22.2.1 配方法(2)
- 格式:doc
- 大小:120.00 KB
- 文档页数:6
22.2.1 配方法学习目标:1.会用开平方法解形如(x 十m)2=n(n ≥0)的方程.2.理解一元二次方程的解法——配方法.3.会用配方法解一元二次方程.教学重点: 利用配方法解一元二次方程教学难点: 把一元二次方程通过配方转化为(x 十m)2=n(n ≥0)的形式.一.学前准备1用直接开平方法解方程2x 2--8=0 )62+x (--9=02完全平方公式是什么?3填上适当的数,使下列等式成立:(1)x 2+12x+ = (x+6)2(2)x 2―12x+ = (x ― )2(3)x 2+8x+ = (x+ )2(4)x 2+43x+ = (x+ )2(5)x 2+px+ = (x+ )2观察并思考填的数与一次项的系数有怎样的关系? 二、探究活动问题:下列方程能否用直接开平方法解?x2一l0x十25=7 x2+8x―9=0是否先把它变成(x+m)2=n (n≥0)的形式再用直接开平方法求解?如: x2+8x―9=0移项得将方程左边配成完全平方式同时加16得总结归纳:,叫做配方法。
配方是为了例1: 用配方法解下列方程x2--8x+1=0 x2+2x-35=0 x2+8x+9=0例2:用配方法解下列方程. 2x 2-4x -1=0总结用配方法解方程的一般步骤.(1)化二次项系数为1,即方程两边同时除以二次项系数.(2)移项,使方程左边为二次项和一次项,右边为常数项.(3)要在方程两边各加上一次项系数一半的平方.(注:一次项系数是带符号的)(4)方程变形为(x+m)2=n 的形式.(5)如果右边是非负实数,就用直接开平方法解这个一元二次方程;如果右边是一个负数,则方程在实数范围内无解.三.课堂小结:本节课你有什么收获?还有什么疑问?四.自我测试1配方:填上适当的数,使下列等式成立:(1)x 2+12x+ =(x+6)2(2)x 2―12x+ =(x ― )2(3)x 2+8x+ =(x+ )22213x x +=23640x x -+=2.将二次三项式x2-4x+1配方后得(). A.(x-2)2+3 B.(x-2)2-3C.(x+2)2+3 D.(x+2)2-33.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是(). A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-114.用配方法解方程:x2﹣2x﹣24=0; 3x2+8x-3=0; x(x+2)=120.3x2+3x―3=0 3x2 -9x+2=0 2x2+6=7x。
22.2降次——解一元二次方程
22.2.1《配方法》教案
姓名:序号:32
配方法是解一元二次方程的通法.因为用配方法解一元二次方程比较麻烦,所以在实际解一元二次方程时,一般不用配方法.但是,配方法是推出求根公式的关键,并在以后的学习中,会常常用到配方法.因此,要理解配方法,并会用配方法解一元二次方程就必须熟悉完全平方式的特征.
一、教学目标
(一)知识技能
1、探索具体问题当中的数量关系,并会列一元二次方程。
2、熟练掌握用配方法解一元二次方程
(二)过程与方法
通过解特殊一元二次方程的解法,归纳总结出一般一元二次方程的配方法的解法从而提高学生解决问题的能力。
(三)情感、态度与价值观
在教师的引导下,通过学生的亲身参与的教学活动,并从中体会“化归方法”这一数学思想,使学生感受到用数学知识战胜困难带来的快乐。
二、教学重点、教学难点
重点:开平方法和用配方法解一元二次方程。
难点:归纳和总结配方法
三、教学方法
讲练结合法
四、课时安排
一个课时,40分钟
五、教学过程
.
