方程与C 的方程221,1,43x ty x y =+⎧⎪⎨+=⎪⎩消去x ,得22(34)690t y ty ++-=.由韦达定理,得122634t y y t +=-+,122934y y t =-+,所以2212(1)||34t PQ t +==+, 因为PQ MN ⊥,将t 用1t -代,得222112(1)12(1)||13434t t MN t t ++==+⋅+, 所以22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++. 例3.已知圆222:(0)O x y r r +=>.(1)求证:过圆O 上点0(M x ,0)y 的切线方程为200x x y y r +=.类比前面的结论,写出过椭圆2222:1(0)x y C a b a b+=>>上一点0(N x ,0)y 的切线方程(不用证明). (2)已知椭圆22:143x y C +=,Q 为直线4x =上任一点,过点Q 作椭圆C 的切线,切点分别为A 、B ,求证:直线AB 恒过定点.【解析】(1)证明:因为圆222:O x y r +=, 故圆心(0,0)O ,半径为r , 又0(M x ,0)y , 所以0OM y k x =, 因为0(M x ,0)y 在圆上, 所以过M 的圆的切线斜率0x k y =-,所以过M 的圆的切线方程为0000()x y y x x y -=--,① 又因为22200x y r +=,② 由①②整理得,为200x x y y r +=.所以过圆O 上点0(M x ,0)y 的切线方程为200x x y y r +=.过椭圆2222:1(0)x y C a b a b +=>>上一点0(N x ,0)y 的切线方程为00221x x y ya b+=;(2)设(4,)Q t ,()t R ∈,1(A x ,1)y ,2(B x ,2)y , 由(1),则直线QA 的方程11143x x y y +=, 因为Q 在QA 上,所以1113ty x +=,① 同理可得2213ty x +=,② 由①②可得直线AB 的方程为13tx y +=,令0y =,得1x =, 所以直线AB 恒过点(1,0).变式1.已知点(1,0)A -,(1,0)B ,动点P 满足||||4PA PB +=,P 点的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)已知圆222x y R +=上任意一点0(P x ,0)y 处的切线方程为:200x x y y R +=,类比可知椭圆:22221x y a b+=上任意一点0(P x ,0)y 处的切线方程为:00221x x y ya b+=.记1l 为曲线C 在任意一点P 处的切线,过点B 作BP 的垂线2l ,设1l 与2l 交于Q ,试问动点Q 是否在定直线上?若在定直线上,求出此直线的方程;若不在定直线上,请说明理由.【解析】解:(Ⅰ)由椭圆的定义知P 点的轨迹为以A ,B 为焦点,长轴长为4的椭圆,设椭圆方程为2222:1x y a b +=,则241a c =⎧⎨=⎩,∴2a b =⎧⎪⎨=⎪⎩曲线C 的方程为22143x y +=.(Ⅱ)设0(P x ,0)y ,由题知直线1l 的方程为00:143x x y y+=, 当01x ≠时,001PB y k x =-,2l ∴的斜率为0201x k y -=,0201:(1)x l y x y -=-,1l 与2l 的方程联立00001(1)143x y x y x x y y -⎧=-⎪⎪⎨⎪+=⎪⎩,消y 得000034(1)(1)120(4)4(4)x x x x x x x +---=⇒-=-, 4x ∴=.动点Q 在定直线4x =上, 当01x =时,032y =±,1:142x yl ±=, 2:0l y =,(4,0)Q ,Q 在直线4x =.综上所述,动点Q 在定直线4x =上.变式2.下面是某同学在学段总结中对圆锥曲线切线问题的总结和探索,现邀请你一起合作学习,请你思考后,将答案补充完整.(1)圆222:O x y r +=上点0(M x ,0)y 处的切线方程为 .理由如下: .(2)椭圆22221(0)x y a b a b+=>>上一点0(x ,0)y 处的切线方程为 ;(3)(,)P m n 是椭圆22:13x L y +=外一点,过点P 作椭圆的两条切线,切点分别为A ,B ,如图,则直线AB的方程是 .这是因为在1(A x ,1)y ,2(B x ,2)y 两点处,椭圆L 的切线方程为1113x xy y +=和2213x x y y +=.两切线都过P 点,所以得到了1113x m y n +=和2213x my n +=,由这两个“同构方程”得到了直线AB 的方程;(4)问题(3)中两切线PA ,PB 斜率都存在时,设它们方程的统一表达式为()y n k x m -=-,由22()33y n k x m x y -=-⎧⎨+=⎩,得222(13)6()3()30k x k n km x n km ++-+--=, 化简得△0=得222(3)210m x mnk n -++-=.若PA PB ⊥,则由这个方程可知P 点一定在一个圆上,这个圆的方程为 . (5)抛物线22(0)y px p =>上一点0(x ,0)y 处的切线方程为00()y y p x x =+;(6)抛物线2:4C x y =,过焦点F 的直线l 与抛物线相交于A ,B 两点,分别过点A ,B 作抛物线的两条切线1l 和2l ,设1(A x ,1)y ,2(B x ,2)y ,则直线1l 的方程为112()x x y y =+.直线2l 的方程为222()x x y y =+,设1l 和2l 相交于点M .则①点M 在以线段AB 为直径的圆上;②点M 在抛物线C 的准线上. 【解析】解:(1)圆222:O x y r +=上点0(M x ,0)y 处的切线方程为200y y x x r +=. 理由如下:①若切线的斜率存在,设切线的斜率为k ,则001OM OM k k y k x⋅=-⎧⎪⎨=⎪⎩,所以0x k y =-, 又过点0(M x ,0)y , 由点斜式可得,0000()x y y x x y -=--, 化简可得,220000y y x x x y +=+, 又22200x y r +=,所以切线的方程为200y y x x r +=; ②若切线的斜率不存在,则(,0)M r ±, 此时切线方程为x r =±.综上所述,圆222:O x y r +=上点0(M x ,0)y 处的切线方程为200y y x x r +=. (3)在1(A x ,1)y ,2(B x ,2)y 两点处,椭圆L 的切线方程为1113x x y y +=和2213x xy y +=, 因为两切线都过P 点(,)m n , 所以得到了1113x m y n +=和2213x my n +=, 由这两个“同构方程”得到了直线AB 的方程为13mxny +=; (4)问题(3)中两切线PA ,PB 斜率都存在时,设它们方程的统一表达式为()y n k x m -=-, 由22()33y n k x m x y -=-⎧⎨+=⎩,可得222(13)6()3()30k x k n km x n km ++-+--=, 由△0=,可得222(3)210(*)m k mnk n -++-=, 因为PA PB ⊥, 则1PA PB k k ⋅=-,所以(*)式中关于k 的二次方程有两个解且其乘积为1-,则2122113n k k m-⋅==--, 可得224m n +=,所以圆的半径为2,且过原点,其方程为224x y +=. 故答案为:(1)200y y x x r +=,理由见解析; (3)13mxny +=; (4)224x y +=.题型二:切点弦过定点问题例4.定义:若点0(P x ,0)y 在椭圆22221(0)x y a b a b +=>>上,则以P 为切点的切线方程为:00221x x y ya b+=.已知椭圆22:132x y C +=,点M 为直线260x y --=上一个动点,过点M 作椭圆C 的两条切线MA ,MB ,切点分别为A ,B ,则直线AB 恒过定点( ) A .11(,)23-B .11(,)23-C .12(,)23-D .12(,)23-【解析】解:因为M 在直线260x y --=上,则可设点M 的坐标为(26,)t t +,t R ∈, 设1(A x ,1)y ,2(B x ,2)y ,所以直线MA ,MB 的方程分别为: 11221,13232x x y y x x y y +=+=,显然点M 的坐标适合两个方程, 代入可得:1122(26)132(26)132x t y tx t y t +⎧+=⎪⎪⎨+⎪+=⎪⎩,则直线AB 的方程为:(26)132x t yt++=,即2(26)360t x yt ++-=, 即(43)612x y t x +=-,令4306120x y x +=⎧⎨-=⎩,解得12,23x y ==-,所以直线AB 过定点12(,)23-,故选:C .例5.已知经过圆2221:C x y r +=上点0(x ,0)y 的切线方程是200x x y y r +=.(1)类比上述性质,直接写出经过椭圆22222:1(0)x y C a b a b+=>>上一点0(x ,0)y 的切线方程;(2)已知椭圆22:16x E y +=,P 为直线3x =上的动点,过P 作椭圆E 的两条切线,切点分别为A 、B ,①求证:直线AB 过定点. ②当点P 到直线AB时,求三角形PAB 的外接圆方程. 【解析】解:(1)切线方程为:00221x x y ya b+=. (2)设切点为1(A x ,2)y ,2(B x ,2)y ,点(3,)P t ,由(1)的结论的AP 直线方程:1116x x y y +=,BP 直线方程:2216x xy y +=, 通过点(3,)P t ,∴有1122316316x y t x y t ⨯⎧+⨯=⎪⎪⎨⨯⎪+⨯=⎪⎩,A ∴,B 满足方程:12x ty +=,∴直线AB 恒过点:1020xy ⎧-=⎪⎨⎪=⎩即直线AB 恒过点(2,0).又已知点(3,)P t 到直线AB.∴22|354t t t-=+ 425410t t ⇒--=,22(51)(1)0t t +-=,1t ∴=±.当1t =时,点(3,1)P ,直线AB 的方程为:220x y +-=. 2222066x y x y +-=⎧⎨+=⎩求得交点121(0,1),(,),(3,1)55A B P -. 设PAB ∆的外接圆方程为:220x y Dx Ey F ++++=,代入得131012529E F D E F D E F +=-⎧⎪++=-⎨⎪-+=-⎩,解得:PAB ∆的外接圆方程为223210x y x y +--+= 即PAB ∆的外接圆方程为:2239()(1)24x y -+-=.例6.已知抛物线2:2C x py =的焦点为F ,抛物线上一点(A m ,2)(0)m >到F 的距离为3. (1)求抛物线C 的方程和点A 的坐标;(2)设直线l 与抛物线C 交于D ,E 两点,抛物线C 在点D ,E 处的切线分别为1l ,2l ,若直线1l 与2l 的交点恰好在直线2y =-上,证明:直线l 恒过定点. 【解析】(1)解:由题意知232p +=,得2p =,所以抛物线C 的方程为24x y =. 将点(A m ,2)(0)m >代入24xy =,得m =,所以点A 的坐标为.(2)证明:设221212(,),(,)44x x D x E x ,由题意知.直线l 的斜率存在,设直线l 的方程为y kx n =+, 联立方程24y kx nx y=+⎧⎨=⎩,得2440x kx n --=,所以△216160k n =+>,124x x k +=,124x x n =-,24x y =,即24x y =, 则2xy '=,所以抛物线C 在点D 处的切线1l 的方程为2111()24x x y x x =-+,化简得21124x x y x =-,同理直线2l 的方程为22224x x y x =-,联立方程2112222424x x y x x x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得121224x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩. 