公路卵形曲线测量的坐标检验
- 格式:pdf
- 大小:216.38 KB
- 文档页数:4
公路卵形曲线的双向测设法邢喜乐摘要:针对公路卵形曲线中缓和曲线段上任意点坐标和过该点切线方位角的计算问题,推导了更简洁实用的双向计算公式,既可从缓和曲线段大半径到小半径的方向(正向)进行计算,也可从缓和曲线段小半径到大半径的方向(逆向)进行计算,特别便于计算机CAD程序的设计,并给出了有益的结论。
关键词:卵形曲线;缓和曲线段;正向;逆向分类号:U412.24 文献标识码:BAbstract:Based on the calculation of coordinate of random point in oviform road curve and the azimuth angle of its tangent line,this paper gives a bidirectional calculation equation which makes CAD flexiable and convenient.Key words:oviform curve; tangent line▲1 问题的提出在对公路卵形曲线进行测设计算时,设置在半径不同的两圆曲线之间的缓和曲线段是计算的难点,因此,推导一套缓和曲线段上任一点坐标和方位角的计算公式是卵形曲线测设的关键。
虽然文献[1]推导了一套缓和曲线段的计算公式,但笔者通过大量的工程实践后,认为还需对其进行必要的补充和完善,主要包括以下几个方面:1)当我们对线路的平面线形特别是互通立交桥匝道的平面线形进行测设计算时,总是希望沿着线路的前进方向,按桩号由小到大的顺序依次计算各中桩的坐标和切线方位角,这时就会碰到这样的线形:即既有从大半径过渡到小半径的缓和曲线段,也有从小半径过渡到大半径的缓和曲线段,而文献[1]仅给出了从缓和曲线段大半径到小半径方向的计算公式,没有给出从缓和曲线段小半径到大半径方向的计算公式,因此不便于按线路前进方向依次计算各中桩的坐标和方位角,也不便于计算机程序的设计;2)由于建立了虚拟的独立坐标系,致使其计算过程不太直观,同时还需进行坐标系之间的转换,计算偏于繁琐;3)对已知条件的依赖较多,缺少对计算精度的分析。
道路卵形盘旋曲线任意点坐标及方位角计算方法时间:2021-01-25 10:18:27 来源:本站作者:叶松林我要投稿我要收藏投稿指南【摘要】本文提出了卵形曲线中缓和曲线段上点位坐标计算方案,推导了其计算过程及公式,并附实例。
对始于高等级道路的平面卵形曲线的测设有重要的指导作用。
高等级公路,特别是高速公路的平面线形设计形式很多,但归根结底,它们都由直线、圆和缓和曲线 ( 我国?公路道路设计标准?中规定盘旋线或称菲涅尔螺旋线为缓和曲线线形 ) 等公路平面线形要素组合而成。
各种平面线形设计形式,如根本形、卵形、 S 形、 C 形等等,对高速公路更加适应汽车转弯时的行车轨迹,消除曲率突变,增进线形美观及行车舒适感、安全感都有极其重要的意义,但同时,也使曲线计算及野外测设更为复杂。
本文针对在高速公路设计实际中出现的卵形曲线,推导了缓和曲线段点位坐标计算方法及公式,为现场测设人员提供了有效的计算方案和测设指导。
一、盘旋线的根本特征及坐标计算盘旋线上,任意一点的曲率半径ρ 与该点至曲线起点的曲线长 l 之积为一常数 ( 图 1) 即ρl =A2(1)或式中, A 2 为盘旋曲线常数,表征盘旋曲线曲率变化缓急程度的量,称 A 为盘旋曲线参数。
图 11. 盘旋曲线上任意一点坐标计算由图 1( 曲线右旋 ) ,取盘旋线的起始点 ZH 处的切线方向为 x 轴,法线方向为 y 轴,任意一点的切线方向方位角为缓和曲线角β 。
