当前位置:文档之家› 三角函数恒等变换含问题详解及高考题

三角函数恒等变换含问题详解及高考题

三角函数恒等变换含问题详解及高考题
三角函数恒等变换含问题详解及高考题

三角函数恒等变形的基本策略。

(1)常值代换:特别是用“1”的代换,如1=cos 2

θ+sin 2

θ=tanx ·cotx=tan45°等。

(2)项的分拆与角的配凑。如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2

x ;配凑角:α=(α+β)-β,β=

2

β

α+-

2

β

α-等。

(3)降次与升次。(4)化弦(切)法。

(4)引入辅助角。asin θ+bcos θ=2

2

b a +sin(θ+?),这里辅助角?所在象限由a 、b 的符号确定,?角的值由tan ?=

a

b

确定。 1.已知tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==

x

x

x ,又sin 2x +cos 2x =1, 联立得???=+=,1

cos sin cos 2sin 2

2x x x

x 解这个方程组得.

55cos 552sin ,55cos 552sin ???????-=-=??

?????==x x x x 2.求

)

330cos()150sin()690tan()480sin()210cos()120tan(

----的值.

解:原式

)

30360cos()150sin()30720tan()

120360sin()30180cos()180120tan(o

--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=

3.若

,2cos sin cos sin =+-x

x x

x ,求sin x cos x 的值.

解:法一:因为

,2cos sin cos sin =+-x

x x

x

所以sin x -cos x =2(sin x +cos x ),

得到sin x =-3cos x ,又sin 2x +cos 2

x =1,联立方程组,解得 ,,???????=-=??

?

????-==1010cos 10

103sin 1010cos 10103sin x x x x 所以?-

=103

cos sin x x 法二:因为

,2cos sin cos sin =+-x

x x

x 所以sin x -cos x =2(sin x +cos x ),

所以(sin x -cos x )2=4(sin x +cos x )2

, 所以1-2sin x cos x =4+8sin x cos x , 所以有?-

=10

3cos sin x x 4.求证:tan 2

x ·sin 2

x =tan 2

x -sin 2

x .

证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2

x ,问题得证.

法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2

x ,问题得证. 5.求函数)6

π

2sin(

2+=x y 在区间[0,2]上的值域.

解:因为0≤x ≤2π,所以,6

π76π26π,π20≤+≤≤≤

x x 由正弦函数的图象, 得到],1,2

1

[)6π2sin(-∈+x

所以y ∈[-1,2]. 6.求下列函数的值域.

(1)y =sin 2

x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ).

解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2

x +cos x )+3,

令t =cos x ,则,4

13

)21(413)21(3)(],1,1[222

++-=++-=++-=-∈t t t t y t

利用二次函数的图象得到].4

13

,

1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2

-1-(sin x +cos x ),令t =sin x +cos x 2=,

)4π

sin(+x ,则]2,2[-∈t 则,,12--=t t y 利用二次函数的图象得到].21,4

5[+-∈y

7.若函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.

解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是4

1

个周期,这样求得

44

=T ,T =16,所以?=8πω

又由)28π

sin(22?+?=,得到可以取).4

π

8πsin(2.4

π+=

∴=x y ?

8.已知函数f (x )=cos 4x -2sin x cos x -sin 4

x .

(Ⅰ)求f (x )的最小正周期; (Ⅱ)若],2

π,0[∈x 求f (x )的最大值、最小值. 数x

x

y cos 3sin 1--=

的值域.

解:(Ⅰ)因为f (x )=cos 4

x -2sin x cos x -sin4x =(cos 2

x -sin 2

x )(cos 2

x +sin 2

x )-sin2x )4

π

2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x

所以最小正周期为π.

(Ⅱ)若]2π,0[∈x ,则]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8

π

3=x 时,

f (x )取最小值为.2-

1. 已知2tan =

θ,求(1)

θθθ

θsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.

解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-

+

=

++θθθ

θθθθθθ; (2) θ

+θθ+θθ-θ=θ+θθ-θ2

2222

2cos sin cos 2cos sin sin cos 2cos sin sin 3

2

4122221cos sin 2cos sin cos sin 222-=

++-=+θ

θ+θθ

-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。

2. 求函数2

1sin cos (sin cos )y x x x x =++++的值域。

解:设sin cos )[4

π

t x x x =+=

+∈,则原函数可化为

2213

1()24

y t t t =++=++

,因为[t ∈,所以

当t =

max 3y =,当12t =-时,min 3

4

y =,

所以,函数的值域为3

[34

y ∈+,。 3.已知函数2

()4sin 2sin 22f x x x x R =+-∈,。

(1)求()f x 的最小正周期、()f x 的最大值及此时x 的集合; (2)证明:函数()f x 的图像关于直线8

π

x =-

对称。 解:2

2

()4sin 2sin 222sin 2(12sin )f x x x x x =+-=--

2sin 22cos 2)4

πx x x =-=- (1)所以()f x 的最小正周期T π=,因为x R ∈,

所以,当2242ππx k π-

=+,即38

π

x k π=+时,()f x

最大值为 (2)证明:欲证明函数()f x 的图像关于直线8

π

x =-对称,只要证明对任意x R ∈,有

()()88

ππf x f x --=-+成立,

因为())]2)28842

ππππ

f x x x x --=---=--=-,

())]2)28842ππππ

f x x x x -

+=-+-=-+=-, 所以()()88ππf x f x --=-+成立,从而函数()f x 的图像关于直线8

π

x =-对称。

4. 已知函数y=21cos 2

x+2

3sinx ·cosx+1 (x ∈R ),

(1)当函数y 取得最大值时,求自变量x 的集合;

(2)该函数的图像可由y=sinx(x ∈R)的图像经过怎样的平移和伸缩变换得到?