又因为直线1l 与2l 的交点恰好在直线2y =-上,所以1224x x =-,即128x x =-. 所以1248x x n =-=-.解得2n =.故直线l 的方程为2y kx =+,所以直线l 恒过定点(0,2).题型三:利用切点弦结论解决定值问题例7.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为(1,0)F,且点P 在椭圆C 上,O 为坐标原点(1)求椭圆C 的标准方程(2)过椭圆22122:153x y C a b +=-上异于其顶点的任一点Q ,作圆224:3O x y +=的切线,切点分别为M ,(N M ,N 不在坐标轴上),若直线MN 的横纵截距分别为m ,n ,求证:22113m n+为定值 【解析】解:(1)由题意得:1c =,所以221a b =+,又因为点P 在椭圆C 上,所以223314a b+=, 可解得24a =,23b =,所以椭圆标准方程为22143x y +=.(2)证明:由题意:2213:144x y C +=,设点1(Q x ,1)y ,2(M x ,2)y ,3(N x ,3)y ,因为M ,N 不在坐标轴上,所以1QM OMk k =-,直线QM 的方程为2222()x y y x x y -=-, 化简得:2243x x y y +=,① 同理可得直线QN 的方程为3343x x y y +=,② 把Q 点的坐标代入①、②得212131314343x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以直线MN 的方程为1143x x y y +=---------------③, 令0y =,得143m x =,令0x =得143n y =,所以143x m=,143y n =,又点Q 在椭圆1C 上,所以2244()3()433m n+=, 即22113m n+为定值. 例8.已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,且右焦点2F 的坐标为(1,0),点P 在椭圆C 上,O 为坐标原点. (1)求椭圆C 的标准方程;(2)若过点2F 的直线l 与椭圆C 交于A ,B两点,且||AB =l 的方程; (3)过椭圆C 上异于其顶点的任一点Q ,作圆22:1O x y +=的两条切线,切点分别为M ,(N M ,N 不在坐标轴上),若直线MN 在x 轴、y 轴上的截距分别为m 、n ,那么2212m n +是否为定值?若是,求出此定值;若不是,请说明理由.【解析】解:(1)椭圆C 的右焦点2F 的坐标为(1,0),∴椭圆C 的左焦点1F 的坐标为(1,0)-,由椭圆的定义得12||||2PF PF a +=,2a ∴=a ∴=,22a =由题意可得1c =,即2221b a c =-=,即椭圆C 的方程为2212x y +=;(2)直线l 与椭圆C 的两个交点坐标为1(A x ,1)y ,2(B x ,2)y , ①当直线l 垂直x轴时,易得||AB = ②当直线l 不垂直x 轴时,设直线:(1)l y k x =-联立2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩,消y 得,2222(12)4220k x k x k +-+-=,①则2122421k x x k +=+,21222221k x x k -=+,222222222121222224228(1)||(1)[()4](1)[()24]2121(21)k k k AB k x x x x k k k k -+∴=++-=+-⨯==+++,解得1k =±,∴直线方程l 的方程为10x y --=或10x y +-=(Ⅲ)设点0(Q x ,0)y ,3(M x ,3)y ,4(N x ,4)y ,连接OM ,ON , 0M MQ ⊥,ON NQ ⊥,M ,N 不在坐标轴上,303M y k x ∴=,404N y k x =-, ∴直线MQ 的方程为3333()y y y x x x -=-,即331xx yy +=,⋯① 同理直线NQ 的方程为441xx yy +=,⋯②, 将点Q 代入①②,得0303040411x x y y x x y y +=⎧⎨+=⎩,显然3(M x ,3)y ,4(N x ,4)y 满足方程001xx yy +=,∴直线MN 的方程为001xx yy +=,分别令0x =,0y =,得到01n x =,01m y =. 01y m ∴=,01x n=, 0(Q x ,0)y 满足2212x y +=;∴221112m n+=,即22122m n +=题型四:利用切点弦结论解决最值问题例9.已知抛物线22x py =上一点0(M x ,1)到其焦点F 的距离为2. (1)求抛物线的方程;(2)如图,过直线:2l y =-上一点A 作抛物线的两条切线AP ,AQ ,切点分别为P ,Q ,且直线PQ 与y 轴交于点N .设直线AP ,AQ 与x 轴的交点分别为B ,C ,求四边形ABNC 面积的最小值.【解析】解:(1)由||122pMF =+=,得2p =, 所以抛物线的方程为24x y =. (2)设1(P x ,1)y ,2(Q x ,2)y , 由12y x '=可得在P 处的切线方程为2111()42x x y x x -=-,整理可得112()x x y y =+,同理在Q 处的切线方程为222()x x y y =+,又因为两切线都过(,2)A t -,∴11222(2)2(2)tx y tx y =-⎧⎨=-⎩,即可得直线PQ 的方程为2(2)tx y =-,所以直线过点(0,2),即(0,2)N , 又1(2x B ,0),2(2xC ,0), ∴四边形ABNC 的面积122||||ABC NBC S S S BC x x ∆∆=+==-,联立122()4tx y y x y =+⎧⎨=⎩,可得2280x tx --=,122x x t ∴+=,128x x =-所以12||3242S x x =-.(当0t =时取等号),∴四边形ABNC 面积的最小值为例10.已知(,1)T m 为抛物线2:2(0)C x py p =>上一点,F 是抛物线C 的焦点,且||2TF =. (1)求抛物线C 的方程;(2)过圆22:(2)1E x y ++=上任意一点G ,作抛物线C 的两条切线1l ,2l ,与抛物线相切于点M ,N ,与x 轴分别交于点A ,B ,求四边形ABNM 面积的最大值.【解析】解:(1)||2TF =,由抛物线定义知,122p +=,2p ∴=,24x y ∴=. (2)设1(M x ,1)y ,2(N x ,2)y ,0(G x ,0)y ,0[3y ∈-,1]-, 切线11:2()AM x x y y =+,因此:11122A y x x x ==, 切线22:2()AN x x y y =+,因此:22222B y x x x ==, 另一方面,点0(G x ,0)y 在两切线上,从而满足:011020202()2()x x y y x x y y =+⎧⎨=+⎩,因此切点弦MN 的方程为:002()x x y y =+,直线MN 与抛物线24x y =进行方程联立:200240x x x y -+=, 从而1202x x x +=,1204x x y =,且||MN ==, ABMN GMN GAB S S S ∆∆=-212011||||2222x x y =⋅-33222220001200111[(4)||](4)242x y y x x x y =---=-2200000(4)(73)x y y y y =-+=---, 当0[3y ∈-,1]-1323=, 2200073773[()]924y y y ---=-++,∴93ABMN S ,当且仅当03y =-时,取到最大值.题型五:利用切点弦结论解决范围问题例11.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为6,C 上一点M 关于原点O 的对称点为N ,F 为C 的右焦点,若MF NF ⊥,设MNF α∠=,且3sin()44πα+=.(1)求椭圆C 的标准方程;(2)经过圆22:10O x y+=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,求AOB ∆面积的取值范围.【解析】解:(1)由26a =,即3a =,又22122cos 2sin )4c c e a c c πααα====++所以c =2221b a c =-=,则椭圆的方程为2219x y +=;(2)设1(A x ,1)y ,2(B x ,2)y , 则直线PA 的方程为1119x x y y +=,直线PB 的方程为2219x xy y +=, 因为0(P x ,0)y 在直线PA ,PB 上, 所以101019x x y y +=,202019x x y y +=,所以直线AB 的方程为0019x xy y +=, 由00221999x xy y x y ⎧+=⎪⎨⎪+=⎩消去y ,结合220010x y +=,和220010x y =-,可得22200(810)1881810y x x x y +-+-=, △242018(8)y y =+,120|||AB x x -=0=202018108y y +=+,又点O 到直线AB的距离为d ==,2020018119||922108y S AB d y +=⋅=⋅=+,又2010y,记[1t ,9],所以9[6t t +∈,10], 所以9[10S ∈,3]2.例12.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点1(F 0),点Q 在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)经过圆22:5O x y +=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点. (ⅰ)求证:0OM ON +=; (ⅱ)求OAB ∆的面积的取值范围.【解析】解:(Ⅰ)由题意可得c =221314a b+=,222a b c =+,解得24a =,21b =, 所以椭圆的方程为:2214x y +=;(Ⅱ)()i 证明:设0(P x ,0)y ,①当直线PA ,PB 的斜率都存在时,设过P 与椭圆相切的直线方程为00()y k x x y =-+, 联立直线与椭圆的方程0022()440y k x x y x y =-+⎧⎨+-=⎩, 整理可得2220000(14)8()4()40k x k y kx x y kx ++-+--=,△2222000064()4(14)[4()4]k y kx k y kx =--+--,由题意可得△0=,整理可得222000(4)210x k x y k y -++-=, 设直线PA ,PB 的斜率分别为1k ,2k ,所以20122014y k k x -=-,又2205x y +=,所以220022001(5)4144x x x x ---==---, 所以PM PN ⊥,即MN 为圆O 的直径,所以0OM ON +=; ②当直线PA 或PB 的斜率不存在时,不妨设(2,1)P , 则直线PA 的方程为2x =,所以(2,1)M -,(2,1)N -,也满足0OM ON +=; ()ii 设点1(A x ,1)y ,2(B x ,2)y ,当直线PA 的斜率存在时,设直线PA 的方程为:111()y k x x y =-+,联立直线PA 与椭圆的方程11122()440y k x x y x y =-+⎧⎨+-=⎩,消y 可得2221111111(14)8()4()40k x k y k x x y k x ++-+--=,△22221111111164()4(14)[4()4]k y k x k y k x =--+--, 由题意△0=,整理可得222111111(4)210x k x y k y -++-=, 则11111122111444x y x y x k x y y -=-==--, 所以直线PA 的方程为:1111()4x y x x y y =--+, 化简可得22111144x x y y y x +=+, 即1114x xy y +=, 经验证,当直线PA 的斜率不存在时,直线PA 的方程为2x =或2x =-也满足1114x xy y +=,同理可得直线PB 的方程2214x xy y +=, 因为0(P x ,0)y 在直线PA ,PB 上,所以101020201414x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以可得直线AB 的方程为0014x x y y +=,而P 在圆225x y +=上,所以22005x y +=, 联立直线AB 与椭圆的方程为00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,整理可得22200(35)816160y x x x y +-+-=, 020853A B x x x y +=+,2020161653A B y x x y -=+, 所以O 到直线AB的距离d =,弦长0|||A B AB x x - 又点O 到直线AB的距离d ==,令t ,[1t ∈,4],则2144||424OAB t S d AB t t t∆=⋅==++,而4[4t t+∈,5],所以OAB ∆的面积的取值范围是4[5,1].