三塔斜拉桥的非线性地震反应分析
- 格式:pdf
- 大小:224.70 KB
- 文档页数:3
地震作用下桥梁动态响应分析地震是一种破坏力极大的自然灾害,对桥梁等基础设施的安全构成严重威胁。
桥梁作为交通运输的关键节点,其在地震作用下的动态响应特性直接关系到人员生命和财产安全。
因此,深入研究地震作用下桥梁的动态响应具有重要的理论和实际意义。
一、桥梁在地震中的受力特点桥梁在地震作用下主要受到水平地震力和竖向地震力的影响。
水平地震力通常是导致桥梁结构破坏的主要因素,它会使桥梁产生水平位移、弯曲变形和剪切破坏。
竖向地震力虽然相对较小,但在某些情况下也可能引起桥梁的墩柱破坏、支座失效等问题。
此外,地震波的传播特性也会对桥梁的受力产生影响。
地震波包括纵波、横波和面波,它们的传播速度和振动方式不同,使得桥梁在不同部位受到的地震作用存在差异。
例如,面波在地表附近传播,其能量较大,对桥梁基础的影响较为显著。
二、桥梁结构对地震响应的影响1、桥梁的类型和跨度不同类型的桥梁(如梁桥、拱桥、斜拉桥等)在地震作用下的响应有所不同。
一般来说,梁桥的结构相对简单,但其跨度较小,在地震中的变形能力有限;拱桥具有较好的抗压性能,但对水平地震力的抵抗能力相对较弱;斜拉桥由于其复杂的结构体系,地震响应较为复杂,需要进行详细的分析。
桥梁的跨度也是影响地震响应的重要因素。
跨度越大,桥梁的自振周期越长,与地震波的共振可能性就越大,从而导致更大的地震响应。
2、桥墩和桥台的形式桥墩和桥台是桥梁的重要支撑结构,它们的形式和尺寸对地震响应有显著影响。
实心桥墩的抗弯和抗剪能力较强,但在地震作用下容易产生较大的内力;空心桥墩则具有较好的延性,但在强震作用下可能发生局部屈曲。
桥台的类型(如重力式桥台、轻型桥台等)也会影响桥梁与地基的相互作用,进而改变地震响应。
3、支座和伸缩缝支座是连接桥梁上部结构和下部结构的关键部件,其力学性能直接影响桥梁在地震中的变形和受力。
常见的支座类型如板式橡胶支座、盆式支座等,它们在地震中的滑移和变形特性不同,会导致桥梁的地震响应有所差异。
桥梁抗震非线性分析单元摘要:近些年来,国外修建了许多大跨度的桥梁。
随着我国经济的不断发展,近些年来也修建了许多跨径超过千米的桥梁,而我国又是一个地震多发的国家,桥梁抗震性能对大跨桥梁尤其重要。
桥梁抗震问题已经成为桥梁设计者所必须解决的问题。
在强震作用下混凝土梁柱构件易进入塑性阶段而发生弹塑性损伤,正确地模拟结构进入非线性状态后的力学行为对评价结构的抗震安全性具有重要的意义。
解决结构的非线性反应分析问题首先要解决构件的非线性分析模型问题,本文主要阐述了在桥梁高墩进行抗震非线性反应分析中所采用的非线性单元,以及发展趋势。
关键词:弹塑性;地震反应;塑性铰;高墩;弹塑性梁柱单元;弹塑性纤维梁柱单元;抗震分析;集中塑性模型;纤维模型0引言随着我国经济的发展,对建筑结构的抗震性能评估有了更高的要求。
近年来,随着交通建设的发展,我国西部地区规划并建成了大量的公路及铁路线路。
由于西部地区多为山岭重丘区,地形、地貌和地质条件复杂,山区桥梁结构通常采用多联连续梁或连续刚构,下部一般为高墩,且墩高相差悬殊,属于典型的非规则桥梁。
高墩桥梁结构复杂,多采用薄壁空心墩,长细比较大,与中、低墩明显不同。
西部地区的初步调查表明:在已建成及正在设计规划中的高等级公路中,墩高超过40m的高墩桥梁占桥梁总数的40%以上,例如黄延高速公路的洛河特大桥最高墩高达143m,而我国《公路工程抗震设计规范(JTJ 004-89)〉仅适用于墩高不大于30m的墩柱。
近些年来,国内外学者对高耸结构的地震需求及位移延性能力进行了一些有益的探讨,李睿等采用弹性时程分析方法讨论了高阶振型对桥梁高墩地震响应的影响,指出随着墩高的增加,高阶振型对其地震响应的影响逐步增强[1] ;阎志刚在桥梁高墩的研究中指出高阶振型对高耸结构地震需求影响较大在地震作用下可能形成两个或两个以上塑性铰[2]; John L. W ilson等采用弹塑性梁柱单元建立计算模型模拟245m钢筋混凝土高烟囱,证明高阶振型在高烟囱的地震反应中起主导地位,指出在地震作用下高烟囱将形成多个塑性铰,对桥梁高墩地震需求分析具有一定的借鉴意义;李建中,宋晓东等对桥梁高墩位移延性能力的研究也证明了墩身质量及高阶振型对高墩位移延性能力有较大贡献[3];夏修身,陈兴冲,王常峰受高阶振型的影响,墩中塑性铰区对曲率延性的需求可能会比对墩底塑性铰区对延性需求大很多[4]。