解:(1)y=

21cos 2x+23sinx ·cosx+1=41 (2cos 2

x -1)+ 41+43(2sinx ·cosx )+1 =41cos2x+43sin2x+45=21(cos2x ·sin 6π+sin2x ·cos 6π)+45 =21sin(2x+6π)+4

5 所以y 取最大值时,只需2x+6π=2π+2k π,(k ∈Z ),即 x=6

π

+k π,(k ∈Z )。

所以当函数y 取最大值时,自变量x 的集合为{x|x=6

π

+k π,k ∈Z} (2)将函数y=sinx 依次进行如下变换:

(i )把函数y=sinx 的图像向左平移6π,得到函数y=sin(x+6

π

)的图像; (ii )把得到的图像上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数y=sin(2x+6π

)的图像;

(iii )把得到的图像上各点纵坐标缩短到原来的21倍(横坐标不变),得到函数y=21sin(2x+6

π

)的

图像;

(iv )把得到的图像向上平移45个单位长度,得到函数y=21sin(2x+6π)+4

5

的图像。 综上得到y=

21cos 2

x+2

3sinxcosx+1的图像。

历年高考综合题

一,选择题

1.(08全国一6)2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数

D .最小正周期为π的奇函数

2.(08全国一9)为得到函数πcos 3y x ?

?

=+

??

?

的图象,只需将函数sin y x =的图像( )

A .向左平移

π

6个长度单位 B .向右平移

π

6个长度单位 C .向左平移5π

6

个长度单位

D .向右平移5π

6

个长度单位

3.(08全国二1)若sin 0α<且tan 0α>是,则α是 ( ) A .第一象限角

B . 第二象限角

C . 第三象限角

D . 第四象限角

4.(08全国二10).函数x x x f cos sin )(-=的最大值为 ( ) A .1 B . 2 C .3 D .2

5.(08安徽卷8)函数sin(2)3

y x π

=+图像的对称轴方程可能是 ( )

A .6

x π

=-

B .12

x π

=-

C .6

x π

=

D .12

x π

=

6.(08福建卷7)函数y =cos x (x ∈R)的图象向左平移

2

π

个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 ( ) A.-sin x B.sin x C.-cos x D.cos x

7.(08广东卷5)已知函数2

()(1cos2)sin ,f x x x x R =+∈,则()f x 是 ( )

A 、最小正周期为π的奇函数

B 、最小正周期为

的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2

π

的偶函数

8.(08海南卷11)函数()cos 22sin f x x x =+的最小值和最大值分别为 ( )

A. -3,1

B. -2,2

C. -3,

32

D. -2,

32

9.(08湖北卷7)将函数sin()y x θ=-的图象F 向右平移

3

π

个单位长度得到图象F ′,若F ′的一条对称轴是直线,1

x π

=

则θ的一个可能取值是 ( )

A.

512π B.512π- C.1112

π D.1112π-

10.(08江西卷6)函数sin ()sin 2sin

2

x

f x x

x =+是 ( )

A .以4π为周期的偶函数

B .以2π为周期的奇函数

C .以2π为周期的偶函数

D .以4π为周期的奇函数

11.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则

MN 的最大值为 ( )

A .1

B

C

D .2

12.(08山东卷10

)已知πcos sin 6αα??-

+= ??

?7πsin 6α?

?+ ??

?的值是( )

A

.5

-

B

5 C .45-

D .45

13.(08陕西卷1)sin 330?等于 ( ) A

.-

B .12-

C .12

D

14.(08四川卷4)()2

tan cot cos x x x += ( ) A.tan x B.sin x C.cos x D.cot x 15.(08天津卷6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3

π

个单位长度,再把所得图象上所有点的横坐标缩短到原来的

1

2

倍(纵坐标不变),得到的图象所表示的函数是 ( ) A .sin 23y x x π??

=-

∈ ???

R , B .sin 26x y x π??

=+∈

???

R , C .sin 23y x x π??

=+

∈ ???

R , D .sin 23y x x 2π??

=+

∈ ??

?

R , 16.(08天津卷9)设5sin 7a π=,2cos 7b π=,2tan 7

c π

=,则 ( ) A .a b c <<

B .a c b <<

C .b c a <<

D .b a c <<

17.(08浙江卷2)函数2

(sin cos )1y x x =++的最小正周期是 ( )

A.

2

π B .π C.32π D.2π

18.(08浙江卷7)在同一平面直角坐标系中,函数])20[)(2

32cos(ππ

,∈+=x x y 的图象和直线2

1

=y 的交点个数是 ( )

A.0

B.1

C.2

D.4 二,填空题

19.(08北京卷9)若角α的终边经过点(12)P -,,则tan 2α的值为 . 20.(08江苏卷1)()cos 6f x x πω?

?

=-

??

?

的最小正周期为

5

π,其中0ω>,则ω= . 21.(08辽宁卷16)设02x π??

∈ ???

,,则函数22sin 1sin 2x y x +=的最小值为 .

22.(08浙江卷12)若3

sin(

)25

π

θ+=,则cos 2θ=_________。 23.(08上海卷6)函数f (x )=3sin x +sin(π

2+x )的最大值是

三,解答题

24. (08四川卷17)求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值。

25. (08北京卷15)已知函数2π()sin sin 2f x x x x ωωω??

=+

??

?

(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03??????

,上的取值范围.

26. (08天津卷17)已知函数2

2s (in cos s 1)2co f x x x x ωωω++=(,0x R ω∈>)的

最小值正周期是

2

π

. (Ⅰ)求ω的值; (Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合.

27. (08安徽卷17)已知函数()cos(2)2sin()sin()344

f x x x x π

ππ

=-

+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122

ππ

-上的值域

28. (08陕西卷17)已知函数2()2sin cos 444

x x x

f x =-+. (Ⅰ)求函数()f x 的最小正周期及最值;

(Ⅱ)令π()3g x f x ?