例13.椭圆2222:1(0)x y C a b a b+=>>的两焦点分别为1F ,2F ,椭圆与y轴正半轴交于点Q ,122QF F S =.(1)求曲线C 的方程;(2)过椭圆C 上一动点P (不在x 轴上)作圆22:1O x y +=的两条切线PC 、PD ,切点分别为C 、D ,直线CD 与椭圆C 交于E 、G 两点,O 为坐标原点,求OEG ∆的面积S 的取值范围.【解析】解:(1)椭圆与y轴正半轴交于点Q ,122QF F S=.可得121222QF F b Sc b bc ==⨯⨯==,∴2c a ==, ∴椭圆方程为22142x y +=.(2)设0(P x ,0)y ,线段OP 的中点为00(,)22x y ,22222000001,2(1)24242x y x x y +==-=-,2004x <, 以OP以OP 为直径的圆的方程为22220000()()224x y x y x y +-+-=,即00()()0x x x y y y -+-=,又圆22:1O x y +=, 两式相减00:1CD x x y y +=,由0022124x x y y x y +=⎧⎨+=⎩,消去y 并化简得22220000(2)4240x y x x x y +-+-=, ∴22222220000000164(2)(24)8(412)x x y y y x y =-+-=-+22222000008[41(4)]24(1)y x x y x =-+-=+,0000||EG ==O EG d -=∴200000001||2222S EG d x =⋅====+-=由于2004x <,所以20115x +<,2011x +<对于函数211()3(15),()30h t t t h t tt '=+<=->,()h t在上递增.(1)4,h h ===所以20431x +<1114<,62<,∴62S <.S ∈. 变式3.已知椭圆22122:1(0)x y C a b a b+=>>的两个焦点1F ,2F ,动点P 在椭圆上,且使得01290F PF ∠=的点P 恰有两个,动点P 到焦点1F的距离的最大值为2+(1)求椭圆1C 的方程;(2)如图,以椭圆1C 的长轴为直径作圆2C ,过直线x =-T 作圆2C 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求||ABCD的取值范围.【解析】解:(1)动点P 在椭圆上,且使得01290F PF ∠=的点P 恰有两个,b c ∴=, 动点P 到焦点1F 的距离的最大值为2+∴2a c +=+可得2a =,b c =所以椭圆1C 的方程为:22142x y +=;(2)圆2C 的方程为224x y +=,设直线x =-T 的坐标为)t ,设1(A x ,1)y ,2(B x ,2)y ,则直线AT 的方程为114x x y y +=,直线BT 的方程为224x x y y +=,又)T t 在直线AT 和BT上,即112244ty ty ⎧-+=⎪⎨-+=⎪⎩,故直线AB 的方程为4ty -+=.由原点O 到直线AB的距离d =得||AB =联立224142ty x y ⎧-+=⎪⎨+=⎪⎩,消去x 得22(16)8160t y yt +--=,设3(C x ,3)y ,4(D x,4)y ,则343422816,1616t y y y y t t -+==++,从而222(8)16t CD t +==+记28(8)t m m +=,则||AB CD =11(0)8y y m =<,则||AB CD =11(0)8y y m =<,所以||AB CD3()112256f y y y =+-, 所以由2()127680f y y y '=-=得18y =, 所以3()112256f y y y =+-在1(0,]8上单调递增,()(1f y ∴∈,2]即||ABCD∈. 变式4.已知椭圆22122:1(0)x y C a b a b+=>>的两个焦点1F ,2F ,动点P 在椭圆上,且使得1290F PF ∠=︒的点P 恰有两个,动点P 到焦点1F 的距离的最大值为2+(Ⅰ)求椭圆1C 的方程;(Ⅱ)如图,以椭圆1C 的长轴为直径作圆2C ,过直线x =-T 作圆2C 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求弦||CD 长的取值范围.【解析】解:()I 由使得1290F PF ∠=︒的点P 恰有两个可得,b c a ==;动点P 到焦点1F 的距离的最大值为2+2a c +=2,a c ==所以椭圆1C 的方程是22142x y +=⋯(4分)()II 圆2C 的方程为224x y +=,设直线x =-T 的坐标为()t -设1(A x ,1)y ,2(B x ,2)y ,则直线AT的方程为114x x y y+=,直线BT的方程为224x x y y+=,又()t-在直线AT和BT上,即112244tyty⎧-+=⎪⎨-+=⎪⎩,故直线AB的方程为4ty-+=⋯(6分)联立224142tyx y⎧-+=⎪⎨+=⎪⎩,消去x得22(16)8160t y yt+--=,设3(C x,3)y,4(D x,4)y.则343422816,1616ty y y yt t-+==++,⋯(8分)从而21224(8)|||(16)tCD y yt+=-=⋯+(10分)232416t-=++,又21616t +,从而2322016t--<+,所以||[2CD∈,4)⋯(12分)变式5.已知椭圆22122:1(0)x yC a ba b+=>>的离心率为12,且直线1:1x yla b+=被椭圆1C截得的弦长为.()I求椭圆1C的方程;()II以椭圆1C的长轴为直径作圆2C,过直线2:4l y=上的动点M作圆2C的两条切线,设切点为A,B,若直线AB与椭圆1C 交于不同的两点C,D,求||||CD AB的取值范围.【解析】解:()I线1:1x yla b+=,经过点(,0)a,(0,)b,被椭圆1C227a b+=.又12ca=,222a b c=+,解得:24a=,23b=,1c=.∴椭圆1C的方程为22143x y+=.()II由()I可得:圆2C的方程为:224x y+=.设(2,4)M t,则以OM为直径的圆的方程为:222()(2)4x t y t-+-=+.与224x y+=联立可得:直线AB的方程为:2440tx y+-=,设1(C x,1)y,2(D x,2)y,联立222440143tx yx y+-=⎧⎪⎨+=⎪⎩,化为:22(3)480t x tx+--=,则12243tx xt+=+,12283x xt-=+,2236||43tCDt+==+.又圆心O到直线AB的距离d==||AB∴===,22222364||||243t tAB CD tt t+∴=+⨯=+令233t m+=,则||||8AB CD=3m,可得3233m-<,可得:2||||83AB CD<变式6.如图,已知点P在半圆22:(2)4(2)Q x y y++=-上一点,过点P作抛物线2:2(0)C x py p=>的两条切线,切点分别为A,B,直线AP,BP,AB分别与x轴交于点M,N,T,记TNB∆的面积为1S,TMA∆的面积为2S.(Ⅰ)若抛物线C的焦点坐标为(0,2),求p的值和抛物线C的准线方程;(Ⅱ)若存在点P,使得128SS=,求p的取值范围.【解析】解:(Ⅰ)22p=,4p=.准线方程为直线2y=-.(Ⅱ)设1(A x,1)y,2(B x,2)y,过点A的切线方程11:()Al x x p y y=+,于是1(,0)2xM;过点B的切线方程22:()Bl x x p y y=+,于是2(,0)2xN;点(P x,)y在两条切线上,所以10012002()()x x p y yx x p y y=+⎧⎨=+⎩,可得点P坐标为1212(,)22x x x xPp+.1212:()22ABx x x xl x p yp+=+,于是12112112121212()(,0).||||||22()x x x x x x x xT TMx x x x x x-=-=+++,2222121212()||||||22()x x x x x x TN x x x x -=-=++, 而23122111||||2||81||||2TN y S x S x TM y ⋅===⋅,所以212x x =-. 于是点211(,)2x x P p --,点P 的轨迹方程为24px y =-,问题转化为抛物线24p x y =-与半圆22:(2)4(2)Q x y y ++=-有交点. 记24()f x x p =-,则4(2)42f p=-⨯-,又因为0p >, 解得:08p <.所以p 的取值范围为(0,8].变式7.如图,设抛物线2:4C y x =的焦点为F ,点P 是半椭圆221(0)4y x x +=<上的一点,过点P 作抛物线C 的两条切线,切点分别为A 、B ,且直线PA 、PB 分别交y 轴于点M 、N . (Ⅰ)证明:FM PA ⊥; (Ⅱ)求||||FM FN ⋅的取值范围.【解析】解:(Ⅰ)设点P 的坐标为0(x ,0)y ,直线PA 方程为00()(0)x m y y x m =-+≠.令0x =,可知点M 的坐标为00(0,)x y m-. 由,消去x 得2004440y my my mx -+-=. 因为直线与抛物线只有一个交点, 故△0=,即2000m y m x -+=. 因为点F 的坐标为(1,0), 故00(1,)x FM y m =--,00(,)xPM x m=--.则20002()0x FM PM m y m x m⋅=-+=. 因此FM PM ⊥,亦即FM PA ⊥.(Ⅱ)设直线PB 的方程为00()(0)x n y y x n =-+≠. 由(1)可知,n 满足方程2000n y n x -+=.故m ,n 是关于t 的方程2000t y t x -+=的两个不同的实根. 所以.由(1)可知:FM PA ⊥,同理可得FN PB ⊥. 故||FM ||FN =.则||||FM FN ⋅= 因为22001(0)4y x x +=<.因此,||||FM FN ⋅的取值范围是.。
