各种机械传动效率对比表
- 格式:doc
- 大小:55.50 KB
- 文档页数:3
机械传动系统的效率分析与优化随着工业化的发展,机械传动系统成为各行各业中不可或缺的一部分。
机械传动系统旨在将动力从发动机或电动机传递到机械装置中,从而实现各种工艺过程。
然而,在传输能量的过程中,机械传动系统会产生能量损失,降低系统的效率。
因此,对机械传动系统的效率进行分析和优化成为一项重要的工作。
一、机械传动系统的工作原理机械传动系统主要包括传动元件和传动装置。
传动元件通常由轴、轴承、联轴器和齿轮等组成,而传动装置则根据实际需求选择不同的传动方式,例如齿轮传动、带传动和链传动等。
通过传动元件和传动装置的协同作用,机械传动系统能够将输入的动力转化为输出的转矩或速度。
二、机械传动系统的能量损失尽管机械传动系统在实现动力传递的同时发挥着重要作用,但实际应用中难以避免出现能量损失。
主要的能量损失来源包括以下几个方面:1. 摩擦损失:由于传动元件的摩擦作用,能量会转化为热能而散失。
这种损失在轴承和齿轮齿面接触处尤为明显。
2. 机械损失:由于机械结构的刚性和松动等问题,导致机械传动系统内部发生偏差和振动。
这些偏差和振动会使能量发生损失。
3. 空气阻力:机械传动系统在高速运动时,会产生空气阻力,使得能量在传递过程中损失。
4. 传动装置效率:不同的传动装置具有不同的传递效率,例如,链传动的效率相对较低,而皮带传动的效率相对较高。
三、机械传动系统效率的评价指标为了评价机械传动系统的效率,我们需要引入一些评价指标。
常见的评价指标包括:传动效率、总效率和热效率等。
1. 传动效率:传动效率是指传输能量的有效比例,通常以百分比表示。
传动效率可以通过实际输出功率与输入功率的比值计算得出。
2. 总效率:总效率是指机械传动系统在运行过程中的总体能量转换效率。
它综合了机械传动系统内部的各种能量损失。
总效率可以通过实际输出功率与输入功率的比值计算得出。
3. 热效率:热效率是指在机械传动系统中通过摩擦损失产生的热能与输入功率之比。
热效率通常较低,是机械传动系统效率提升的一个重要方面。
一、设计任务书(1) 设计题目 :设计胶带输送机的传动装置 (2) 工作条件(3) 技术数据二、电动机的选择计算(1)选择电动机系列根据工作要求及工作条件应选用三相异步电动机, 封闭式结构,电压380伏,Y 系列电动机。
(2)滚筒转动所需要的有效功率kw FV p w 25.210005.29001000=⨯==根据表2-11-1,确定各部分的效率:V 带传动效率 η1 =0.95 一对滚动球轴承效率 η2 =0.99闭式齿轮的传动效率 η3 =0.97 弹性联轴器效率 η4 =0.99 滑动轴承传动效率 η5 =0.97 传动滚筒效率 η6=0.96则总的传动总效率η = η1×η2×η2 ×η3×η4×η5×η6= 0.95×0.99×0.99×0.97×0.99×0.97×0.96 = 0.8326(3)电机的转速min /4.1194.05.26060r D v n w =⨯⨯==ππ 所需的电动机的功率kw p p w r 70.28326.025.2===η 现以同步转速为Y100L2-4型(1500r/min )及Y132S-6型 (1000r/min )两种方案比较,传动比98.114.119143001===w n n i ,04.84.11996002===w n n i ; 由表2-19-1查得电动机数据,比较两种方案,为使传动装置结构紧凑,同时满足 i 闭=3~5,带传动i=2~4即选电动机Y132S —6型 ,同步 转速1000r/min 。
Y132S —6型 同时,由表2-19-2查得其主要性能数据列于下表: 三、传动装置的运动及动力参数计算(1)分配传动比总传动比04.80==wn n i ;由表2-11-1得,V 带传动的 传动比i 01= 2.5,则齿轮传动的传动比为:i12=i/i01=8.04/2.5=3.22此分配的传动比只是初步的,实际传动比的准确值要在传动零件的参数和尺寸确定后才能确定。
摘要双柱机械式汽车举升机通过支撑汽车底盘或车身的某一部分,是使汽车升降的设备。
汽车举升机在维修保养中发挥至关重要的作用,无论是整车大修还是小修保养,都离不开他。
机械式汽车举升机作为整个汽车举升机中的一员,他有着其他举升机不具有的优势,例如它的工作范围广,可以维修高顶棚车辆,工作占用空间小等。
本文较全面的介绍了举升机的种类,在确定所要设计的方案之后,针对举升机的结构及特点要求进行了设计与说明。
具体说,涉及原动机分析选择,带传动分析设计,螺旋传动分析设计,导轨分析选择,支撑悬臂应力校核,锁紧机构的选择。
本课题所设计的是双柱机械式汽车举升机。