?

=+

??

?

,判断函数()g x 的奇偶性,并说明理由. 1.D 2.C 3.C 4.B 5.B 6.A 7.D 8.C 9.A 10.A 11.B 12.C 13.B 14.D 15.C 16.D 17.B 18.C 19.

34 20. 10 21.3 22. 25

7- 23.2 24. 解:2474sin cos 4cos 4cos y x x x x =-+-

()2272sin 24cos 1cos x x x =-+-

2272sin 24cos sin x x x =-+ 272sin 2sin 2x x =-+ ()2

1sin 26x =-+

由于函数()216z u =-+在[]11-,中的最大值为

()2

max 11610z =--+= 最小值为

()2

min 1166z =-+=

故当sin 21x =-时y 取得最大值10,当sin 21x =时y 取得最小值6

【点评】:此题重点考察三角函数基本公式的变形,配方法,符合函数的值域及最值; 【突破】:利用倍角公式降幂,利用配方变为复合函数,重视复合函数中间变量的范围是关键;

25. 解:(Ⅰ)1cos 2()22x f x x ωω-=

11

2cos 222

x x ωω=-+

π1sin 262x ω?

?=-+ ??

?.

因为函数()f x 的最小正周期为π,且0ω>, 所以

π2ω

=,解得1ω=.

(Ⅱ)由(Ⅰ)得π1()sin 262

f x x ??=-

+ ??

?. 因为2π03

x ≤≤, 所以ππ7π2666

x --≤≤,

所以1πsin 2126x ??-

- ??

?≤≤, 因此π130sin 2622x ?

?-+ ??

?≤≤,即()f x 的取值范围为302??

????

,. 26. 解:

()2

42sin 22

4sin 2cos 4cos 2sin 22

2cos 2sin 12sin 2

2cos 12+??? ?

?

+=+??? ??

+=++=+++?

=πωπωπωωωωωx x x x x x x

x f 由题设,函数()x f 的最小正周期是2

π,可得

222π

ωπ=,所以2=ω. (Ⅱ)由(Ⅰ)知,()244sin 2+??? ??

+=

πx x f .

当ππ

π

k x 22

4

4+=

+

,即()Z k k x ∈+

=

216ππ

时,??? ?

?+44sin πx 取得最大值1,所以函数()x f 的最大值是22+,此时x 的集合为?

??

???∈+=Z k k x x ,216|ππ

27. 解:(1)

()cos(2)2sin()sin()344

f x x x x πππ

=-+-+

1cos 2sin 2(sin cos )(sin cos )22x x x x x x =

++-+

221cos 22sin cos 2x x x x =

++-

1cos 22cos 22x x x =

-

sin(2)6

x π

=- 2T 2

π

π=

=周期∴ (2)

5[,],2[,]122636

x x ππ

πππ

∈-

∴-∈- 因为()sin(2)6

f x x π

=-在区间[,]123ππ-

上单调递增,在区间[,]32

ππ

上单调递减,

所以 当3

x π

=

时,()f x 取最大值 1

1()()12

22f f π

π-

=<=,

∴当12x π=-时,()f x 取最小值所以 函数 ()

f x 在区间[,]122ππ

-

上的值域为[

28. 解:(Ⅰ)

()f x sin

22x x =+π2sin 23x ??=+ ???

. ()f x ∴的最小正周期2π

4π12

T =

=. 当πsin 123x ??+=-

???时,()f x 取得最小值2-;当πsin 123x ??

+= ???

时,()f x 取得最大值2.

(Ⅱ)由(Ⅰ)知π()2sin 23x f x ??=+

???.又π()3g x f x ?

?=+ ??

?.

∴1ππ()2sin 233g x x ????=++ ????

???π2sin 22x ??

=+ ???2cos 2x =.

()2cos 2cos ()22x x g x g x ??

-=-== ???

∴函数()g x 是偶函数.

常用三角恒等变换技巧

1 “角变换”技巧

角变换的基本思想是,观察发现问题中出现的角之间的数量关系,把“未知角”分解成“已知角”的“和、差、倍、半角”,然后运用相应的公式求解。

例1 已知534cos =??

? ??

+πx ,4743ππ<

π

+

x ,而“未知角”是x 和x 2,注意到4

π-??? ?

?

+

=x x ,可直接运用相关公式求出x sin 和x cos 。 【简解】因为ππ4743<

π24

<+=???

?

?

+

πx ,所以πππ2423<+

?+πx 10274sin 4cos 4cos 4sin 44sin sin -

=??? ??

+-??? ??+=??????-??? ?

?+=ππππππx x x x , 从而10

2

cos -=x ,7tan =x . 原式=

7528tan 1sin 2cos sin 22-=-+x x x x . 【反思】(1)若先计算出10

2

cos -

=x ,则在计算x sin 时,要注意符号的选取;(2)本题的另一种自然的思路是,从已知出发,用和角公式展开,结合“平方关系”通过解二元二次方程组求出x s i n 和x cos . 但很繁琐,易出现计算错误;(3)本题也可由

2

422π

π-??? ??+=x x ,运用诱导公式和倍角公式求出x 2sin 。

例2 已知)tan()tan(βαλβα-=+,其中1≠λ,求证:

1

1

2sin 2sin -+=λλβα

【分析】所给条件中出现的“已知角”是βα+与βα-,涉及的“未知角”是α2与β2,将三个角比较分析发现)()(2βαβαα-++=,)()(2βαβαβ--+=,把“未知”角转化为两个“已知”角的代数和,然后用相关公式求解。 【简证】

()()[]()()[]