在缓和曲线上对任意一点 P 取微分dl=ρdβdx=dlcosβdy=dlsinβ考虑式 (1) 对β 或 l 在区间 [0 ,β ]或 [0 , l ]上积分后有以下关系式成立l 2 = 2A 2 β(2)(3)(4)或者(5)(6)对于公路平面线形的根本形,其缓和曲线始于直线终于圆曲线,故缓和曲线的曲率半径ρ 变化于∞ ~ R ( 圆曲半径 ) 。
设缓和曲线段长度为 l s, 那么(7)(8)2. 盘旋线的几何要素见图 1 ,盘旋线的几何要素计算公式如下:任意点 P 处的曲率半径 ( 由式 (1) 和式 (2))(9)P 点的盘旋曲线长(10)P 点的缓和曲线角 ( 切线方位角,由 (9) 式 )(11)上面导出了当参数分别为β 和 l 时的右旋缓和曲线上任一点的坐标和几何要素公式。
基本型曲线及卵形回旋线的中(边)桩坐标、方位角计算基本型曲线一、 基本型曲线的特征在平面线型中有多种多样的曲线形式,由直线—缓和曲线—圆曲线—缓和曲线—直线形式构成的曲线称为基本型曲线。
特征:1、几何特征,基本型曲线中的缓和曲线起始于直线段,终于圆曲线,即 R ρ=∞→。
2、线形特征,缓和曲线段有始有终,具有完整性。
二、 基本参数方程(切支距方程)1、 缓和曲线段:1432222(1)2)!2(43)()n n n s L n RL ----- 1412121(1)1)!2(41)()n n n n s L n RL +----- β=sRL L 22π180(缓和曲线上某点切线方位角)注:笔者给出了按级数展开式的通式,小半径曲线可取至第7项;把β列入参数方程之一,为后续求算边桩用;:L 某点到ZH 或HZ 点的曲线长。
2、 圆曲线段:sin x R q ϕ=+ (1cos )y R p ϕ=-+RL =ϕπ1800β+注:0β:缓和曲线方位角,001802Ls R βπ=;q :切线增长量; p :圆曲线内移值;L : 某点至HY 或YH 点的曲线长;ϕ:其实为圆曲线上某点的切线方位角(读者可自己证明)。
三、 坐标及切线方位角计算1、 第一缓和曲线段上的中(边)桩坐标、切线方位角计算 中桩:第一缓和曲线包括ZH —YH 段,先算出切线支距坐标x 、y ,然后通过坐标转换公式转换为大地测量坐标X 、Y 。
公式为:cos sin sin cos ZH ZH X X A A x Y Y A A y -⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 注:当曲线为左转角时,以y y =-代入计算。
A 为上一交点(角桩)至曲线交点的导线坐标方位角或ZH 点切线方位角;ZH X 为ZH 点横坐标; ZH Y 为ZH 点纵坐标。
()cos ()sin ZH JD H ZH JD H X X S T A Y Y S T A =+-⎫⎪⎬=+-⎪⎭注:JD X 、JD Y 分别为上一交点的横、纵坐标; S 为上一交点至曲线交点的边长; H T 为曲线的切线长边桩:任意中桩之边桩(法线)坐标为:cos(90)sin(90)X X D Y Y D αα⎧=+-⎪⎨=+-⎪⎩左左cos(90)sin(90)X X D Y Y D αα⎧=++⎪⎨=++⎪⎩右右 注:X 、Y 分别为中桩横、纵坐标;D 为中桩至边桩之距离; α为中桩之切线方位角。
匝道中卵形曲线坐标的计算happy【摘要】在高速公路立交平面线型中,现在越来越多采用卵形曲线这一线型形式,而卵形曲线坐标的计算在现有的书籍中很少提到,这就给施工中坐标的计算和放样增加了难度。