导数中八大切线问题题型总结【考点预测】1.在点的切线方程切线方程y-f(x0)=f (x0)(x-x0)的计算:函数y=f(x)在点A(x0,f(x0))处的切线方程为y-f(x0)=f(x0)(x-x0),抓住关键y0=f(x0) k=f (x0) .2.过点的切线方程设切点为P(x0,y0),则斜率k=f (x0),过切点的切线方程为:y-y0=f (x0)(x-x0),又因为切线方程过点A(m,n),所以n-y0=f (x0)(m-x0)然后解出x0的值.(x0有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型目录】题型一:导数与切线斜率的关系题型二:在点P处切线(此类题目点P即为切点)题型三:过点P的切线(此类题目点P不一定为切点,需要设切点为x0,y0)题型四:已知切线求参数问题题型五:切线的条数问题(判断切线条数以及由切线条数求范围)题型六:公切线问题题型七:切线平行、垂直、重合问题题型八:与切线相关的最值问题【典例例题】题型一:导数与切线斜率的关系【例1】(2022·全国·高三专题练习(文))函数y=f(x)的图像如图所示,下列不等关系正确的是( )A.0<f (2)<f (3)<f(3)-f(2)B.0<f (2)<f(3)-f(2)<f (3)C.0<f (3)<f(3)-f(2)<f (2)D.0<f(3)-f(2)<f (2)<f (3)【例2】函数y=f x 的图象如图所示,f′x 是函数f x 的导函数,则下列大小关系正确的是( )A.2f′4 <f4 -f2 <2f′2B.2f′2 <f4 -f2 <2f′4C.2f′4 <2f′2 <f4 -f2D.f4 -f2 <2f′4 <2f′2【题型专练】1.(2021·福建·泉州鲤城北大培文学校高三期中)(多选题)已知函数f x 的图象如图所示,f x 是f x 的导函数,则下列数值的排序正确的是()A.f 3 <f 2B.f 3 <f 3 -f 2C.f 2 <f 3 -f 2D.f 3 -f 2 <02.(2022·黑龙江齐齐哈尔·高二期末)函数y =f x 的图象如图所示,f x 是函数f x 的导函数,则下列数值排序正确的是( )A.2f 3 <f 5 -f 3 <2f 5B.2f 3 <2f 5 <f 5 -f 3C.f 5 -f 3 <2f 3 <2f 5D.2f 3 <2f 5 <f 5 -f 3题型二:在点P 处切线(此类题目点P 即为切点)【例1】【2019年新课标3卷理科】已知曲线y =ae x +x ln x 在点1,ae 处的切线方程为y =2x +b ,则A.a =e ,b =-1B.a =e ,b =1C.a =e -1,b =1D.a =e -1,b =-1【例2】(2022·全国·高三专题练习(文))已知函数f (x )是定义在R 上的奇函数,且f (x )=-2x 3+3ax 2-f (1)x ,则函数f (x )的图象在点(-2,f (-2))处的切线的斜率为( )A.-21B.-27C.-24D.-25【例3】(2022·河南省浚县第一中学模拟预测(理))曲线y =x ln (2x +5)在x =-2处的切线方程为( )A.4x -y +8=0B.4x +y +8=0C.3x -y +6=0D.3x +y +6=0【例4】过函数f (x )=12e 2x-x 图像上一个动点作函数的切线,则切线领斜角范围为( )A.0,3π4B.0,π2∪3π4,π C.3π4,π D.π2,3π4【例5】(2022·安徽·巢湖市第一中学模拟预测(文))曲线y =2x +ax +2在点1,b 处的切线方程为kx -y +6=0,则k 的值为( )A.-1B.-23C.12D.1【例6】(2022·江西·丰城九中高二期末(理))已知函数f x =f 2 3x 2−x ,x >0g x ,x <0图像关于原点对称,则f (x )在x=-1处的切线方程为( )A.3x-y+2=0B.3x-y-2=0C.3x+y+4=0D.3x+y-4=0【题型专练】1.【2018年新课标1卷理科】设函数f x =x3+a-1x2+ax.若f x 为奇函数,则曲线y=f x 在点0,0处的切线方程为( )A.y=-2xB.y=-xC.y=2xD.y=x2.【2021年甲卷理科】曲线y=2x-1x+2在点-1,-3处的切线方程为__________.3.【2019年新课标1卷理科】曲线y=3(x2+x)e x在点(0,0)处的切线方程为___________.4.【2018年新课标2卷理科】曲线y=2ln(x+1)在点(0,0)处的切线方程为__________.5.【2018年新课标3卷理科】曲线y=ax+1e x在点0,1处的切线的斜率为-2,则a=________.题型三:过点P的切线(此类题目点P不一定为切点,需要设切点为x0,y0)【例1】【2022年新高考2卷】曲线y=ln|x|过坐标原点的两条切线的方程为____________,_____ _______.【例2】(2022·四川·广安二中二模(文))函数f x =x2e x过点0,0的切线方程为( )A.y=0B.ex+y=0C.y=0或x+ey=0D.y=0或ex+y=0【例3】(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点12,0的直线与函数f(x)=xe x的图象相切,则所有可能的切点横坐标之和为( )A.e+1B.-12C.1D.12【例4】(2022·广东·佛山市南海区九江中学高二阶段练习)直线y=12x-b与曲线y=-12x+ln x相切,则b的值为( )A.2B.-2C.-1D.1【题型专练】1.(2022·陕西安康·高三期末(文))曲线y=2x ln x+3过点-12,0的切线方程是( )A.2x+y+1=0B.2x-y+1=0C.2x+4y+1=0D.2x-4y+1=02.(2022·广东茂名·二模)过坐标原点作曲线y=ln x的切线,则切点的纵坐标为( )A.eB.1C.1eD.1e3.过点(0,-1)作曲线f(x)=x ln x的切线,则切线方程为()A.x+y+1=0B.x-y-1=0C.x+2y+2=0D.2x-y-1=04.已知f (x )=x 2,则过点P (-1,0)且与曲线y =f (x )相切的直线方程为( )A.y =0B.4x +y +4=0C.y =0或4x +y +4=0D.y =0或4x -y +4=0题型四:已知切线求参数问题【例1】(2022·湖南·模拟预测)已知P 是曲线C :y =ln x +x 2+3-a x 上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若π3≤θ<π2,则实数a 的取值范围是( )A.23,0B.22,0C.-∞,23D.-∞,22【例2】(2022·广东·石门高级中学高二阶段练习)若直线y =kx +1-ln2是曲线y =ln x +2的切线,则k =________.【例3】(2022·陕西·千阳县中学高三阶段练习(文))已知曲线y =ae x +x ln x 在点1,ae 处的切线方程为y =2x +b ,则b =_____【例4】(2022·江苏苏州·模拟预测)已知奇函数f x =x 2-2x ax +b a ≠0 在点a ,f a 处的切线方程为y =f a ,则b =( )A.-1或1B.-233或233C.-2或2D.-433或433【题型专练】1.(2022·云南·丽江市教育科学研究所高二期末)已知曲线f (x )=(x +a )e x 在点(-1,f (-1))处的切线与直线2x +y -1=0垂直,则实数a 的值为_________.2.(2022·云南昆明·模拟预测(文))若函数f x =a x +ln x 的图象在x =4处的切线方程为y =x +b ,则( )A.a =3,b =2+ln4B.a =3,b =-2+ln4C.a =32,b =-1+ln4D.a =32,b =1+ln43.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线C 1:y =x 1+ln x 和圆C 2:x 2+y 2-6x +n =0均相切,则n =( )A.-4B.-1C.1D.4题型五:切线的条数问题(判断切线条数以及由切线条数求范围)【例1】(2022·河南洛阳·三模(文))若过点P 1,0 作曲线y =x 3的切线,则这样的切线共有( )A.0条B.1条C.2条D.3条【例2】(2022·全国·高三专题练习)若过点(a ,b )可以作曲线y =ln x 的两条切线,则( )A.a <ln bB.b <ln aC.ln b <aD.ln a <b【例3】【2021年新高考1卷】若过点a ,b 可以作曲线y =e x 的两条切线,则( )A.e b <aB.e a <bC.0<a <e bD.0<b <e a【例4】(2022·河南洛阳·三模(理))若过点P 1,t 可作出曲线y =x 3的三条切线,则实数t 的取值范围是( )A.-∞,1B.0,+∞C.0,1D.0,1【例5】(2022·河北·高三阶段练习)若过点P (1,m )可以作三条直线与曲线C :y =xe x相切,则m 的取值范围为( )A.-∞,3e 2B.0,1eC.(-∞,0)D.1e ,3e 2【例6】(2022·黑龙江·哈尔滨市第六中学校高二期末)过直线y =x -1上一点P 可以作曲线f x =x -ln x 的两条切线,则点P 横坐标t 的取值范围为( )A.0<t <1B.1<t <eC.0<t <eD.1e<t <1【题型专练】1.(2022·内蒙古呼和浩特·二模(理))若过点P -1,m 可以作三条直线与曲线C :y =xe x 相切,则m 的取值范围是( )A.-3e 2,+∞ B.-1e,0 C.-1e ,-1e2 D.-3e2,-1e 2.(2022·广东深圳·二模)已知a >0,若过点(a ,b )可以作曲线y =x 3的三条切线,则( )A.b <0B.0<b <a 3C.b >a 3D.b b -a 3 =03.(2022·安徽·安庆市第二中学高二期末)若过点a ,b a >0 可以作曲线y =xe x 的三条切线,则()A.0<a <be bB.-ae a <b <0C.0<ae 2<b +4D.-a +4 <be 2<04.(2022·山东枣庄·高二期末)已知函数f x =x +1 e x ,过点M (1,t )可作3条与曲线y =f x 相切的直线,则实数t 的取值范围是( )A.-4e 2,0B.-4e 2,2eC.-6e 3,2e D.-6e 3,05.(2022·山东潍坊·三模)过点P 1,m m ∈R 有n 条直线与函数f x =xe x 的图像相切,当n 取最大值时,m 的取值范围为( )A.-5e 2<m <e B.-5e 2<m <0 C.-1e<m <0 D.m <e题型六:公切线问题【例1】(2023届贵州省遵义市新高考协作体)高三上学期入学质量监测数学(理)试题)若直线y =kx +b 是曲线y =e x +1的切线,也是y =e x +2的切线,则k =( )A.ln2B.-ln2C.2D.-2【例2】(2022·全国·高三专题练习)若函数f x =ln x 与函数g (x )=x 2+x +a (x <0)有公切线,则实数a 的取值范围是( )A.ln12e,+∞ B.-1,+∞C.1,+∞D.ln2,+∞【例3】(2022·河北石家庄·高二期末)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值可能是( )A.1.2B.4C.5.6D.2e【例4】(2022·全国·高三专题练习)已知曲线C 1:f x =e x +a 和曲线C 2:g x =ln (x +b )+a 2a ,b ∈R ,若存在斜率为1的直线与C 1,C 2同时相切,则b 的取值范围是( )A.-94,+∞B.0,+∞C.-∞,1D.-∞,94【例5】(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( )A.0,2eB.0,eC.2e ,+∞D.e ,2e【例6】(2022·重庆市育才中学高三阶段练习)若直线l :y =kx +b (k >1)为曲线f x =e x -1与曲线g x =e ln x的公切线,则l 的纵截距b =( )A.0B.1C.eD.-e【例7】(2022·河南·南阳中学高三阶段练习(理))若直线y =k 1x +1 -1与曲线y =e x 相切,直线y =k 2x +1 -1与曲线y =ln x 相切,则k 1k 2的值为( )A.12B.1C.eD.e 2【题型专练】1.