βαβαβαβαβα--+-++=sin sin 2sin 2sin )

sin()cos()cos()sin()

sin()cos()cos()sin(βαβαβαβαβαβαβαβα-+--+-++-+=

)tan()tan()tan()tan(βαβαβαβα--+-++=

1

1

)tan()tan()tan()tan(-+=

----+-=λλβαβαλβαβαλ 【反思】(1)以上除了用到了关键的角变换技巧以外,还用到了“弦化切”技巧.;(2)本题也可由已知直接求出αtan 与βtan 的关系,但与目标相差甚远,一是函数名称不同,二是角不同,所以较为困难;(3)善于发现所求的三角函数的角与已知条件的角的联系,是有效进行角变换的前提。常用的角变换关系还有: ()ββαα-+=,()ββαα+-=,

()ββαβα-+=+22,()ββαβα+-=-22,)4

(24απ

παπ--=+,

?+?=?304575等.

2 “名变换”技巧

名变换是为了减少函数名称或统一函数而实施的变换,需要进行名变换的问题常常有明显的特征,如已知条件中弦、切交互呈现时,最常见的做法是“切弦互化”,但实际上,诱导公式、倍角公式和万能置换公式,平方关系也能进行名变换。

例3 已知向量)1,tan 1(x a -=,)0,2cos 2sin 1(x x b ++=,求b a x f ?=)(的定义域和值域;

【分析】易知)2cos 2sin 1)(tan 1()(x x x x f ++-=,这是一个“切弦共存”且“单、倍角共在”的式子,因此既要通过“切化弦”减少函数名称,又要用倍角公式来统一角,使函数式更简明。

【简解】)2cos 2sin 1)(tan 1()(x x x x f ++-=

()

1cos 2cos sin 21cos sin 12

-++??

? ??-

=x x x x x ()()x x x x sin cos sin cos 2+-= x 2cos 2= 由0cos ≠x 得,Z k k x ∈+

≠,2

π

π,22cos 2-≠x

所以,x x f 2cos 2)(=.的定义域是?

??

?

??∈+

≠Z k k x x ,2π

π,值域是(]2,2-. 【反思】本题也可以利用万能置换公式先进行“弦化切”,变形后再进行“切化弦”求解. 例4 已知βα,都是锐角,且ααααβcos sin cos sin tan +-=

,求α

αβcos sin sin -的值。

【分析】已知条件中,等式的右边是分式,符合和差解的正切公式特征,可考虑“弦化

切”,另一方面,若是“切化弦”,则很快出现待求式,与目标很近.

【简解1】显然0cos ≠α时,??? ??-=+-=+-=4tan 4tan tan 14tan

tan 1cos 1cos sin tan παπαπ

αααααβ,

因为βα,都是锐角,所以4

π

αβ-=,

所以,

22

4sin 2sin cos sin sin =

?

?? ?

?

-=

-αβα

αβ

. 【简解2】由

α

αααββcos sin cos sin cos sin +-=

得,ααβ

ααβcos sin cos cos sin sin +=-, 设

A =+=-α

αβ

ααβcos sin cos cos sin sin ,则

()()[]

2

2222cos sin cos sin cos sin ααααββ++-=+A ,

所以,122

=A ,2

2

=

A ,即22cos sin sin =

-ααβ. 【反思】简解1说明当分子分母都是同角的正弦、余弦的齐次式时,很容易“弦化切”;简

解2很巧妙,其基本思想是整体换元后利用平方关系消元. 3 “常数变换”技巧 在三角恒等变形过程中,有时需将问题中的常数写成某个三角函数值或式,以利于完善式子

结构,运用相关公式求解,如 x x 22cos sin 1+=,?

=45tan 1,3

tan

=等.

例5 (1)求证: 2

3

cos sin 1cos sin 14

466=----x x x x ;(2)化简:x x 2cos 32sin +. 【分析】第(1)小题运用()

3

22cos sin 1x x +=和()

2

22cos sin 1x x +=把分子、分母都变成齐次式后进行转化;第(2)小题实际上是把同一个角的正弦、余弦的代数和化为熟悉的

()?ω+=x A y sin 的形式,有利于系统研究函数的图象与性质. 【简解】(1)左边=x

x x x x

x x x 4422266322cos sin )cos (sin cos sin )cos (sin --+--+

2

3cos sin 2)cos (sin cos sin 32

22222=+=x x x x x x . (2)原式=x x 2cos 3

tan

2sin π

+

x x 2cos 3

cos 3sin

2sin ?+

π3

cos

3sin

2cos 3

cos

2sin π

π

π

x x +=?

?? ?

?+=32sin 2πx

【反思】“1”的变换应用是很多的,如万能置换公式的推导,实际上是利用了

x x 22cos sin 1+=把整式化成分式后进行的,又如例4中,也是利用了?=45tan 1,把分

式变成了整式.

4 “边角互化”技巧

解三角形时,边角交互呈现,用正、余弦定理把复杂的边角关系或统一成边,运用代数运算方法求解,或统一成角,运用三角变换求解.

例6 在ABC ?中,a b c 、、分别为角A B C 、、的对边,且2a sin A = (2b +c ) sin B + (2c +b )

sin C ,

(1)求角A 的大小;

(2)若sin sin 1B C +=,证明ABC ?是等腰三角形.

【分析】本题的条件集三角形的六元素于一身,看似复杂,但等式是关于三边长和三个角的正弦的齐次式,所以可用正弦定理把“角”化为边或把边化为“角”来求解。

【简解】(1)(角化边)由正弦定理

C

c

B b A a sin sin sin ==得, c b c b c b a )2()2(22+++=,整理得,bc c b a ++=2

22,

所以2

12cos 222-=-+=bc a c b A ,因为π<

=A .