六、板书设计
七、教学反思
本章是用配方法的思想来解一元二次方程,从学生的角度考虑本身理解就存在一定难度,从今天教学学生的反应情况看只有60%的学生基本理解,所以在下节课还要讲几个例题,从而加强更多学生对配方法的理解。
人教版数学九年级上册22.2.1《配方法》说课稿2一. 教材分析《配方法》是人教版数学九年级上册第22.2.1节的内容,本节课的主要内容是让学生掌握配方法的原理和应用。
配方法是解一元二次方程的一种重要方法,它能把一般形式的一元二次方程转化为完全平方式,从而使方程的解法更加简单。
在初中数学中,配方法不仅是一元二次方程解法的基础,也是后续学习二次函数、一元二次不等式等知识的基础。
二. 学情分析九年级的学生已经学习过一元二次方程的基本概念和解法,对二次项、一次项、常数项有一定的了解。
但是,学生对于配方法的原理和推导过程可能还不太理解,对于如何运用配方法解决实际问题可能还存在困难。
因此,在教学过程中,我需要引导学生从已有的知识出发,逐步理解和掌握配方法,并能够运用配方法解决实际问题。
三. 说教学目标1.知识与技能目标:让学生掌握配方法的原理和步骤,能够运用配方法解一元二次方程。
2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:让学生体验数学的乐趣,培养对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:配方法的原理和步骤,如何运用配方法解一元二次方程。
2.教学难点:配方法的推导过程,如何灵活运用配方法解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生自主探究和合作交流。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件和网络资源,为学生提供丰富的学习资源。
六. 说教学过程1.导入新课:通过复习一元二次方程的基本概念和解法,引出配方法的概念和作用。
2.自主探究:让学生自主探究配方法的原理和步骤,引导学生发现配方法的规律。
3.合作交流:让学生分组讨论,分享各自的方法和经验,互相学习和借鉴。
4.讲解示范:通过讲解和示范,让学生理解和掌握配方法的具体操作步骤。
5.练习巩固:布置一些练习题,让学生运用配方法解一元二次方程,巩固所学知识。
学习课题:22.2.1配方法(2)课题内容:找出配方法的概念,然后运用配方法解一元二次方程学习目标:了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目学习重点:讲清配方法的解题步骤.把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方学习指南:学习流程:学习流程:复习自学(阅读课本)自我检测课堂展示小结报告学习环节一、温馨回忆:学生活动:解下列方程:(1)x2-8x+7=0已经学习了如何解左边含有x的完全平方形式,•右边是非负数,不可以直接开方降次解方程的转化问题解:(1)x2-8x+(-4)2+7-(-4)2=0 (x-4)2=9x-4=±3即x1=7,x2=1(2)x2+4x+1=0(试一试二、自我探究学习:像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解例1.解下列方程(1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:(1)移项,得:x2+6x=-5配方:x2+6x+32=-5+32(x+3)2=4由此可得:x+3=±2,即x1=-1,x2=-5(2)移项,得:2x2+6x=-2二次项系数化为1,得:x2+3x=-1配方x2+3x+(32)2=-1+(32)2(x+32)2=54由此可得x+32=x132,x232(3)(1+x)2+2(1+x)-4=0(自己试一试)三、自我展示:(学生小组交流解疑,教师点拨、拓展)问题一:配方法解方程2x2-43x-2=0应把它先变形为().A.(x-13)2=89B.(x-23)2=0C.(x-13)2=89D.(x-13)2=109问题二:1.如果x2+4x-5=0,则x=_______.2.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数问题三:用配方法解方程.(1)9y2-18y-4=0 (2)x2问题四:如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________问题五:已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A.1 B.2 C.-1 D.-2问题六:无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数四、自我练习:1.教材P42复习巩固3小结学习报告:(写出小节所学的内容,以及自已的学习感受)五、能力提升已知:x2+4x+y2-6y+13=0,求222x yx y-+的值六、中考链接:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.①若商场平均每天赢利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案学习课题:公式法课题内容:1.一元二次方程求根公式的推导过程; 2.公式法的概念;3.