已知函数f x =x ln x ,g x =ax 2-x .若经过点A 1,0 存在一条直线l 与曲线y =f x 和y =g x 都相切,则a =( )A.-1B.1C.2D.32.【2020年新课标3卷理科】若直线l 与曲线y =x 和x 2+y 2=15都相切,则l 的方程为( )A.y =2x +1B.y =2x +12C.y =12x +1D.y =12x +123.(2022·河北省唐县第一中学高三阶段练习)已知函数f x =a ln x ,g x =be x ,若直线y =kx k >0 与函数f x ,g x 的图象都相切,则a +1b 的最小值为( )A.2B.2eC.e 2D.e4.(2022·全国·高三专题练习)若两曲线y =ln x -1与y =ax 2存在公切线,则正实数a 的取值范围是( )A.0,2eB.12e -3,+∞C.0,12e -3 D.2e ,+∞5.(2022·全国·高三专题练习)若仅存在一条直线与函数f (x )=a ln x (a >0)和g (x )=x 2的图象均相切,则实数a =( )A.eB.eC.2eD.2e6.若曲线y =ln x 与曲线:y =x 2−k 有公切线,则实数k 的最大值为( )A.78+12ln2 B.78-12ln2 C.12+12ln2 D.12+12ln2题型七:切线平行、垂直、重合问题【例1】(2023·全国·高三专题练习)函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是( )A.(-∞,2] B.-∞,2-1e ∪2-1e ,2C.2,+∞D.0,+∞【例2】(2022·安徽·合肥一中模拟预测(文))对于三次函数f (x ),若曲线y =f (x )在点(0,0)处的切线与曲线y=xf (x )在点(1,2)处点的切线重合,则f ′(2)=( )A.-34B.-14C.-4D.14【例3】(2022·全国·高三专题练习)若直线x =a 与两曲线y =e x ,y =ln x 分别交于A ,B 两点,且曲线y =e x 在点A 处的切线为m ,曲线y =ln x 在点B 处的切线为n ,则下列结论:①∃a ∈0,+∞ ,使得m ⎳n ;②当m ⎳n 时,AB 取得最小值;③AB 的最小值为2;④AB 最小值小于52.其中正确的个数是( )A.1 B.2C.3D.4【题型专练】1.(2022·山西太原·二模(理))已知函数f x =a sin x +b cos x +cx 图象上存在两条互相垂直的切线,且a 2+b 2=1,则a +b +c 的最大值为( )A.23B.22C.3D.22.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( )A.12B.1C.32D.23.(2022·全国·高三专题练习)已知函数f (x )=x 2+x +2a (x <0)-1x(x >0)的图象上存在不同的两点A ,B ,使得曲线y =f (x )在这两点处的切线重合,则实数a 的取值范围是( )A.-∞,-18B.-1,18C.(1,+∞)D.(-∞,1)∪18,+∞题型八:与切线相关的最值问题【例1】(2022·全国·高三专题练习)若点P 是曲线y =32x 2-2ln x 上任意一点,则点P 到直线y =x -3的距离的最小值为( )A.724B.332C.2D.5【例2】(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线y =2x -1,曲线y =32x 2-ln x 相交于A ,B 两点,则AB 的最小值为( )A.510B.55C.1D.5【例3】(2022·河南·许昌高中高三开学考试(理))已知函数y =e 2x +1的图象与函数y =ln x +1 +12的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为( )A.2ln22B.2ln24C.24+ln22D.24+ln2【例4】(2022·山东聊城·二模)实数x 1,x 2,y 1,y 2满足:x 21-ln x 1-y 1=0,x 2-y 2-4=0,则x 1-x 2 2+y 1-y 22的最小值为( )A.0B.22C.42D.8【题型专练】1.(2022·山西·高二期末)已知点P 是曲线y =x 2-3ln x 上一点,若点P 到直线2x +2y +3=0的距离最小,则点P 的坐标为___________.2.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y =x -a 与曲线y =ln (x +b )相切,则a 22-b的取值范围是()A.(0,+∞)B.(0,1)C.0,12D.[1,+∞)3.(2022·全国·高三专题练习)曲线y =e 2x 上的点到直线2x -y -4=0的最短距离是( )A.5B.3C.2D.14.(2022·河北衡水·高三阶段练习)已知函数f(x)=ln x x-2x2在x=1处的切线为l,第一象限内的点P(a,b)在切线l上,则1a+1+1b+1的最小值为( )A.2+324 B.3+424 C.4+235 D.3+245.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y=kx+b是曲线y=x+1的切线,则k2+b2 -2b的最小值为( )A.-12B.0C.54D.3。
微专题14 函数的切线问题一、基础知识: (一)与切线相关的定义1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。
这样直线AB 的极限位置就是曲线在点A 的切线。
(1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上(2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。
例如函数3y x =在()1,1--处的切线,与曲线有两个公共点。
(3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点A 处的切线。
对于一个函数,并不能保证在每一个点处均有切线。
例如y x =在()0,0处,通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相同,故y x =在()0,0处不含切线(4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边)2、切线与导数:设函数()y f x =上点()()00,,A x f x ()f x 在A 附近有定义且附近的点()()00,B x x f x x +∆+∆,则割线AB 斜率为:()()()()()000000AB f x x f x f x x f x k x x x x +∆-+∆-==+∆-∆ 当B 无限接近A 时,即x ∆接近于零,∴直线AB 到达极限位置时的斜率表示为:()()000limx f x x f x k x∆→+∆-=∆,即切线斜率,由导数定义可知:()()()'0000limx f x x f x k f x x∆→+∆-==∆。
专题37 过曲线上一点的切线、切点弦【方法点拨】1.圆的切线方程常用结论(1)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.特别地,过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2外一点P (x 0,y 0) 作圆的两条切线,则两切点所在直线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2;特别地,过圆x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 说明:(1)上述公式的记忆方法均可用“抄一代一”,即把平方项其中一个照抄,另一个将变量用已知点的相应坐标代入,将原方程作如下方法替换求出,20x x x →,20y y y →,02x xx +→,02y yy +→). (2)椭圆、抛物线也有类似结论,如过椭圆2222:1x y C a b +=上一点P (x 0,y 0)且与椭圆相切的直线方程是:00221x x y ya b+=,等等,不再赘述.【典型题示例】例1 已知抛物线C :y 2=2x ,过直线上y =x+2上一点P 作抛物线C 的两条切线P A ,PB ,切点分别为A ,B ,则直线AB 恒过定点 . 【答案】(2,1)【解析】设P 点坐标为(x 0,x 0+2) 显然点P 不在抛物线C 上根据切点弦的公式,“抄一代一”得直线AB 的方程为:(x 0+2) y =x 0+x 即(x -2 y )+x 0(1-y ) =0 所以直线AB 恒过定点(2,1).例2 过抛物线C :x 2=2py 上点M 作抛物线D :y 2=4x 的两条切线l 1,l 2,切点分别为P ,Q ,若△MPQ 的重心为G(1,32),则p = .【答案】316【解析一】设11(,)P x y ,22(,)Q x y则l 1,l 2的方程分别是111()2y y x x =+,221()2y y x x =+由11221()21()2y y x x y y x x ⎧=+⎪⎪⎨⎪=+⎪⎩解得,121242y y x y y y ⎧=⎪⎪⎨+⎪=⎪⎩,即1212(,)42y y y y M + 又因为△MPQ 的重心为G(1,32)所以12121212211222413323244y y x x y y y y y x y x ⎧++⎪=⎪⎪+⎪⎪++⎨=⎪⎪⎪=⎪=⎪⎩,解之得121233y y y y =-⎧⎨+=⎩,故33(,)42M - 将33(,)42M -代入x 2=2py 得316p =.【解析二】设200(,)2x M x p则PQ 的方程为2002()2x y x x p=+ 由20022()24x y x x p y x ⎧=+⎪⎨⎪=⎩消x 得220040py x y px -+= 所以2012x y y p +=,1204y y x =(11(,)P x y ,22(,)Q x y )()422012120211844x x x y y x p ⎛⎫+=+=- ⎪⎝⎭又因为△MPQ 的重心为G(1,32)所以400022200184133232x x x p x x p p ⎧⎛⎫-+⎪ ⎪⎝⎭⎪=⎪⎨⎪+⎪=⎪⎩,解之得031634p x ⎧=⎪⎪⎨⎪=-⎪⎩,.例3 已知斜率为k 的直线l 过抛物线C :y 2=2px (p >0)的焦点,且与抛物线C 交于A ,B 两点,抛物线C 的准线上一点M (-1,-1)满足MA ·MB =0,则|AB |= ( ) A. B. C .5 D .6 【答案】C【分析】(一)本题的命题的原点是阿基米德三角形,即从圆锥曲线准线上一点向圆锥曲线引切线,则两个切点与该点所构成的三角形是以该点为直角顶点的直角三角形.(二)将MA ·MB =0直接代入坐标形式,列出关于A ,B 中点坐标的方程,再利用斜率布列一方程,得到关于A ,B 中点坐标的方程组即可.这里需要说明的是,MA ·MB =0转化的方法较多,如利用斜边中线等于斜边一半等,但均不如上法简单. 【解析一】易知p =2,y 2=4x 由阿基米德三角形得AB 为切点弦所以AB 方程是-y =2(x -1),即y =-2 x +2 代入y 2=4x 消y 得:x 2-3x +1=0 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=3 ∴12025AB x x p x p =++=+=,答案选C. 