(2)法一:(边化角)由已知和正弦定理得,

C B C B C B A sin )sin sin 2(sin )sin sin 2(sin 22

+++=

即C B C B A sin sin 2)sin (sin 2sin 22

2-+=,从而4

1sin sin =

C B , 又sin sin 1B C +=,所以2

1sin sin ==C B . 所以C B =,ABC ?是等腰三角形. 法二:由(1)知3

π

=

+C B ,B C -=

3

π

,代入sin sin 1B C +=得,

1sin 21cos 23sin =-+

B B B ,所以13sin =???

??+B π,23ππ=+B ,

所以6

π

=

B ,6

π

=

C ,ABC ?是等腰三角形.

【反思】第(1)小题“化角为边”后,把已知条件转化为边的二次齐次式,符合余弦定理

的结构,第(2)小题的法一之所以“化边为角”,是因为不易把条件sin sin 1B C +=化为边的关系,而把条件2sin (2)sin (2)sin a A b c B c b C =+++转化为边的关系却很容易;法二的基本思路是消元后统一角,再利用“化一公式”简化方程.

5 “升降幂变换”技巧 当所给条件出现根式时,常用升幂公式去根号,当所给条件出现正、余弦的平方时,常用“降

幂”技巧,常见的公式有:2

2cos 2sin sin 1??

? ??±=±x x x ,2cos 2cos 12x x =+,

2

sin 2cos 12

x

x =-,可以看出,从左至右是“幂升角变半”,而从右至左则是“幂降角变倍”.

例7 化简:6sin 16sin 1-++ 【分析】含有根号,需“升幂”去根号. 【简解】原式=+++3cos 3sin 23cos 3sin 223cos 3sin 23cos 3sin 22-+

=3cos 3sin 3cos 3sin -++

因为

ππ<<343,所以043sin 23cos 3sin

?

+=+π,03cos 3sin >-, 所以,原式3cos 2)3cos 3(sin )3cos 2(sin -=-++-=.

例8 求函数2π()2sin 24f x x x ??=+

???,ππ42x ??

∈????

,的最大值与最小值. 【分析】函数式中第一项是正弦的平方,若“降幂”后“角变倍”,与第二项的角一致..

【简解】π()1cos 221sin 222f x x x x x ??

??=-+=+

???????

∵ π12sin 23x ?

?=+- ??

?.

又ππ42x ??

∈????

,∵,ππ2π

2633x -∴≤≤,即π212sin 233x ?

?

+- ???≤≤,

max min ()3()2f x f x ==,∴.

【反思】以上两例表明,“升降幂技巧”仅仅是解题过程中的一个关键步骤,只有有效地整

合各种技巧与方法才能顺利地解题。如例7中用到了常数“变换技巧”,例8中用到了“辅助角”变换技巧.

6 “公式变用”技巧

几乎所有公式都能变形用或逆向用,如αααcos 22sin sin =

,α

α

αsin 22sin cos =,

()()βαβαβαtan tan 1tan tan tan ±=±等,实际上,“常数变换”技巧与“升降幂”技

巧等也是一种公式变用或逆用技巧.

例9 求值:(1)????80cos 60cos 40cos 20cos ; (2)??-?-?10tan 70tan 310tan 70tan 。

【分析】第(1)小题中,除?60是特殊角外,其他角成倍角,于是考虑使用倍角公式;第(2)小题中两角差为?60,而3是两角差的正切值,所以与两角差的正切公式有关。 【简解】(1)原式=

16

1

20sin 16160sin 80sin 2160sin 60cos 40sin 280sin 20sin 240sin =??=???????。

(2)原式=??-??+?-?10tan 70tan 3)10tan 70tan 1)(1070tan(=3。 【反思】第(1)小题的一般性结论是: ()

*1

sin 22sin 2

cos 2cos cos N n n n n ∈=-α

α

ααα .

例10 求证:[]n x

nx

nx x n x x x x -=

-+++tan tan tan )1(tan 3tan 2tan 2tan tan 。 【分析】左边通项是两角正切的积,且两角差为定值,而在正切的和、差角公式中出现了两角正切的积,可尝试.

【简证】因为()[]x

k kx x

k kx x k kx x )1tan(tan 1)1tan(tan 1tan tan -+--=

--=,n k ,,4,3,2 =

所以1tan )1tan(tan tan )1tan(---=

-x

x

k kx kx x k ,

左边=

x x x tan tan 2tan -x x x tan 2tan 3tan -+x x x tan 3tan 4tan -+n x

x

n nx ---++tan )1tan(tan =

n x

nx

-tan tan 【反思】这里通过“角变换”和公式变形得出裂项公式,然后累加消项,这也是数列求和的一种常见技巧.

7 “辅助角变换”技巧 通常把)sin(cos sin 22?++=

+x b a x b x a 叫做辅助角公式(也叫化一公式)

,其作用是把同角的正弦、余弦的代数和化为()?ω+=x A y sin 的形式,来研究其图象与性质. 尤其

是当

1±=b a ,3±,33±时,要熟记其变换式,如??? ?

?

+=+4(sin 2cos sin πx x x ,??? ?

?

-=-6(sin 2cos sin 3πx x x 等.

例11 求函数x

x

y cos 3sin 1++=

的值域.

【分析】初看此题,似无从下手,若把分式变成整式,就出现了x b x a cos sin +,然后利用三角函数的有界性建立关于y 的不等式.

【简解】由x

x

y cos 3sin 1++=

得x x y y sin 1cos 3+=+,所以13cos sin -=-y x y x ,

从而13)sin(12

-=++y x y ?,

其中辅助角?由2

1sin y

y +-

=?,2

11cos y

+=

?决定.