利用公式法解一元二次方程学习目标:理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax 2+bx+c=0(a ≠0)•的求根公式的推导公式,并应用公式法解一元二次方程学习重点:求根公式的推导和公式法的应用 学习指南:学习流程:复习 自学(阅读课本) 自我检测 课堂展示 小结报告 学 习 环 节一、温馨回忆: 学生活动:(学生活动)用配方法解下列方程 (1)6x 2-7x+1=0 (2)4x 2-3x=52总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解 二、自我探究学习:如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1x 2分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c •也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-ca配方,得:x 2+b a x+(2b a )2=-c a +(2b a)2即(x+2b a )2=2244b aca -∵b 2-4ac ≥0且4a 2>0∴2244b aca-≥0 直接开平方,得:x+2ba =即∴x 1x 2由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时,•将a 、b 、c 代入式子(2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根三、学有所用:(学生小组交流解疑,教师点拨、拓展) 问题一:1.用公式法解方程4x 2-12x=3,得到( ).A .x=B .C .x= D .2、 若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是____3、 用公式法解关于x 的方程:x 2-2ax-b 2+a 2=0问题二:用公式法解下列方程.(1)2x 2-4x-1=0 (2)5x+2=3x 2(3)(x-2)(3x-5)=0 (4)4x 2-3x+1=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可 问题三:某数学兴趣小组对关于x 的方程(m+1)22mx ++(m-2)x-1=0提出了下列问题.(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程.(2)若使方程为一元二次方程m 是否存在?若存在,请求出.你能解决这个问题吗?问题四:12的根是( ).A .x 1=x 2B .x 1=6,x 2C .x 1x 2D .x 1=x 22、如果分式3322---x x x 的值为0,则x 值为A.3或-1B.3C.-1D.1或-3问题五:1、m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( ). A .4 B .-2 C .4或-2 D .-4或22、若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是____问题六:1.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________. 2.当x=______时,代数式x 2-8x+12的值是-4. 3、利用求根公式求x x 62152=+的根时,a,b,c 的值分别是 A.5,21,6 B.5,6, 21 C.5,-6, 21 D.5,-6,- 21四、自我练习:教材P 42 练习1.(1)、(3)、(5) 小结学习报告:五、能力提升设x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根,(1)试推导x 1+x 2=-b a ,x 1·x 2=ca;(2)•求代数式a (x 13+x 23)+b (x 12+x 22)+c (x 1+x 2)的值六、中考链接:某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100A元收费. (1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示)(2)下表是这户居民3月、4月的用电情况和交费情况学习课题:22.2.3因式分解法课题内容:用因式分解法解一元二次方程学习目标:1、掌握用因式分解法解一元二次方程.2、通过复习用配方法、公式法解一元二次方程学习重难点:让学生通过比较解一元二次方程的多种方法感悟用因式分解法学习指南:学习流程:复习自学(阅读课本)自我检测课堂展示小结报告学习环节一、温馨回忆(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)二、自我探究学习:1、自学教材38—39页内容,明确因式分解法解一元二次方程的一一般方法步骤,主要依据,会用因式分解法节简单的一元二次方程,通过演练40页练习题1,43页习题6检验自己自学效果,小组讨论解决疑难问题,15分钟后抽同学展示学习成果。
课后反思:
1、本节课先以解决实际问题引入,创设一个“出现不会解的方程”的问题情境,激发学生的探究欲。
通过与会解方程的比较,引导学生观察方程形式的区别,进一步联想:要利用已知解决未知,就需要将式子变形,从而确定探究方向——配方。
在探究配方的过程中,着重引导学生就配方规律、配方的形式要求、配方后的分类处理三个方面进行探究,使学生对配方法解一元二次方程有一个完整的了解,教学时重点环节放在以学生发现为主,教师适时适量点拨补充为辅,尽量避免喧宾夺主,收到较好的教学效果,达到预期的教学目的。
2、本节课运用多媒体教学的目的是起到辅助教学的作用,让学生感到耳目一新,提高学习兴趣,增大客容量,提高课堂学习效率。
但利用多媒体不能取代学生探索交流的过程和教师板演的的环节。