【解析二】易知p =2设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,y 1y 2=-4,11(1,1)MA x y =++,22(1,1)MB x y =++ ∵MA ·MB =0∴1212(1)(1)(1)(1)0x x y y +++++=,化简得12121x x y y +++= 设A 、B 中点坐标为(x 0,y 0),则0012x y += ① 又由直线的斜率公式得12122212121204244AB y y y y k k y y x x y y y --=====-+-,001y k x =-∴00021y y x =-,即2002(1)y x =- ② 由①、②解得032x =∴12025AB x x p x p =++=+=,答案选C.例4 在平面直角坐标系 xoy 中, 已知圆C :(x - 2)2 + (y - 2)2 = 20 与x 轴交于 A 、B (点 A 在点 B 的左侧),圆C 的弦 MN 过点T (3,4),分别过 M 、N 作圆C 的切线,交点为 P ,则线段 AP 的最小值为 .【答案】285 5【分析】设出点P坐标,根据切点弦求出点P轨迹方程,再利用点线距以垂线段最小求解.【解析】设点P坐标为(a,b )则切点弦MN的方程为:(a - 2)(x - 2)+ (b - 2)(y - 2)=20又因为弦MN 过点T(3,4),故(a - 2)(3 - 2)+ (b - 2)(4- 2)=20,即a +2b - 26=0即点P的轨迹方程是x +2y - 26=0点A(-2,0)到该直线的距离为285 5,因为定点到直线上任意一点间的距离中垂线段最小所以点A(-2,0)到该直线的距离2855即为AP 的最小值.例 5 如图,在平面直角坐标系xoy中,直线l与椭圆22:14xC y+=、圆222(12)x y r r+=<<都相切,切点分别是点A、B,则当线段AB长度最大时,圆的半径r的值为.【答案】2【分析】先设出点B坐标,写出直线l的方程,再利用直线与圆相切,圆心到直线的距离等于r ,布列约束等式,最后,利用勾股定理列出AB 关于r 的目标函数,求出最值及取得最值时r 的值.【解析】设点B 坐标为(2cos ,sin )B αα(R α∈)则过点B 的椭圆的切线,即直线l 的方程为:2cos sin 14xy αα+=, 即cos 2sin 20x y αα+-=又因为直线l 与圆222x y r +=r =,且OA AB⊥在Rt OAB 中,222222244cos sin cos 4sin AB OB OA αααα=-=+-+2245[(13sin )]13sin αα=-+++而224(13sin )413sin αα++≥=+,当且仅当sin α=时,“=”成立,此时r ==AB 的最大值为1 所以当线段AB 长度最大时,圆的半径r 的.【巩固训练】1.过点作圆的两条切线,切点分别为,,则直线的方程为( ) A .B .C .D .2. 已知圆22:1C x y +=,直线:20l x y ++=,P 为直线l 上的动点,过点P 作圆C 的两条切线,切点分别为A ,B ,则直线AB 过定点( ) A .11,22⎛⎫-- ⎪⎝⎭B .()1,1--C .11,22⎛⎫-⎪⎝⎭D .11,22⎛⎫-⎪⎝⎭3.在平面直角坐标系xOy 中,已知圆C :22(3)2x y +-=,点A 是x 轴上的一个动点,AP , AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围为 .4.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点⎝⎛⎭⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是___ _ _ __.5. 已知P 为椭圆22:143x y C +=上的一个动点,1F 、2F 为椭圆的左、右焦点,O 为坐标原(3,1)22(1)1x y -+=A B AB 230x y +-=230x y --=430x y --=430x y +-=点,O 到椭圆C 在P 点处的切线为d ,若12247PF PF ⋅=,则d = .6. 已知点P 在直线4x y +=上,过点P 作圆22:4O x y +=的两条切线,切点分别为A ,B ,则点(3,2)M 到直线AB 距离的最大值为( ) ABC .2D7. 在平面直角坐标系xOy 中,已知圆C :22(2)4x y -+=,点A 是直线20x y -+=的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围为 . 8. 在平面直角坐标系xOy 中,已知点A (-4,0),B (0,4),从直线AB 上一点圆P 向圆C :224x y +=引两条切线PC 、PD ,切点分别是C 、D ,设线段CD 的中点为M ,则线段AM 长的最大值为 .【答案或提示】1.【答案】A【解析】将(3,1)直接“一抄一代”得(31)(1)1x y --+=,即230x y +-=,选A. 2.【答案】A【解析】设P ()00,2x x --则直线AB 的方程是()0021x x x y -+=,即()()0210x x y y --+=令0210x y y -=⎧⎨+=⎩,解得1212x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 所以直线AB 过定点11,22⎛⎫-- ⎪⎝⎭ . 3.【答案】[3【提示】设A ()0,0x则直线PQ 的方程是()0332x x y --=,即0370x x y -+= 所以直线PQ 过定点70,3⎛⎫ ⎪⎝⎭.则PQ 长的最小值是过70,3⎛⎫ ⎪⎝⎭且平行于x 轴的弦,易得此时PQ ,直径是其上界.4.【答案】x 25+y 24=1【提示】AB 的方程是2x +y -2=0,令x =0,y =2;令y =0,x =1.故c =2,b =1.5.【提示】P 1x y +=. 6.【答案】D【解析】设(,4)P a a -,则直线AB 的方程是(4)40ax a y +--=,即()440a x y y -+-=,当x y =且440y -=,即1x =,1y =时该方程恒成立, 所以直线AB 过定点N (1,1),点M 到直线AB 距离的最大值即为点M ,N 之间的距离,||MN =所以点M (3,2)到直线AB 故选:D7.【答案】)⎡⎣【解析】设点的坐标为00(,2)A x x + 则PQ 的方程为00(2)(2)(2)4x x x y --++=, 分参得0(2)(22)0x y x x y +-+-+=所以20220x y x y +-=⎧⎨-+=⎩,解之得11x y =⎧⎨=⎩,直线PQ 恒过点(1,1)易求得过点(1,1)最短的弦长为4(取不得)故线段PQ 长的取值范围为)⎡⎣. 说明:引圆外一点A 到圆心O 的距离为参数,建立PQ 与AO 的目标函数,再利用基本不等式解决也可以.8.【答案】【解析】设点的坐标为00(,4)P x x + 则CD 的方程为00(4)4x x x y ++=, 分参得0()(44)0x y x y ++-=所以0440x y y +=⎧⎨-=⎩,解之得11x y =-⎧⎨=⎩,直线CD 恒过点N (-1,1)又因为OM⊥CD,所以点M的轨迹是以ON为直径的圆(点O除外),故其方程是22111222 x y⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭所以2 AM==。
导数专题:导数与曲线切线问题的6种常见考法一、求曲线“在”与“过”某点的切线1、求曲线“在”某点处的切线方程步骤第一步(求斜率):求出曲线在点()()00,x f x 处切线的斜率0()f x '第二步(写方程):用点斜式000()()()y f x f x x x '-=-第三步(变形式):将点斜式变成一般式。
2、求曲线“过”某点处的切线方程步骤(此类问题的点不一定是切点)第一步:设切点为()()00,Q x f x ;第二步:求出函数()y f x =在点0x 处的导数0()f x ';第三步:利用Q 在曲线上和0()PQ f x k '=,解出0x 及0()f x ';第四步:根据直线的点斜式方程,得切线方程为000()()()y f x f x x x '-=-.二、公切线问题研究曲线的公切线,一般是分别设出两切点,写出两切线方程,然后再使用这两个方程表示同一条直线,但要注意以下两个方面:(1)两个曲线有公切线,且切点是同一点;(2)两个曲线有公切线,但是切点不是同一点。
三、切线条数问题求曲线的切线条数一般是设出切点()(),t f t ,由已知条件整理出关于t 的方程,把切线问条数问题转化为关于t 的方程的实根个数问题。
四、已知切线求参数问题此类问题常见的考查形式有两种,一是判断符合条件的切线是否存在,二是根据切线满足条件求参数的值或范围。
常用的求解思路是把切线满足条件转化为关于斜率或切点的方程或函数,再根据方程的根的情况或函数性质去求解。
题型一“在”点求切线问题【例1】函数2()ln 2f x x x x =++在点()()1,1f 处的切线方程为()A.33y x =-B.3y x =C.31y x =+D.33y x =+【答案】B【解析】因为2()ln 2f x x x x =++,所以()1ln 2f x x x=++'()13f '∴=,又()13f =,∴曲线()y f x =在点()()1,1f 处的切线方程为33(1)y x -=-,即3y x =.故选:B.【变式1-1】已知函数()f x 满足()()3211f x x f x =-'⋅+.(1)求()1f '的值;(2)求()f x 的图象在2x =处的切线方程.【答案】(1)()11f '=;(2)8110x y --=【解析】(1)因为()()3211f x x f x =-'⋅+,则()()2321f x x f x ''=-,所以,()()1321f f ''=-,解得()11f '=.(2)由(1)可知()321f x x x =-+,则()232f x x x '=-,则()25f =,()28f '=,因此,()f x 的图象在2x =处的切线方程为()582y x -=-,即8110x y --=.【变式1-2】若曲线2y x ax b =++在点(0,)P b 处的切线方程为10x y -+=,则a ,b 的值分别为()A.1,1B.1-,1C.1,1-D.1-,1-【答案】A【解析】因为2y x a '=+,所以0|x y a='=曲线2y x ax b =++在点(0,)b 处的切线10x y -+=的斜率为1,1a ∴=,又切点(0,)b 在切线10x y -+=上,010b ∴-+=1b ∴=.故选:A.【变式1-3】已知函数()2ln f x a x x =+的图象在1x =处的切线方程为30x y b -+=,则a b +=()A.2-B.1-C.0D.1【答案】B【解析】因为()2ln f x a x x =+,所以()2af x x x'=+.又()f x 的图象在1x =处的切线方程为30x y b -+=,所以()123f a '=+=,解得1a =,则()2ln f x x x =+,所以()11f =,代入切线方程得310b -+=,解得2b =-,故1a b +=-.故选:B.题型二“过”点求切线问题【例2】(多选)已知曲线()()3211f x x =++,则曲线过点()0,3P 的切线方程为()A.630x y +-=B.630x y -+=C.5260x y -+=D.3260x y -+=【答案】BD【解析】设切点坐标为()()300,211x x ++,()()261f x x '=+,∴切线斜率为()()20061k f x x '==+切线方程为()()()2003012161y x x x x ⎤=+-++⎦-⎡⎣曲线过点()0,3P ,代入得()()()20030362111x x x ⎡⎤++⎣=--⎦+可化简为()()032001113x x x +-+=,即3020023x x -=-,解得00x =或032x =-则曲线过点()0,3P 的切线方程为630x y -+=或3260x y -+=故选:BD【变式2-1】过原点的直线,m n 与分别与曲线()e xf x =,()lng x x =相切,则直线,m n 斜率的乘积为()A.