所以,由()1113sin 2

≤+-=

+y y x ?解得4

30≤

≤y . 【反思】(1)解答本题的方法很多,比较多用的方法是类比斜率计算公式,把问题转化为直线斜率问题,也有用万能置换后,转化为分式函数求解的.(2)辅助角公式的形成,也可以

看成是“常数变换”的结果. 事实上,

x b x a cos sin +=??

?

??

+x a b x a cos sin ,

可设?tan =a b ,再进行“切化弦”变换,就得到了“化一公式”..

8 “换元变换”技巧

有些函数,式子里同时出现x x cos sin +(或x x cos sin -)与x x cos sin ,这时,可设

x x t cos sin +=(或x x t cos sin -=),则21cos sin 2-=t x x (或2

1cos sin 2

t x x -=),

把三角函数转化为熟悉的函数来求解. 例12 求函数???

?

????? ??∈++?=

2,0cos sin 1cos sin πx x x x x y 的值域. 【分析】同时出现x x cos sin +与x x cos sin 时,可用()x x x x cos sin 21cos sin 2

+=+. 【简解】设t x x =+cos sin ,因为2

≤x ,??? ?

?

+=

4(sin 2πx t ,所以]2,1(∈t ,

又由()x x x x cos sin 21cos sin 2

+=+得,2

1

cos sin 2-=t x x ,

所以,2

1

121

cos sin 1cos sin 2-=

+-=++?=t t t x x x x y , 由]2,1(∈t 得,2

1

20-≤

+=+应用广泛,如在解答命题“已知θsin ,

θcos 是方程012=++-k kx x 的两根,求k 的值.”时,关键步骤是在运用韦达定理后,

利用变式消元后求解。 例13 求证:

zx

x

z yz z y xy y x zx x z yz z y xy y x +-?

+-?+-=+-++-++-111111。 【分析】所证等式中每个分式与两角差的正切相似,而所证等式与三角形中的结论

C B A C B A tan tan tan tan tan tan =++相似,从而尝试换元,利用三角知识证代数问题。 【简解】设z y x ===γβαtan ,tan ,tan ,因为()()γαγββα-=-+-, 所以()()[]()γαγββα-=-+-tan tan ,

()()()()

()γαγββαγββα-=----+-tan tan tan 1tan tan ,

变形整理得()()()=-+-+-αγγββαtan tan tan ()()()αγγββα---tan tan tan

所以,

α

γα

γγβγββαβαtan tan 1tan tan tan tan 1tan tan tan tan 1tan tan +-++-++-

αγα

γγβγββαβαtan tan 1tan tan tan tan 1tan tan tan tan 1tan tan +-?+-?+-=

即,

zx

x

z yz z y xy y x zx x z yz z y xy y x +-?+-?+-=+-++-++-111111 【反思】本题解法也体现了类比思维的作用,若用常规方法处理,则运算十分繁琐. 9 “万能置换”技巧

“万能置换”技巧,实际从属于“名变换”技巧,其特征是用半角的正切值表示原角的正弦、余弦与正切. 例14 讨论函数2

12x x

y +=

的最大值与最小值.

【分析】本题可通过求导或利用基本不等式求解. 但类比函数式的结构与万能置换公式

2

tan 12tan

2sin 2

x

x

x +=

相同,于是问题得到转化. 【简解】设()ππ<<-=t t x 2tan ,则2

12x

x y +=t t t

sin 2

tan 12tan

22

=+=, 当且仅当2π=t 也就是14

tan ==π

x 时,1max =y ,

当且仅当2

π

-

=t 也就是14tan -=??

?

??-

=πx 时,1min -=y . 【反思】(1)当问题条件中出现单角的正切与倍角三角函数问题时,可考虑使用万能置换公式;(2)运用万能置换技巧既可以把代数问题转化成三角函数问题,也可以把三角问题转化

为代数问题,如例11中,可设2tan

x

t =,则4

2

tan 212tan 22tan cos 3sin 122

+++=++=x x

x x

x y ,即

4

2122

2+++=t t t y ,然后可用判别式法求解.

三角函数恒等变换(整理)

高考数学(文)难题专项训练:三角函数及三角恒等变换 1.已知O 是锐角三角形△ABC 的外接圆的圆心,且θ=∠A 若 AO m AC B C AB C B 2sin cos sin cos =+则=m ( ) A .θsin B. θcos C. θtan D. 不能确定 2.设函数)(x f 的定义域为D ,若存在非零实数l 使得对于任意)(D M M x ?∈,有 D l x ∈+,且)()(x f l x f ≥+,则称)(x f 为M 上的高调函数. 现给出下列命题: ①函数x x f -=2 )(为R 上的1高调函数; ②函数x x f 2sin )(=为R 上的高调函数; ③如果定义域为),1[+∞-的函数2 )(x x f =为),1[+∞-上m 高调函数,那么实数m 的取值范围是),2[+∞; ④函数)12lg()(+-=x x f 为),1[+∞上的2高调函数. 其中真命题的个数为( ) A .0 B .1 C .2 D .3 3. 已知)(x f 是定义在)3,3(-上的奇函数,当30<

4. 在ABC ?中,角C B A ,,所对的边分别为c b a ,,且c b a b 2sin 2sin log log ,22<>, bc a c b 3222+=+,若0