教学时间: 教学课题:22.1 一元二次方程 教学课型:新授课 教学目标1.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根4.通过根据实际问题列方程,向学生渗透知识来源于生活.5通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式. 教学重点:一元二次方程的一般形式和一元二次方程的根的概念 教学难点:通过提出问题,建立一元二次方程的数学模型 教学过程 一、复习引入小学学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。
从这节课开始学习一元二次方程知识.先来学习一元二次方程的有关概念. 二、探究新知 (一)探究课本问题2 分析:1.参赛的每两个队之间都要比赛一场是什么意思?2.全部比赛场数是多少?若设应邀请x 个队参赛,如何用含x 的代数式表示全部比赛场数? 整理所列方程后观察:1.方程中未知数的个数和次数各是多少?2.下列方程中和上题的方程有共同特点的方程有哪些?4x+3=0;0422=-+x x ;042=-+y x ;0350752=+-x x ;0621=-+x x(二)概念归纳: 1.一元二次方程定义:首先它是整式方程,然后未知数的个数是1,最高次数是2. 2.一元二次方程的一般形式: ①为什么规定a ≠0?②方程左边各项之间的运算关系是什么?关于x 的一元二次方程()002≠=--a c bx ax 的各项分别是什么?各项系数是什么?3.特殊形式:()002≠=+a bx ax ;()002≠=+a c ax ;()002≠=a ax (三)课本例题类比一元一次方程的去括号,移项,合并同类项,进行同解变形,化为一般形式后再写出各项系数,注意方程一般形式中的“-”是性质符号负号,不是运算符号减号. (四)一元二次方程的根的概念1.类比一元一次方程的根的概念获得一元二次方程的根的概念2.下面哪些数是方程x 2+5x+6=0的根?-4,-3,-2,-1,0,1,2,3,4. 3.你能用以前所学的知识求出下列方程的根吗?(1)x 2-64=0(2)x 2+1=0 (3)x 2-3x=0 (4)0122=++x x 4.思考:一元一次方程一定有一个根,一元二次方程呢?5.排球邀请赛问题中,所列方程562=-x x 的根是8和-7,但是答案只能有一个,应该是哪个? 归纳:①一元二次方程的根的情况 ②一元二次方程的解要满足实际问题 三、课堂训练 1.课本练习 2补充:1).在下列方程中①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-5x=0,一元二次方程的个数是( )A .1个B .2个C .3个D .4个2).关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 范围________. 3).已知方程5x 2+mx-6=0的一个根是x=3,则m 的值为________ 4).关于x 的方程(2m 2+m )x m+1+3x=6可能是一元二次方程吗? 四、小结归纳1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式,并正确指出其各项系数.2.一元二次方程的根的概念,能判断一个数是否是一个一元二次方程的根. 五、作业设计 必做:P28:1-7 选做:.P29:8、9教学时间:教学课题:22.2.1配方法(1) 教学课型:新授课教学目标1.理解一元二次方程“降次”的转化思想.2.根据平方根的意义解形如x2=p(p≥0)的一元二次方程,然后迁移到解(mx+n)2=p(p≥0)型的一元二次方程.3.把一般形式的一元二次方程(二次项系数是1,一次项系数是偶数)与左边是含有未知数的完全平方式右边是非负常数的一元二次方程对比,引入配方法,并掌握.4.通过根据实际问题列方程,向学生渗透知识来源于生活.5.通过观察,思考,对比获得一元二次方程的解法-----直接开平方法,配方法教学重点:1.运用开平方法解形如(mx+n)2=p(p≥0)的方程;领会降次──转化的数学思想.2用配方法解二次项是1,一次项系数是偶数的一元二次方程教学难点:降次思想,配方法教学过程一、复习引入已经学习了一元二次方程的概念,本节课开始学习其解法,首先学习直接开平方法,配方法.二、探究新知(一)探究课本问题11.用列方程方法解题的等量关系是什么?2.解方程的依据是什么?3.方程的解是什么?问题的答案是什么?4.该方程的结构是怎样的?归纳:可根据数的开方的知识解形如x2=p(p≥0)的一元二次方程,方程有两个根,但是不一定都是实际问题的解.(二)解决课本思考1如何理解降次?2本题中的一元二次方程是通过什么方法降次的?3能化为(x+m)2=n(n≥0)的形式的方程需要具备什么特点?归纳:1运用平方根知识将形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程降次,转化为两个一元一次方程,解一元一次方程即可;2左边是含有未知数的完全平方式,右边是非负常数的一元二次方程可化为(x+m)2=n(n≥0).(三)探究课本问题21.根据题意列方程并整理成一般形式.2.将方程x2+6x-16=0和x2+6x+9=2对比,怎样将方程x2+6x-16=0化为像x2+6x+9=2一样,左边是含有未知数的完全平方式,右边是非负常数的方程?①完成填空:x2+6x+ =(x+ )2②方程移项之后,两边应加什么数,可将左边配成完全平方式?归纳:用配方法解二次项系数是1且一次项系数是偶数的一元二次方程的一般步骤及注意事项:先将常数项移到方程右边,然后给方程两边都加上一次项系数的一半的平方,使左边配成完全平方式的三项式形式,再将左边写成平方形式,右边完成有理数加法运算,到此,方程变形为(x+m)2=n(n≥0)的形式.三、课堂训练课本练习: P31页练习,P34页练习1,2(1)四、小结归纳1.根据平方根的意义,用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次方程.2.