-1B.1C.eD.1e【答案】B【解析】设()(),f x g x 的切点分别为()()1122,e ,,ln xx x x ,由题意可得()e xf x '=,()1g x x'=,所以()f x 在1x x =处的切线为()111e e x xy x x -=-,()g x 在2x x =处的切线为()2221ln y x x x x -=-,又因为两条切线过原点,所以()()1112220e e 010ln 0x x x x x x ⎧-=-⎪⎨-=-⎪⎩,解得121e x x =⎧⎨=⎩,所以直线,m n 斜率的乘积为()()1121e 1ef xg x ''=⨯=,故选:B【变式2-2】设点P 是曲线e e e ex xx x y ---=+上任意一点,直线l 过点P 与曲线相切,则直线l 的倾斜角的取值范围为______.【答案】π0,4⎛⎤⎥⎦⎝【解析】设直线l 的倾斜角为α2e e e e 4(e e e e e e x x x x x x x x x x y y -------''=∴=+++=()0e e 1x x y -≥∴≤<'+2][]tan (0,1,0,ααπ∴∈∈π0,4α⎛⎤∴∈ ⎥⎦⎝【变式2-3】过点()1,0作曲线e x y =的两条切线,则这两条切线的斜率之和为______.【答案】2e 1-【解析】0x >时,e x y =,设切点()11,ex x ,则11e ,e x xy k==',切线()1111:e e x xl y x x -=-过()1,0,()111e e 1x x x ∴-=-,2112,e x k ∴==,0x ≤时,e x y -=,切点()22,e xx -,22e ,e x x y k --=-=-',切线()2222:ee x x l y x x ---=--过()1,0,()222e e 1x x x --∴-=--,220,1x k ∴==-,故212e 1k k +=-.故答案为:2e 1-.题型三切线的条数问题【例3】若过点()0,(0)b b >只可以作曲线e xxy =的一条切线,则b 的取值范围是__________.【答案】24,e ∞⎛⎫+⎪⎝⎭【解析】函数e x x y =的定义域为R ,则1e x x y -'=,设切点坐标为000,e x x x ⎛⎫ ⎪⎝⎭,则切线斜率为001e x x k -=,故切线方程为:()000001e e x x x x y x x --=-,又切线过点()0,(0)b b >,则()000200001e e e x x x x x x b x b --=-⇒=,设()2ex x h x =,则()()20e xx x h x -'==得,0x =或2x =,则当(),0x ∈-∞时,()0h x '<,函数()h x 单调递减,当()0,2x ∈时,()0h x '>,函数()h x 单调递增,当()2,x ∈+∞时,()0h x '<,函数()h x 单调递减,所以()()2400,2e h h ==,又x →-∞时,()h x →+∞,x →+∞时,()0h x →,所以02ex x b =有且只有一个根,且0b >,则24e b >,故b 的取值范围是24,e ∞⎛⎫+ ⎪⎝⎭.故答案为:24,e ∞⎛⎫+⎪⎝⎭.【变式3-1】若曲线(2)e x y x a =-有两条过坐标原点的切线,则实a 的取值范围为______.【答案】(,0)(8,)-∞⋃+∞【解析】设切点坐标为:00(,)x y ,(22)e x y x a '=+-,所以切线斜率为00(22)e x k x a =+-,即切线方程为0000(2)e (22)e ()x xy x a x a x x --=+--,又切线过坐标原点,所以00000(2)e (22)e (0)x x x a x a x --=+--,整理得20020x ax a -+=,又曲线有两条过坐标原点的切线,所以该方程有两个解,所以280a a ∆=->,解得(,0)(8,).a ∈-∞⋃+∞故答案为:(,0)(8,).-∞⋃+∞【变式3-2】已知过点(),0A a 可以作曲线()2e xy x =-的两条切线,则实数a 的取值范围是()A.()2,+∞B.()(),e 2,∞∞--⋃+C.()(),22,∞∞--⋃+D.()(),12,-∞-+∞【答案】C【解析】设切点是()00,P x y ,0R x ∈,即()0002e x y x =-,而()1exy x '=-故切线斜率()001e x k x =-,切线方程是()()()00002e 1e x xy x x x x --=--,又因为切线经过点(),0A a ,故()()()00002e 1e x xx x a x --=--,显然01x ≠,则()0000021111x a x x x x -=+=-+--,在01x ≠上有两个交点,令01x x =-,设()1,0h x x x x =+≠,则()222111x h x x x-=-=',令()0h x '=得11x =-,21x =,所以当(),1x ∈-∞-时,()0h x '>,()h x 单调递增,当()1,0x ∈-时,()0h x '<,()h x 单调递减,当()0,1x ∈时,()0h x '<,()h x 单调递减,当()1,x ∈+∞时,()0h x '>,()h x 单调递增,又()12h -=-,()12h =,且x →-∞时,()h x →-∞,0x -→时,()h x →-∞,0x +→时,()h x →+∞,x →+∞时,()h x →+∞,所以()a h x =有两个交点,则2a >或2a <-,故实数a 的取值范围是()(),22,∞∞--⋃+.故选:C.【变式3-3】已知函数()326f x x x =-,若过点()1,P t 可以作出三条直线与曲线()f x 相切,则t 的取值范围是()A.()5,4--B.()4,3--C.()3,2--D.()2,1--【答案】A【解析】设过点()1,P t 的切线与()f x 相切于点()32,6m m m -,()2312f x x x '=-,()2312f m m m '∴=-,则切线方程为:()()()3226312y m m m m x m --=--,又切线过点()1,P t ,()()()23232312162912t m m m m m m m m ∴=--+-=-+-,令()322912g m m m m =-+-,则问题等价于y t =与()g m 有三个不同的交点,()()()261812612g m m m m m '=-+-=---,∴当()(),12,m ∈-∞+∞时,()0g m '<;当()1,2m ∈时,()0g m '>;()g m ∴在()(),1,2,-∞+∞上单调递减,在()1,2上单调递增,又()15g =-,()24g =-,由此可得()g m 图象如下图所示,由图象可知:当()5,4t ∈--时,y t =与()g m 有三个不同的交点,即当()5,4t ∈--时,过点()1,P t 可以作出三条直线与曲线()f x 相切.故选:A.题型四两曲线的公切线问题【例4】若直线1:2l y kx b k ⎛⎫=+> ⎪⎝⎭与曲线1()e x f x -=和()ln(1)g x x =+均相切,则直线l 的方程为___.【答案】y x=【解析】设()f x ,()g x 上的切点分别为()111,ex A x -,()()22,ln 1B x x+,由()1e xf x -'=,()11g x x '=+,可得1121e 1x k x -==+,故()f x 在A 处的切线方程为()()1111111111ee e e 1x x x x y x x y x x -----=-⇒=+-,()g x 在B 处的切线方程为()()()222222211ln 1ln 1111x y x x x y x x x x x -+=-⇒=++-+++,由已知()()()111122121221e 1ln 11e 1ln 11x x x x x x x x x --⎧=⇒-=+⎪+⎪⎨⎪-=+-⎪+⎩,所以()()()22222222221ln 1ln 1ln 11111x x x x x x x x x x ⎛⎫+=+-⇒=+ ⎪++++⎝⎭,故20x =或()2ln 11x +=,而()222111ln 111e 1e 2x x x +=⇒+=⇒=<+,不合题意舍去,故20x =,此时直线l 的方程为y x =.故答案为:y x =.【变式4-1】已知函数()e xf x =与函数()lng x x b =+存在一条过原点的公共切线,则b =________.【答案】2【解析】设该公切线过函数()e xf x =、函数()lng x x b =+的切点分别为()11,ex x ,()22,ln b x x +.因为()e xf x '=,所以该公切线的方程为()1111111e e e e ex x x x x y x x x x =-+=+-同理可得,该公切线的方程也可以表示为()2222211ln ln 1y x x x b x x b x x =-++=⋅++-因为该公切线过原点,所以()112121e e 10ln 10x x xx x b ⎧=⎪⎪⎪-=⎨⎪+-=⎪⎪⎩,解得1211,e ,2x x b ===.故答案为:2【变式4-2】函数()bf x ax x =+的图象在点(1,3)处的切线也是抛物线213x y =的切线,则a b -=()A.1B.3C.6D.2【答案】C【解析】()bf x ax x =+,则2()b f x a x '=-,则在点(1,3)处的切线的斜率为12(1)1bk f a a b '==-=-,213x y =,则6y x '=,则在点(1,3)处的切线的斜率为26k =,函数()bf x ax x =+的图象在点(1,3)处的切线也是抛物线213x y =的切线,则12k k =,即6a b -=,故选:C.【变式4-3】若曲线e x y a =与曲线y ==a __________.【解析】令()e x f x a =,()g x ()e xf x a '=,()g x '=设()f x 与()g x 的公共点为()00,x y ,()f x 与()g x 在公动点处有相同的切线,()()()()0000f x g x f x g x '⎧=∴'⎪⎨=⎪⎩,即00e e x x a a ⎧=⎪⎨⎪=⎩=012x =,12e a ∴=a ==题型五切线平行、垂直问题【例5】若曲线ln x ay x+=在点()1,a 处的切线与直线:250l x y -+=垂直,则实数=a ().A.12B.1C.32D.2【答案】C 【解析】因为21ln x ay x --'=,所以曲线ln x ay x+=在点()1,a 处的切线的斜率为()111k f a ='=-,直线l 的斜率22k =,由切线与直线l 垂直知121k k =-,即()211a -=-,解得32a =.故选:C.【变式5-1】已知曲线y =y x =--24垂直的曲线的切线方程为_________.【答案】2250x y -+=【解析】设切点为(),m n ,因为y =y '=,因为曲线的切线与直线y x =--24垂直,()21-=-,解得25m =,又点(),m n在曲线y =25n ==,所以切点坐标为()25,25,所以曲线y =y x =--24垂直的切线方程为:()125252y x -=-,即2250x y -+=,故答案为:2250x y -+=.【变式5-2】若曲线s n e i =+x y x a 存在两条互相垂直的切线,则a 的取值范围是________.【答案】()(),00,∞-+∞U 【解析】由题知,令()e sin x f x a x =+,则()e cos xf x a x '=+.若函数曲线存在两条互相垂直的切线则可得1x ∃,2x ,()()121f x f x ''⋅=-.当0a =时,()21e 0,xx x f x '=>⇒∀,()()120f x f x ''>,与题目矛盾;当0a ≠时,由()e 0,xy =∈+∞,cos y a x a=≥-可得()f x '的值域是(),a -+∞故12,x x ∃,使得()()1,0f x a '∈-,()210,f x a ⎛⎫'∈ ⎪ ⎪⎝⎭,()()121f x f x ''⋅=-.