(完整版)三角函数恒等变换高一

三角函数恒等变换 ()sin sin cos cos sin sin 22sin cos 令αβ αβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αααβα αβααβα αα αα=±=???→=-↓=-=-±±= ?-↓= -m m 说明:和差角公式和二倍角公式主要用于诱导公式无法使用的复合角求值问题,对于已知部分,要尽量和所求部分找出角度之间的关系。公式优先级:二倍角》诱导公式》和差角。 题型一,和差角公式的直接应用 分为展开计算和合并计算两类。对于展开计算即给角求角问题,无论所给的是否为单角,一律看成单角并用其凑出所求角;合并计算针对于给出正余弦的和差式,要想法朝角度的和差角展开式式凑,具体为先统一为两角再合并。 1计算: (1)??+??20sin 80sin 20cos 80cos = ; (2)??+??55cos 10cos 35cos 80cos = ; (3)cos 5πcos 103π-sin 5πsin 103π= ; (4)-sin 3πcos 6π+sin 6πcos 3π =__________; (5) sin 2πcos 6π-cos 2πsin 6π = _________ ; (6)cos 3πcos 6π+sin 6πsin 3π =____________; (7)cos 4πcos 2π-sin 2πsin 4 π =_____________;

三角函数及恒等变换高考题大全

三角函数题型分类总结 一.求值 1、sin330?= tan690° = o 585sin = 2、(1)(07全国Ⅰ) α是第四象限角,12 cos 13 α= ,则sin α= (2)(09北京文)若4 sin ,tan 05 θθ=->,则cos θ= . (3)(09全国卷Ⅱ文)已知△ABC 中,12 cot 5 A =- ,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) (07陕西) 已知sin ,5 α= 则44sin cos αα-= . (2)(04全国文)设(0,)2 π α∈,若3sin 5α= )4 π α+= . (3)(06福建)已知3( ,),sin ,25π απα∈=则tan()4 π α+= 4(07重庆)下列各式中,值为 2 3 的是( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5. (1)(07福建) sin15cos75cos15sin105+o o o o = (2)(06陕西)cos 43cos77sin 43cos167o o o o += 。 (3)sin163sin 223sin 253sin 313+=o o o o 。 6.(1) 若sin θ+cos θ= 1 5 ,则sin 2θ= (2)已知3 sin()45 x π-=,则sin 2x 的值为 (3) 若2tan =α ,则 α αα αcos sin cos sin -+= 7. (08北京)若角α的终边经过点(12)P -,,则αcos = tan 2α= 8.(07浙江) 已知cos( )2 π ?+= ,且||2 π ?<,则tan ?= 9. 若 cos 2π2sin 4αα=- ?? - ? ? ?cos sin αα+=

三角函数恒等变换练习题与答案详解

两角和与差的正弦、余弦、正切 1. 利用两角和与差的正弦、余弦、正切公式进行三角变换;2?利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2?灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键? 知识点回顾 1 ?两角和与差的余弦、正弦、正切公式 cos( a—0)= cos acos0+ sin ocsin0(C a- 0 cos( a+ 0)= cos. acos _ 0— sin__ asin_ 0(C a+ 0 sin( a—0 = sin a cos0- cos ocsin (S a—0 sin( a+ 0 = sin a cos0+ cos ocsin0(S a+ 0 tan a—tan 卩 tan( a—? ;(T a—0 1 + tan atan 卩 tan a+ tan 卩 tan(%+ ? = (T a + 0 1 —tan %tan 0 2 ?二倍角公式 sin 2 a= 2sin : cos:; cos 2 a= cos2a—sin2a= 2cos 2a—1 = 1 —2sin2a; 2ta n a tan 2 a= . 1 —tan a 3 ?在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等?如 T a±0可变形为 tan a± tan 0= tan( a± 0(1? tan_ %tan_ 0, tan a+ tan 0 tan a—tan 0 tan %tan 0= 1 —= —1. tan a+ 0 tan a—0 4 ? 函数f( a= a cos a+ b sin a(a, b 为常数),可以化为f( a = \i a2+ b2sin( a+ 0)或f( %)=':::[a2+

高考真题 三角函数的概念、诱导公式与三角恒等变换

三角函数的概念、诱导公式与三角恒等变换 2019年 1.(2019北京9)函数f (x )=sin 2 2x 的最小正周期是 ________. 2.(2019全国Ⅲ理12)设函数()f x =sin (5 x ωπ + )(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0, 10 π )单调递增 ④ω的取值范围是[1229 510 ,) 其中所有正确结论的编号是 A . ①④ B . ②③ C . ①②③ D . ①③④ 3.(2019天津理7)已知函数()sin()(0,0,||)f x A x A ω?ω?π=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π ,且π4g ??= ???3π8f ?? = ??? A.2- B. D.2 4.(2019全国Ⅱ理10)已知α∈(0, 2 π),2sin 2α=cos 2α+1,则sin α= A . 15 B . 5 C . 3 D 5 5.(2019江苏13)已知tan 2 π3tan 4αα=-? ?+ ?? ?,则πsin 24α??+ ?? ?的值是_________. 6.(2019浙江18)设函数()sin ,f x x x =∈R . (1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;

(2)求函数22[()][()]124 y f x f x ππ =+ ++ 的值域. 2010-2018年 一、选择题 1.(2018全国卷Ⅲ)若1 sin 3 α=,则cos2α= A . 89 B . 79 C .79 - D .89 - 2.(2016年全国III )若3 tan 4 α= ,则2cos 2sin 2αα+= A . 6425 B .4825 C .1 D .1625 3.(2016年全国II )若3 cos( )45π α-=,则sin 2α=( ) A .7 25 B .15 C .15- D .725- 4.(2015新课标Ⅰ)sin 20cos10cos160sin10-= A . B C .12- D .1 2 5.(2015重庆)若tan 2tan 5 π α=,则 3cos()10sin() 5 π απ α- -= A .1 B .2 C .3 D .4 6.(2014新课标Ⅰ)若0tan >α,则 A .0sin >α B . 0cos >α C . 02sin >α D . 02cos >α 7.(2014新课标Ⅰ)设(0, )2π α∈,(0,)2 π β∈,且1sin tan cos βαβ+= ,则 A .32 π αβ-= B .22 π αβ-= C .32 π αβ+= D .22 π αβ+= 8.(2014江西)在ABC ?中,内角A ,B ,C 所对应的边分别为,,,c b a ,若32a b =,则 2222sin sin sin B A A -的值为( ) A .19- B . 13 C .1 D .72