用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,特别地,移项后方程两边同加一次项系数的一半的平方.3.在用方程解决实际问题时,方程的根一定全实际是问题的解,但是实际问题的解一定是方程的根.五、作业设计必做:P42:1、2、3(1)(2)选做:下面补充作业补充作业:1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-24.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根5.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-116.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),•另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m吗?(2)鸡场的面积能达到210m2吗?教学时间: 教学课题:22.2.1配方法(2) 教学课型:新授课 教学目标:1.进一步理解配方法和配方的目的.2.掌握运用配方法解一元二次方程的步骤.3.会利用配方法熟练灵活地解二次项系数不是1的一元二次方程.4.通过对比用配方法解二次项系数是1的一元二次方程,解二次项系数不是1的一元二次方程,经历从简单到复杂的过程,对配方法全面认识 教学重点:用配方法解一元二次方程 教学难点:用配方法解二次项系数不是1的一元二次方程,首先方程两边都除以二次项系数,将方程化为二次项系数是1的类型 教学过程 一、复习引入我们在上节课,已经学习了用直接开平方法解形如x 2=p (p≥0)或(mx+n )2=p (p≥0)的一元二次方程,以及用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,这节课继续学习配方法解一元二次方程. 二、探究新知 1.填空: ①()22________8+=++x x x②()22________-=+-x x x③()22____4___+=++x x ④()22____49___-=+-x x 2.填空: ①a x x++82是完全平方式,a=②92++mx x是完全平方式,m =3.解下列方程:①x 2-8x+7=0 ②2x 2+8x-2=0 ③2x 2+1=3x ④3x 2-6x+4=0 分析:(1)解方程①,复习用配方法解二次项系数为1的一元二次方程步骤;(2)对比○1的解法得到方程○2的解法,总结出用配方法解二次项系数不为1的一元二次方程的一般步骤: ①.把常数项移到方程右边;②.方程两边同除以二次项系数,化二次项系数为1; ③.方程两边都加上一次项系数一半的平方; ④.原方程变形为(x+m )2=n 的形式;⑤.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.(3)运用总结的配方法步骤解方程○3,先观察将其变形,即将一次项移到方程的左边,常数项移到方程的右边;解方程○4配方后右边是负数,确定原方程无解. (4) 不写出完整的解方程过程,到哪一步就可以确定方程的解得情况? 三、课堂训练1.方程()的形式,正确的是化为b a x x x =+=+-2202344( )A.()4532=-x B.()4532-=-x C.41232=⎪⎪⎭⎫ ⎝⎛-x D.3232=⎪⎪⎭⎫⎝⎛-x 2.配方法解方程2x 2-43x-2=0应把它先变形为( ). A .(x-13)2=89 B .(x-23)2=0 C .(x-13)2=89 D .(x-13)2=1093.下列方程中,一定有实数解的是( ).A .x 2+1=0B .(2x+1)2=0C .(2x+1)2+3=0D .(12x-a )2=a4.解决课本练习2(2)到(6)5.已知x 2+y 2+z 2-2x+4y-6z+14=0,则x+y+z 的值是( ). A .1 B .2 C .-1 D .-26. a ,b ,c 是ABC ∆的三条边①当bc c ab a 2222+=+时,试判断ABC ∆的形状. ②证明02222<-+-ac c b a四、小结归纳:用配方法解一元二次方程的步骤 1.把原方程化为()002≠=++a c bx ax 的形式, 2.把常数项移到方程右边;3.方程两边同除以二次项系数,化二次项系数为1;4.方程两边都加上一次项系数一半的平方;5.原方程变形为(x+m )2=n 的形式;6.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.不写出完整的解方程过程,原方程变形为(x+m )2=n 的形式后,若n 为0,原方程有两个相等的实数根;若n 为正数,原方程有两个不相等的实数根;若n 为负数,则原方程无实数根. 五、作业设计必做:P42:3(3)(4) 选做:P43:8、9教学时间: 教学课题:22.2.2公式法 教学课型:新授课 教学目标1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况.3.会利用求根公式解简单数字系数的一元二次方程.4.经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解公式的基础.;5.通过对公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单. 教学重点:求根公式的推导,公式的正确使用 教学难点:求根公式的推导 教学过程 一、复习引入我们学习了用配方法解数字系数的一元二次方程,能否用配方法解一般形式的一元二次方程()002≠=++a c bx ax二、探究新知活动1.学生观察下面两个方程思考它们有何异同?①6x 2-7x+1=0 ②()002≠=++a c bx ax 活动2.按配方法一般步骤同时对两个方程求解: 1.