在***施工中**互通式立交的匝道上就有卵形曲线的形式,我通过实践和对缓和曲线坐标计算的分析研究,总结出了卵形曲线的计算方法和技巧。
【关键词】卵形曲线缓和曲线坐标计算一、卵形曲线的概念卵形曲线是指在两个半径不等的同向圆曲线间插入一段缓和曲线(目前高速公路多采用以回旋线形式的缓和曲线,本文所说的缓和曲线均是回旋线的形式)。
也就是说:卵形曲线本身是缓和曲线的一段,只是在插入时去掉了靠近半径无穷大方向的一段,而非是一条完整的缓和曲线。
二、卵形曲线坐标的计算原理根据图纸上提供的已知的设计参数,求出包括卵形曲线的完整的缓和曲线的相关参数和曲线要素,然后再按照缓和曲线坐标计算的方法来计算卵形曲线上任意一点的坐标。
972D(图一)三、坐标计算的实例以我所在沧黄高速六合同段黄骅互通式立交B匝道上的卵形曲线为例。
见图一所示,已由图一和上表可知:YH1→HY2、YH2→HY3段均是卵曲线,半径变化为R=50→R=200、R=200→R=50。
下面就以YH1—HY2段卵曲线为例进行计算。
1. 卵曲线参数计算A2=(HY2-YH1)×R1(小半径)×R2(大半径)÷(R2-R1)=(196.873-159.373)×50×200÷(200-50)=2500 ∴A=502. 卵形曲线所在的缓和曲线要素计算卵形曲线的长度L F由已知条件知:L F=HY2-YH1=196.873-159.373=37.5卵形曲线作为缓和曲线的一段,因此先求出整条缓和曲线的长度L S,由此找出HZ点的桩号及坐标(实际上HZ点不存在,只是作为卵形曲线的辅助计算用)。
L S=(YH1至HZ的弧长)= A2÷R1=2500÷50=50∴HZ桩号=YH1+ L S=159.373+50=209.373L E=HY2至HZ的弧长= A2÷R2=2500÷200=12.5或L E= L S- L F=50-37.5=12.5卵形曲线长度L F= L S- L E=50-12.5=37.5(校核)HY2=HZ- L E=209.373-12.5=196.873(校核)由以上说明计算正确。
道路测量中缓和曲线中桩坐标计算方法的研究摘要:本文讲解了在利用全站仪进行缓和曲线中桩放样时,缓和曲线的基本形和卵形两种情况下中桩坐标计算的方法。
关键词:缓和曲线、基本形、卵形、中桩坐标计算。
随着全站仪在道路工程施工测量中的普及,传统的中线放样方法逐渐被淘汰。
目前道路工程中线放样时,只要能计算出中线上任意一点的坐标,用全站仪或者GPSRTK的坐标放样功能就可很方便、快捷地完成实地放样。
道路线形是由直线、圆曲线、缓和曲线三种线形组合而成的,而直线与圆曲线组合的线形(见图一)中桩坐标计算比较简单,在此不作阐述。
下面就缓和曲线与其它两种线形组合的线形中桩坐标计算予以分析。
缓和曲线与其它两种线形组合构成的线形主要有缓和曲线的完整形(即基本形)(见图二)和非完整形(即卵形)(见图三)二种。
一、基本形曲线中桩坐标计算:1、对于第一缓和曲线及圆曲线段(ZH~YH)(如图四),建立以ZH为坐标原点,切线方向为X′轴,半径方向为Y′轴的曲线坐标系(X′O′Y′)。
先计算曲线各点在曲线坐标系下的坐标。