关键字:螺旋传动;带传动;汽车举升机;弯曲应力ABSTRACTTwo-sided mechanical automobile lift machine is equipment to make the car lifting by supporting a certain part of the automobile chassis or body. Automobile lift machine play a crucial role in maintenance of both the vehicle overhaul and minor repair and maintenance, which cannot be replaced. Mechanical lifters is a member of the car lifting machine family, it has advantages that other lifting machine does not have, such as its work scope is wide, being capable of repairing vehicles with high ceiling, work space is small, etc. This paper comprehensively introduces the classification of the lifting machine and design the lift and make illustration based on the structure and characteristics of the lifting machine after deciding design scheme. Specifically, the paper involves the analysis of motor, belt transmission, screw transmission and guide rail, stress checking of cantilever and the choice of the locking mechanism. This topic is a design of two-sided mechanical automobile lift machine. Keywords: screw transmission; belt transmission; automobile lift; bending stress目录第一章绪论 (1)1.1 汽车举升机简介及发展概况 (1)1.2 汽车举升机分类 (2)第二章举升机设计任务和总体方案设计 (5)2.1 举升机设计任务 (5)2.2 举升机总体方案设计 (5)2.2.1 拟定设计方案 (5)2.2.2 确定总体设计方案 (6)第三章原动机分析选择 (9)3.1原动机的计算选择 (9)3.1.1 选择原动机类型和结构 (9)3.1.2原动机转速选择及功率计算 (9)第四章带传动分析设计 (10)4.1 带传动简介及类型选择 (10)4.2 带传动设计计算 (10)4.2.1 带传动设计初始条件 (10)4.2.2 带传动主要失效形式和设计依据 (11)4.2.3 带传动设计计算 (11)4.2.4 带轮结构设计 (12)第五章举升机构分析设计 (14)5.1 举升机构的分析选择 (14)5.2 滑动螺旋副的设计计算 (16)5.2.1 材料的选择 (16)5.2.2 耐磨性 (16)5.2.3 验算自锁 (17)5.2.4 螺杆强度:校核当量应力 (18)5.2.5 螺纹牙强度 (18)5.2.6 螺杆的稳定性 (18)5.2.7 横向振动-验算临界转速 (19)5.2.8 驱动转矩和效率 (19)第六章支撑机构结构分析设计 (20)6.1 支撑机构结构设计 (20)6.2 支撑机构应力校核 (21)6.2.1 校核弯曲切应力 (21)6.2.2 校核弯曲正应力 (22)第七章导轨结构分析设计 (24)7.1 导轨类型分析选择 (24)7.2 直线运动系统载荷计算 (25)7.3 滚动直线导轨副寿命计算 (26)7.3.1 寿命计算的基本公式 (26)7.3.2 滚动导轨副的寿命计算及选用规格 (27)第八章锁紧机构分析设计 (30)8.1 锁紧机构的必要性 (30)8.2 锁紧机构原理分析 (30)8.3 锁紧机构的选择 (32)8.4 锁紧机构的校核 (33)第九章螺栓连接件的校核 (35)9.1 升降台与剖分式螺母套的螺纹校核 (35)9.2 箱体与地基的螺纹校核 (36)第十章结论 (39)参考文献 (40)致谢 (41)第一章绪论1.1 汽车举升机简介及发展概况汽车举升机在汽车保养和维修行业中占有重要地位。