移项得到6x 2-7x=-1,c bx ax -=+22.二次项系数化为1得到ac x a b x x x -=+-=-22,6167 3.配方得到 x 2-76x+(712)2=-16+(712)2 x 2+b a x+(2b a )2=-c a+(2ba )24.写成(x+m )2=n 形式得到(x-712)2=25144,(x+2b a)2=2244b ac a - 5.直接开平方得到x-712=±512,注意:(x+2ba)2=2244b ac a -是否可以直接开平方? 活动3.对(x+2b a)2=2244b ac a -观察,分析,在0≠a 时对2244b ac a -的值与0的关系进行讨论活动4.归纳出一元二次方程的根的判别式和求根公式,公式法. 活动5.初步使用公式解方程6x 2-7x+1=0.活动6.总结使用公式法的一般步骤:①把方程整理成一般形式,确定a,b,c 的值,注意符号②求出ac b 42-的值,方程()002≠=++a c bx ax ,当Δ>0时,有两个不等实根;Δ=0时有两个相等实根;Δ<0时无实根.③在ac b 42-≥0的前提下把a ,b ,c 的值带入公式.三、课堂训练1.利用一元二次方程的根的判别式判断下列方程的根的情况 (1)2x 2-4x-1=0 (2)5x+2=3x 2 (3)(x-2)(3x-5)=0 (4)4x 2-3x+1=02.课本例2 四、小结归纳1.用根的判别式判断一个一元二次方程是否有实数根2.用求根公式求一元二次方程的根3. 一元二次方程求根公式适用于任意一个一元二次方程. 五、作业设计 必做:P42:4、5 选做:P43:11、12某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100A 元收费.(1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示) (2)下表是这户居民3月、4月的用电情况和交费情况根据上表数据,求电厂规定的A 值为多少?教学时间: 教学课题:22.2.3因式分解法 教学课型:新授课 教学目标1.了解因式分解法的概念.2.会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,根据两个因式的积等于0,必有因式为0,从而降次解方程.3.经历探索因式分解法解一元二次方程的过程,发展学生合情合理的推理能力.4.体验解决问题方法的多样性,灵活选择解方程的方法.教学重点:会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,从而降次解方程 教学难点:将整理成一般形式的方程左边因式分解 教学过程 一、复习引入我们学习了用配方法和公式法解一元二次方程,这节课我们来学习一种新的方法. 二、探究新知 1.因式分解x 2-5x ;; 2x(x-3)-5(x-3); 25y 2-16; x 2+12x+36;4x 2+4x+1 2.若ab=0,则可以得到什么结论? 3.试求下列方程的根 :x(x-5)=0; (x-1)(x+1)=0;(2x-1)(2x+1)=0;(x+1)2 =0; (2x-3)2=0.分析:解左边是两个一次式的积,右边是0的一元二次方程,初步体会因式分解法解方程实现降次的方法特点,只要令每个因式分别为0,得到两个一元一次方程,解这两个一元一次方程,它们的解就都是原方程的解. 4. 试求下列方程的根①、4x 2-11x =0 x(x-2)+ (x-2)=0 (x-2)2 -(2x-4)=0 ②、25y 2-16=0 (3x+1)2 -(2x-1)2 =0 (2x-1)2 =(2-x)2 ③、x 2+10x+25=0 9x 2-24x+16=0; ④、5x 2-2x-41= x 2-2x+432x 2+12x+18=0; 分析:观察①②③三组方程的结构特点,在方程右边为0的前提下,对左边灵活选用合适的方法因式分解,并体会整体思想.总结用因式分解法解一元二次方程的一般步骤:首先使方程右边为0,其次将方程的左边分解成两个一次因式的积,再令两个一次因式分别为0,从而实现降次,得到两个一元一次方程,最后解这两个一元一次方程,它们的解就都能是原方程的解.这种解法叫做因式分解法. ④中的方程结构较复杂,需要先整理.5.选用合适方法解方程x2+x+41=0 x2+x-2=0 (x-2)2 =2-x 2x2-3=0.分析:四个方程最适合的解法依次是:利用完全平方公式,求根公式法,提公因式法,直接开平方法或利用平方差公式.归纳:配方法要先配方,再降次;公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有一元二次方程,因式分解法用于某些一元二次方程. 解一元二次方程的基本思路:化二元为一元,即降次.三、课堂训练1.完成课本练习2.补充练习:①已知(x+y)2 –x-y=0,求x+y的值.②下面一元二次方程解法中,正确的是().A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x 两边同除以x,得x=1③今年初,湖北武穴市发生禽流感,某养鸡专业户在禽流感后,打算改建养鸡场,建一个面积为150m2的长方形养鸡场.为了节约材料,鸡场的一边靠着原有的一条墙,墙长am,另三边用竹篱围成,如果篱笆的长为35m,问鸡场长与宽各为多少?(其中a≥20m)四、小结归纳本节课应掌握:1.用因式分解法解一元二次方程2.归纳一元二次方程三种解法,比较它们的异同,能根据方程特点选择合适的方法解方程五、作业设计必做:P43:6、10选做:P43:13、14教学时间:教学课题:22.2.4一元二次方程的根与系数关系教学课型:新授课教学目标:1.熟练掌握一元二次方程的根与系数关系.2.灵活运用一元二次方程的根与系数关系解决实际问题.3.提高学生综合运用基础知识分析解决较复杂问题的能力.4.