⑴对于第一缓和曲线段(ZH~HY)内任一点i(此时L=Ki-KZH)若圆曲线半径R≥100m时,则Xi′=L-L5/(40R2Ls12) 公式①Yi′=L3/(6RLs1) 公式②若圆曲线半径R<100m时,则X′=L-L5÷[40(RLS)2] L9÷[3456(RLS)4]–L13÷[599040(RLS)6]L17÷[175472640(RLS)8]- L21÷[7.80337152×1010(RLS)10] (公式③)Y′=L3÷[6(RLS)] - L7÷[336(RLS)3] L11÷[42240(RLS)5] -L15÷[9676800(RLS)7] L19÷[3530096640(RLS)9] -L23÷[1.8802409472×1012(RLS)11] (公式④)⑵对于圆曲线段(HY~YH)上任一点iXi′=q Rsin cent;iYi′=R(1-cos cent;i) pL=Ki-KZH cent;i=(L- Ls1)*180/(Rπ) β0内移值P=Ls12/(24R)切线增值q= Ls1/2- Ls13/(240R2)综合⑴、⑵,根据不同坐标系的相互转换,可得ZH~YH上任一点i的中桩测量坐标为:Xi=XZH cosA×Xi′-sinA×f×Yi′(公式⑤)Yi= YZH sinA×Xi′ cosA×f×Yi′(公式⑥)式中f为线路的转向系数,右转时f=1,左转时f=-1 。
卵形曲线要素及其上任意点坐标的严密算法任克林【摘要】针对公路中线(平曲线)卵形曲线测设与计算,将卵形曲线补全为完整缓和曲线,并利用其几何性质推证了卵形曲线要素及其上任意点高斯平面直角坐标的计算公式.【期刊名称】《长春工程学院学报(自然科学版)》【年(卷),期】2013(014)003【总页数】3页(P67-69)【关键词】卵形曲线;缓和曲线;高斯平面直角坐标【作者】任克林【作者单位】四川省冶金地质勘查局测绘工程大队,成都610212【正文语种】中文【中图分类】TB220 引言公路平曲线设计中,常用到卵形曲线。
其要素(缓和曲线切线角β、切线增量q、圆曲线内移值m、切线长T等)以及卵形线上任意点高斯平面直角坐标(以下简称高斯坐标)的计算是公路中线(平曲线)设计与测设的难点,有关文献给出的计算方法有利用复化辛普森公式计算[1]、利用双交点法计算[2]等。
其中复化辛普森公式算法为拟合算法,且公式复杂不利于编程计算;双交点法是将卵形线分为长度相等的两段分别看作等长完整缓和曲线来进行解算,也为一种近似算法。
故上述方法存在着编程困难、误差较大或未能求解卵形曲线要素的不足。
本文推证出一种补全卵形线后利用几何性质将其平面独立坐标转换为高斯坐标的计算方法,可有效解决上述两类方法的不足。
1 推证思路如图1所示,已知弧ZH-HY1为IP1处前缓和曲线,弧HY1-YH1为IP1处圆曲线,半径为R1;弧HY2-YH2为IP2处圆曲线,半径为 R2,弧YH2-HZ为IP2处后缓和曲线,长度为Ls2,卵形线(IP2处前缓和曲线)YH1-HY2曲线长度为Lh,起点(YH1)处曲率半径为R1,终点(HY2)处曲率半径为R2。
交点IP2处路线转角为α。
交点IP1高斯坐标为(XIP1,YIP1),交点IP2高斯坐标为(XIP2,YIP2)。
设IP2处圆曲线HY2-YH2圆心位置为A,过A点作垂线A-V1垂直线段IP2-HZ于V1,作垂线A-V2垂直线段IP1-IP2于V2;连接A与IP2点,由几何关系(线段A-V2垂直线段IP1-IP2,线段A-V1垂直线段IP2-HZ)可知α1+α2=α。
四川建筑 第29卷6期 2009.12公路卵形曲线中桩坐标测设法朱海斌,任彩霞(中铁十二局集团四公司,陕西西安710021)摘 要 针对高速公路互通立交桥匝道卵形曲线中间缓和曲线段上的任意点坐标和过该点切线方位角的计算问题,通过增加辅助回旋线的方法,将卵形曲线中桩坐标的测设转换成单交点基本型缓和曲线的计算,便于曲线计算的统一化、整体化和程序化。