故答案为:()(),00,∞-+∞U .【变式5-3】曲线33y x x =-+在点P 处的切线平行于直线21y x =-,则点P 的坐标为______.【答案】()1,3或()1,3-【解析】由已知得231y x '=-,令2y '=,则2312x -=,解得1x =或=1x -,所以()1,3P 或()1,3P -.经检验,点()1,3P 与()1,3P -均符合题意.故答案为:()1,3或()1,3-【变式5-4】若曲线()21ln 2f x x x ax =++存在与直线50x y -=平行的切线,则实数a 的最大值为______.【答案】3【解析】()()10f x x a x x=++>,因为曲线()21ln 2f x x x ax =++存在与直线50x y -=平行的切线,所以15x a x ++=在()0,∞+有解.即15a x x ⎛⎫=-+ ⎪⎝⎭在()0,∞+有解.设()15g x x x⎛⎫=-+ ⎪⎝⎭,()0,x ∈+∞,则()1553g x x x ⎛⎫=-+≤-= ⎪⎝⎭,当且仅当1x x=,即1x =时等号成立,即()3g x ≤.所以3a ≤,即a 的最大值为3.故答案为:3题型六与切线有关的最值问题【例6】若动点P 在直线1y x =+上,动点Q 在曲线22x y =-上,则|PQ |的最小值为()A.14B.4C.22D.18【答案】B【解析】设与直线1y x =+平行的直线l 的方程为y x m =+,∴当直线l 与曲线22x y =-相切,且点Q 为切点时,P ,Q 两点间的距离最小,设切点()00,Q x y ,22x y =-,所以212y x =-,y x ∴'=-,0011x x ∴-=⇒=-,012y ∴=-,∴点11,2Q ⎛⎫-- ⎪⎝⎭,∴直线l 的方程为12y x =+,,P Q ∴两点间距离的最小值为平行线12y x =+和1y x =+间的距离,,P Q ∴24=.故选:B .【变式6-1】在平面直角坐标系xOy 中,P 是曲线24x y =上的一个动点,则点P 到直线40x y ++=的距离的最小值是_____.【答案】2【解析】设直线0x y b ++=与214y x =相切,则切线的斜率为1-且12y x '=,令112y x '==-,则2x =-,即切点的横坐标为2-,将2x =-,代入214y x =,可得1y =,即切点坐标为()2,1-,所以点P 到直线40x y ++=的距离的最小值即为()2,1-到直线的距离,即2d =,故答案为:【变式6-2】已知P 为直线210x y +-=上的一个动点,Q 为曲线423242210x x y x x --++=上的一个动点,则线段PQ 长度的最小值为______.【解析】直线210x y +-=可化为:1122y x =-+.对于曲线423242210x x y x x --++=.当0x =时,代入10=不成立,所以0x ≠.所以423242210x x y x x --++=可化为22112122y x x x =-++,导数为31142y x x -'=-所以线段PQ 的最小值即为与1122y x =-+平行的直线与423242210x x y x x --++=相切时,两平行线间的距离.设切点(),Q m n .由题意可得:322111422112122m m n m m m ⎧--=-⎪⎪⎨⎪=-++⎪⎩,即32214112122m m n m m m ⎧=⎪⎪⎨⎪=-++⎪⎩,解得:234m n ⎧=⎪⎪⎨⎪=-⎪⎩或234m n ⎧=-⎪⎪⎨⎪=+⎪⎩.当Q ⎝⎭时,PQ当,324Q ⎛-+ ⎝⎭时,PQ =综上所述:线段PQ.【变式6-3】点P 是曲线2ln y x x =-上任意一点,且点P 到直线y x a =+的距离的a 的值是__________.【答案】2-【解析】由题设12y x x '=-且0x >,令0'>y ,即22x >;令0'<y ,即202x <<,所以函数2ln y x x =-在0,2⎛⎝⎭上单调递减,在,2⎫+∞⎪⎪⎝⎭上单调递增,且12|ln 022x y ->,如图所示,当P 为平行于y x a =+并与曲线2ln y x x =-相切直线的切点时,距离最近.令1y '=,可得12x =-(舍)或1x =,所以1|1x y ==,则曲线上切线斜率为1的切点为(1,1)P ,=2a =(舍去)或2-,故答案为:2-.。
切线问题的高考解析包汉忠 (贵州省都匀市第三中学校558000)函数是高中数学的主要内容,就象一条主线贯穿着中学数学的全部内容,几乎涉及到中学数学的所有数学思想方法。
函数的应用相当广泛,知识间相互渗透,完全体现了数学思维的创造性和方法的多样性,同时,函数又是学习高等数学的基础,是初等数学与高等数学的衔接点。
导数是高等数学中的微积分的基础,而要学习导数又是以函数为基础的,它为研究变量与函数提供了重要的方法与手段。
导数下放到高中学习,也给中学数学问题的研究提供了新的思想、新的方法、新的途径,更重要的为高考提供了新的命题方向与空间。
由于导数是研究变量的良好工具,其应用很广泛,使得高考在近年来加强了在函数的单调性、切线等知识的考查。
本文正是针对近年高考中对切线与导数的考查,作了一些与总结,一方面希望能给正准备参加高考的学生有所帮助,另一方面也希望得到广大同仁的指正。
一、求切线方程已知曲线方程与曲线上的某点的坐标,求切线方程,其关键在于确定切线的斜率,然后利用直线的点斜式的方程写出切线方程。
这是一个较为基础的题型,有时也会以解答题中的第一小问的形式出现。
例1 (10海南、宁夏)曲线321y x x =-+在点()1,0处的切线方程为______ 解析:显然点()1,0在曲线321y x x =-+上,而函数321y x x =-+的导数2`()32f x x =-,`(1)1k f ∴==,又切线过点()1,0,由直线方程的点斜式,得切线的方程为01(1)y x -=-,即1y x =-,故选A 。
注:这个小题与09海南、宁夏的考题“曲线12++=x xe y x 在点()1,0处的切线方程为______”极为相似。
例2 (09安徽)已知函数)(x f 在R 上满足88)2(2)(2-+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程是( )A .12-=x yB . x y =C . 23-=x yD .32+-=x y解析:由已知88)2(2)(2-+--=x x x f x f ,得88)2(2)(2-+-=--x x x f x f①用x -2代替x ,8)2(8)2()]2(2[2)2(2--+--=----x x x f x f 即 8)2(8)2()(2)2(2--+--=--x x x f x f ②联立①、②两式,消去)2(x f -,得2)(x x f =,x x f 2)`(=,2)1(`==∴f k ,而1)1(=f ,故切线方程为)1(21-=-x y ,即12-=x y ,因此选A 。
——高考中导数题型分类
一、导数的定义
1.若0()3f x '=-,则000
()(3)
lim
h f x h f x h h
→+--=( )
2.已知m a f =')(,则
=∆∆--∆+→∆x
x a f x a f x )
32
()31(lim
3.已知函数,83ln 2)(x x x f +=且20)
()2(lim
-=∆-∆-→∆x
k f x k f x ,则实数K=
二、切线的求法及应用
1.已知(,)P x y 是x y e x =+图象上的点,则点P 到直线230x y --=的最小距离为
2.已知函数3
()3f x x x =-及点(12)P -,
,过点P 作直线l (1)求使直线l 和()y f x =相切且以P 为切点的直线方程; (2)求使直线l 和()y f x =相切且切点异于P 的直线方程.
3. 直线y x =是曲线32
3y x x ax =-+的切线,则___a =
4.已知3
()3f x x x =-过点(1,)A m 可作曲线()y f x =的三条切线,则m 的取值范围是( )
A 、(1,1)-
B 、(2,3)-
C 、(3,2)--
D 、(2,1)--
三、应用导数求单调区间,极值和最值 1.已知函数22()ln ()f x x a x ax a R =-
+∈.
(1)当1a =时,证明函数()f x 只有一个零点;
(2)若函数()f x 在区间(1,)+∞上是减函数,求实数a 的取值范围.
2.已知函数1()ln(1)1x
f x ax x
-=+++(0,x a ≥为正整数). (1)若1a =,求曲线()y
f x =在点(1,(1))f 处的切线方程;
(2)求函数()f x 的单调区间;
(3)若函数()f x 的最小值为1,求a 的取值范围.
3.已知函数3
2
()331f x x ax x =-++ (1)设2a =,求()f x 的单调区间;
(2)设()f x 在区间(2,3)中有且只有一个极值点,求a 的取值范围.
四、恒成立与存在性问题及参数处理
恒成立与存在性问题的本质是如何处理多个变量的关系,一直是高考题的重难点,原理很简单,无非是分离参数,数形结合,单调性,分类讨论。
关键是什么时候用什么方法。
常见逻辑关系: 对[,]x a b ∀∈,都有()()f x g x ≥⇒()()()h x f x g x =-,min ()0h x ≥恒成立; 对[,]x a b ∃∈,使得()()f x g x ≥成立⇒()()()h x f x g x =-,max ()0h x ≥;
对1[,]x a b ∀∈,2[,]x c d ∀∈,都有12()()f x g x ≥成立⇒1min 2max ()()f x g x ≥ 对1[,]x a b ∀∈,2[,]x c d ∃∈,使得12()()f x g x ≥成立⇒1min 2min ()()f x g x ≥ 对1[,]x a b ∃∈,2[,]x c d ∀∈,使得12()()f x g x ≥成立⇒1max 2max ()()f x g x ≥ 对1
[,]x a b ∃∈,2[,]x c d ∃∈,使得12()()f x g x ≥成立⇒1max 2min ()()f x g x ≥
1.当(12)x ∈,时,不等式2
40x mx ++<恒成立,则m 的取值范围是
2.若对任意的[266]m -∈,
,恒有2
924110mx x x -++≥,则x 的取值范围是
3.已知两个函数k x x x f -+=168)(2,x x x x g 452)(23++=,其中R k ∈ (1)对任意的]3,3[-∈x ,都有)()(x g x f ≤成立,求k 的取值范围。
(2)对任意的]3,3[1-∈x ,]3,3[2-∈x 都有)()(21x g x f ≤,求k 的取值范围。
4.已知函数()247
2x f x x
-=-,[]01x ∈, (1)求()f x 的单调区间和值域;
(2)设1a ≥,函数()[]2
2
3201g x x a x a x =--∈,,,若对于任意[]101x ∈,,总存在[]001x ∈,,
使得()()01g x f x =成立,求a 的取值范围
5.设函数2
1)(ax x e x f x ---=,若当0x ≥时,()
0f x ≥,求a 的取值范围。
6.已知函数23
11()(0)23
f x x ax a =
->,函数()()(1)x g x f x e x =+-,函数()g x 的导函数为()g x '
. (1)求函数()f x 的极值; (2)若a
e =,
①求函数()g x 的单调区间;
②求证:0x >时,不等式()1ln g x x ≥+'恒成立.
7.设函数2()
(1)(0,)x f x x e kx x k R =-->∈.
(1)讨论()f x 的单调性; (2)若当12k
>
时,2
()(ln 2)2ln 02e f x k k k ++>对(0,)x ∀∈+∞恒成立, 求证:(1ln 2)()f k f k -+<.。