学生经历探索,尝试发现韦达定理,感受不完全归纳验证以及演绎证明教学重点:一元二次方程的根与系数关系教学难点:对根与系数关系的理解和推导教学过程一、复习引入一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系,你能发现吗?二、探究新知1.课本思考分析:将(x- x1)(x-x2)=0化为一般形式x2-( x1 +x2)x+ x1 x2=0与x2+px+ q=0对比,易知p=-( x1 +x2),q= x1 x2. 即二次项系数是1的一元二次方程如果有实数根,则一次项系数等于两根和的相反数,常数项等于两根之积.2.跟踪练习求下列方程的两根x1、x2. 的和与积.x2+3x+2=0;x2+2x-3=0; x2-6x+5=0; x2-6x-15=03. 方程2x2-3x+1=0的两根的和、积与系数之间有类似的关系吗?分析:这个方程的二次项系数等于2,与上面情形有所不同,求出方程两根,再通过计算两根的和、积,检验上面的结论是否成立,若不成立,新的结论是什么?4.一般的一元二次方程ax2+bx+c=0(a≠0)中的a不一定是1,它的两根的和、积与系数之间有第3题中的关系吗?分析:利用求根公式,求出方程两根,再通过计算两根的和、积,得到方程的两个根x1、x2和系数a,b,c的关系,即韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比. 求根公式是在一般形式下推导得到,根与系数的关系由求根公式得到,因此,任何一个一元二次方程化为一般形式后根与系数之间都有这一关系.5.跟踪练习求下列方程的两根x1、x2. 的和与积.①3x2+7x+2=0;3x2+7x-2=0; 3x2-7x+2=0;3x2-7x-2=0;②5x-1=4x2;5x2-1=4x2+x6.拓展练习①已知一元二次方程2x 2+bx+c=0的两个根是-1,3,则b= ,c= .②已知关于x 的方程x 2+kx-2=0的一个根是1,则另一个根是 ,k 的值是 .③若关于x 的一元二次方程x 2+px+q=0的两个根互为相反数,则p= ; 若两个根互为倒数,则q= . 分析:方程中含有一个字母系数时利用方程一根的值可求得另一根和这个字母系数;方程中含有两个字母系数时利用方程的两根的值可求得这两个字母系数.二次项系数是1时,若方程的两根互为相反数或互为倒数,利用根与系数的关系可求得方程的一次项系数和常数项.④两个根均为负数的一元二次方程是( )A.4x 2+21x+5=0B.6x 2-13x-5=0C.7x 2-12x+5=0D.2x 2+15x-8=0⑤.两根异号,且正根的绝对值较大的方程是( )A.4x 2-3=0B.-3x 2+5x-4=0C.0.5x 2-4x-3=0D.2x 2+53x-6=0⑥.若关于x 的一元二次方程2x 2-3x+m=0,当m 时方程有两个正根;当m 时方程有两个负根;当m 时方程有一个正根一个负根,且正根的绝对值较大.三、课堂训练1.完成课本练习2.补充练习:x 1 ,x 2是方程3x 2-2x-4=0的两根,利用根与系数的关系求下列各式的值:①2111x x +; ②221212x x x x + ③2221x x +; ④()221x x -;⑤2112x x x x + 四、小结归纳本节课应掌握:1. 韦达定理二次项系数不是1的方程根与系数的关系2. 运用韦达定理时,注意隐含条件:二次项系数不为0,△≥0;3.韦达定理的应用常见题型:①不解方程,判断两个数是否是某一个一元二次方程的两根;②已知方程和方程的一根,求另一个根和字母系数的值;③由给出的两根满足的条件,确定字母系数的值;④判断两个根的符号;○5不解方程求含有方程的两根的式子的值. 五、作业设 计必做:P43:7选做:补充作业:已知一元二次方程x 2+3x+1=0的两个根是βα、,求αββα+的值.教学时间:教学课题:22.3实际问题与一元二次方程(1)教学课型:新授课教学目标:1.使学生会列出一元二次方程解应用题,初步掌握利用一元二次方程解决生活中的实际问题.2.培养学生的阅读能力.3.通过根据实际问题列方程,向学生渗透知识来源于生活.4.通过观察,思考,交流,进一步提高逻辑思维和分析问题解决问题能力.5.经历观察,归纳列一元二次方程的一般步骤教学重点:建立数学模型,找等量关系,列方程教学难点:找等量关系,列方程教学过程一、复习引入同一元一次方程,二元一次方程(组)等一样,一元二次方程和实际问题,也有紧密的联系,本节课就来讨论如何利用一元二次方程来解决实际问题.二、探究新知●探究课本30页问题1分析:设正方体的棱长是xdm,则一个正方体的表面积是多少?10个呢?等量关系是什么?●探究课本38页问题分析:设物体经过xs落回地面,这时它离地面的高度是多少?●某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税为利息的20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推●课本46页探究2分析:设甲种药品的成本年平均下降率为x,则一年后甲种药品成本是多少?两年后甲种药品成本是多少?相关的等量关系是什么?类似的乙甲种药品成本的年平均下降率是多少?相关的等量关系是什么?方程的解都是该问题的解吗?如果不是,如何选择?为什么?如何回答课本46页思考?归纳:通过解决以上问题,列一元二次方程解实际问题的基本步骤是什么?与以前学过的列方程解实际问题的步骤有何异同?●某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?分析:设平均增长率是x ,则二月份生产电视机的台数是多少?三月份生产电视机的台数是多少?第一季度生产电视机的总台数还可以怎样表示?等量关系是什么?归纳:以上这几道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.