关键词 卵形曲线; 辅助回旋线; 中桩坐标; 缓和曲线角; 坐标转换 中图分类号 U 412 24 文献标识码 B[收稿日期]2008-12-11[作者简介]朱海斌(1977~),大学本科,工程师,主要从事铁路、公路施工工作。
1 问题的提出在对高速公路的互通立交桥匝道曲线测设中,往往由于地形及线路条件的限制会遇到设置在不同半径圆曲线之间的缓和曲线段,因此,对设置在不同半径圆曲线间的缓和曲线段的计算问题是解决卵形曲线中桩坐标测设的关键。
基本型的缓和曲线是由直线到圆曲线间的回旋线,因此,其计算方法已不适用于卵形曲线的中桩坐标的测设。
为了便于此类问题的解决,通过在缓和曲线段大半径方向增加辅助回旋线,补充成完整的缓和曲线的方法,使其转化成基本型缓和曲线的计算,这样就使得卵形曲线中间段缓和曲线的计算与基本型缓和曲线计算达到了统一,便于曲线计算的整体程序化作业。
2 计算公式的推导2 1 独立坐标系的建立如图1。
在半径R 1与R 2的两圆曲线之间嵌入一段缓和曲线,其切点为Y 1H 和H Y 2点,缓和曲线段长为S ,从大半径切点Y 1H (H Y 2)点引辅助回旋线L 0,这样辅助回旋线与两圆曲线之间的缓和曲线连成一段完整的缓和曲线L 0+S,以辅助回旋线的虚拟起点ZH 为原点,以过Z H 点的切线为x 轴,过该点的曲率半径为y 轴建立独立直角坐标系o xy 。
设点i 为缓和曲线上的任一点,i 点到原点o (Z H )的弧长为L,L 对应的缓和曲线螺旋角为 ,曲率半径为 ,在i 点处取一微分弧段d L,d L 所对应的中心角为d ,i 点在独立坐标系中的坐标为(x,y ),d L 在坐标轴上的投影分别为d x,d y (图中曲线为左偏,R 1>R 2)。
高速公路立交匝道卵形曲线的坐标计算瑞国二航局分公司测试中心摘 要:高速公路立交匝道平曲线普遍采用卵形曲线形式,关于其坐标的计算的原理与方法在众多书籍中介绍的较繁琐或不甚全面,笔者结合施工经历,利用工程实例对卵形曲线的坐标计算进展推导及验证。
关键词:高速公路 立交匝道 卵形曲线 坐标计算1 引言近年来,随着城市的开展需要,我国也逐渐加大对各城市的高速公路建立的资金投入,高速公路已占据我国公路网中的主要地位,设计单位为了使高速公路中立交匝道的线型美观和流畅,不可防止的需要插入卵形曲线,所以对于测量人员而言,掌握卵形曲线的坐标计算原理与方法显得尤为重要,本文通过对卵形曲线原理的分析以及公式推导,并结合工程实例进展计算验证,以此运用于高速公路的施工测量工程实践。
2 卵形曲线的概念卵形曲线是指在两个半径不等的同向圆曲线间插入一段非完整的缓和曲线而构成的复曲线。
即卵形曲线本身是缓和曲线的一段,只是在插入时去掉了靠近半径无穷大方向的一段,而非是一条完整的缓和曲线。
在计算包含卵形曲线的立交匝道时,将卵形曲线转化成完整的缓和曲线后按照缓和曲线公式计算,问题与难点便迎刃而解。
3 卵形曲线坐标计算原理对于初学者,判定某段缓和曲线是否为卵形曲线的技巧为:将该段的缓和曲线参数平方除以该段缓和曲线的长度,计算出数值是否等于与其相连接的圆曲线半径,用公式表达为R LA 2,假设该公式结果成立,那么为正常缓和曲线,假设结果不成立,那么为卵形曲线。
如图1所示,在半径为1R 与2R 的两圆曲线间插入长度为F L 的非完整缓和曲线,此段缓和曲线的端点分别为YH 和HY 点,首先计算出整条完整缓和曲线的起点桩号'ZH 或终点桩号'HZ 〔该图1中计算出点桩号'HZ 〕、'HZ 的坐标)Y ,(X C C 、'HZ 的切线方位角C W 〔即图1中CD 的方位角〕,最后根据以上条件求得卵形曲线上任意一点桩号的坐标和切线方位角。