三、课堂训练补充练习:①.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( ).A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元②.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ).A .100p p +B .pC .1001000p p -D .100100p p+ ③. 2009年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出的方程是( ).A .100(1+x )2=250B .100(1+x )+100(1+x )2=250C .100(1-x )2=250D .100(1+x )2四、小结归纳1.列一元二次方程解应用题的一般步骤2.利用一元二次方程解决实际生活中的百分率问题五、作业设计必做:P48:1、2、3选做:P49:9补充作业:上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大?教学时间:教学课题:22.3实际问题与一元二次方程(2)教学课型:新授课教学目标:1.能根据○1以流感为问题背景,按一定传播速度逐步传播的问题;○2以封面设计为问题背景,边衬的宽度问题中的数量关系列出一元二次方程,体会方程刻画现实世界的模型作用.2.培养学生的阅读能力与分析能力.3.能根据具体问题的实际意义,检验结果是否合理.4.通过自主探究,独立思考与合作交流,使学生弄清实际问题的背景,挖掘隐藏的数量关系,把有关数量关系分析透彻,找出可以作为列方程依据的主要相等关系,正确的建立一元二次方程教学重点:建立数学模型,找等量关系,列方程教学难点;找等量关系,列方程教学过程:一、复习引入通过上节课的学习,谈谈列一元二次方程解决实际问题的一般步骤及应注意的问题.二、探究新知●课本45页探究1分析:①设每轮传染中平均一个人传染x了个人.这里的一轮指一个传染周期.②第一轮的传染源有几个人?第一轮后有几个人被传染了流感?包括传染源在内,共有几个人患着流感?③第二轮的传染源有几个人?第二轮后有几个人被传染了流感?包括第二轮的传染源在内,共有几个人患着流感?④本题用来列方程的相等关系是什么?列出方程.拓展:课本思考.四轮呢?归纳:本题一流感为问题背景,讨论按一定传播速度逐步传播的问题,,特别需要注意的是,在第二轮传染中,在实际生活中,类似原型很多,比如细胞分裂,信息传播,传染病扩散,害虫繁殖等,一般就考虑两轮传播,这些问题有通性,在解题时有规律可循.●课本47页探究3分析:①正中央的长方形与整个封面的长宽比例相同,是什么含义?②上下边衬与左右边衬的宽度相等吗?如果不相等,应该有什么关系?③若设正中央的长方形的长和宽分别为9a㎝,7a㎝,尝试表示边衬的长度,并探究上下边衬与左右边衬的宽度的数量关系?④“应如何设计四周边衬的宽度?”是要求四周边衬的宽度,除了根据上下边衬与左右边衬的宽度比为,设上下边衬宽为与左右边衬宽为.还可以根据正中央的长方形长与宽的比为9:7,设正中央的长方形的长为。
63中学导学案年级:八年级学科:数学姓名:_________ ____年____月___日
63中学导学案年级:八年级学科:数学姓名:_________ ____年____月___日
1.式子44x +配成完全平方式,应加上( D )
A. 4x
B. ±4x
C. 4x 2
D. ±4x 2
2.用配方法解方程2250x x --=时,原方程应变形为( B )
A .()216x +=
B .()216x -=
C .()229x +=
D .()229x -=
3.+-px x 2_________=(x -_________)2.
4.x a
b x -2+_________=(x -_________)2.
5.方程2x 2+5x-3=0的解为
6.解方程x 2-2x -1=0.
7.解方程y 2-6y +6=0.
8.解方程3x 2-4x =2.
(完成时间:45分钟,满分:100分)
一、选择题(每题5分,共25分)
1.方程x 2-3x +2=0的解是 ( )
A .1和2
B .-1和-2
C .1和-2
D .-1和2
2.用配方法解方程x 2+2x =8的解为 ( )
A .x 1=4,x 2=-2
B .x 1=-10,x 2=8
C .x 1=10,x 2=-8
D .x 1=-4,x 2=2
3.用配方法解方程013
22=--x x 应该先变形为 ( ) A .98)31(2=-x B .98)31(2-=-x C .910)31(2=-x D .0)3
2(2=-x 4.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为 ( ).
A .-2
B .-4
C .-6
D .2或6
5.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为(
) A .12 B .15 C .12或15 D .不能确定
二、填空题(每题5分,共25分)
6.x x 23
2-+_________=(x -_________)2.
7.方程x 2-6x +8=0的解是
8.方程042=-x x 的解是______________.
9.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.
10.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______.
三、解答题(每题10分,共50分)
11.x 2+4x -3=0.
12.x (x +4)=21.
13.-2x 2+2x +1=0.
14.2x -1=-2x 2
15.x 2+2mx =n .(n +m 2≥0).。