三角函数恒等变换练习题与答案详解

两角和与差的正弦、余弦、正切 1.利用两角和与差的正弦、余弦、正切公式进行三角变换; 2.利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2.灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键. 知识点回顾 1. 两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β 1+tan αtan β (T α-β) tan(α+β)=tan α+tan β 1-tan αtan β (T α+β) 2. 二倍角公式 sin 2α=ααcos sin 2; cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α 1-tan 2α . 3. 在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如 T α±β可变形为 tan α±tan β=tan(α±β)(1?tan_αtan_β), tan αtan β=1-tan α+tan βtan α+β=tan α-tan β tan α-β-1. 4. 函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)= a 2+ b 2sin(α+φ)或f (α)=a 2+b 2cos(α -φ),其中φ可由a ,b 的值唯一确定.

三角函数恒等变换复习

三角函数 1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β,(C (α-β)) cos(α+β)=cos αcos β-sin αsin β,(C (α+β)) sin(α-β)=sin αcos β-cos αsin β,(S (α-β)) sin(α+β)=sin αcos β+cos αsin β,(S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β ,(T (α-β)) tan(α+β)=tan α+tan β1-tan αtan β .(T (α+β)) 2.二倍角公式 sin 2α=2sin αcos α; cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α . 3.降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2 . 4.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中sin φ=b a 2+ b 2,cos φ= a a 2+ b 2. 练习题: 1.sin 18°cos 27°+cos 18°sin 27°的值是( ) A.22 B.12 C.32 D .-22 2.(2016·全国丙卷)若tan α=34 ,则cos 2α+2sin 2α等于( ) A.6425 B.4825 C .1 D.1625 3.在△ABC 中,A =π4,cos B =1010 ,则sin C 等于( ) A.255 B .-255 C.55 D .-55 4.若函数f (x )=-sin 2 x +12 (x ∈R),则f (x )是( ) A .最小正周期为π2 的奇函数 B .最小正周期为π的奇函数

三角函数恒等变换

§6.3 两 角 和 与 差 的 三 角 函 数 【复习目标】 1.掌握两角和与差的三角函数公式,掌握二倍角公式; 2.能正确地运用三角函数的有关公式进行三角函数式的求值. 3.能正确地运用三角公式进行三角函数式的化简与恒等式证明. 【双基诊断】 (以下巩固公式) 1、163°223°253°313°等于 ( ) A.-2 1 B.2 1 C.- 2 3 D. 2 3 2、在△中,已知2,那么△一定是 ( ) A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形 3、??-?70sin 20sin 10cos 2的值是 ( ) A.2 1 B. 2 3 C. 3 D.2 4、已知α-β=2 1,α-β=3 1,则(α-β).

5、已知5 3sin ),,2 (=∈αππα,则=+)4 tan(πα 。 6、若 t =+)sin(απ,其中α是第二象限的角,则 =-)cos(απ 。 7、化简 1tan151tan15 +-等于 ( ) ()A () B () C 3 () D 1 8、(1tan 20)(1tan 21)(1tan 24)(1tan 25)++++= ( ) ()A 2 ()B 4 ()C 8 ()D 16 9、已知α和(4 π-α)是方程2 0的两个根,则a 、b 、c 的关系是 ( ) B.2 10、0015tan 75tan += 。 11、设14°14°,16°16°, 6 6,则a 、b 、c 的大小关系是 ( ) <b <c <c <b <c <a <a <c 12、△中,若2a ,60°,则.

13、f (x )= x x x x cos sin 1cos sin ++的值域为 ( ) A.(-3 -1,-1)∪(-1, 3 -1) B. (21 3-- ,2 13-) C.[2 1 2--,-1]∪(-1, 2 12-) D. [21 2-- ,2 12-] 14、已知∈(0,2 π),β∈(2 π,π),(α+β)=65 33,β=- 13 5 ,则α. 15、下列各式中,值为2 1的是 ( ) 15°15° B.2 2 12 π- 1 C. 2 30cos 1? + D. ? -?5.22tan 15.22tan 2 16、已知2θ 2θ3 32,那么θ的值为,2θ的值为. 17、=000080cos 60cos 40cos 20cos 。

简单三角恒等变换典型例题

简单三角恒等变换 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )cos(sin sin cos cos βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα2 2 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 cos 2cos 12α α=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα 2cos 2 4cos 12=+】 α ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是 2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2 sin 2cos 12α α=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα 2sin 2 4cos 12=-】

三角函数恒等变换知识点总结

三角函数 三角恒等变换知识点总结 一、角的概念和弧度制: (1)在直角坐标系讨论角: 角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。 (2)①与α角终边相同的角的集合:},2|{},360|{0 Z k k Z k k ∈+=∈+=απββαββ或 与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ; ②一些特殊角集合的表示: 终边在坐标轴上角的集合: ; 终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ; (3)区间角的表示: ①象限角:第一象限角: ;第三象限角: ; 第一、三象限角: ; ②写出图中所表示的区间角: (4)正确理解角: 要正确理解“o o 90~0间的角”= ; “第一象限的角”= ;“锐角”= ; “小于o 90的角”= ; (5)由α的终边所在的象限,通过 来判断2 α 所在的象限。 来判断 3 α 所在的象限 (6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一

已知角α的弧度数的绝对值r l = ||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。注意钟表指针所转过的角是负角。 (7)弧长公式: ;半径公式: ; 扇形面积公式: ; 二、任意角的三角函数: (1)任意角的三角函数定义: 以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个 异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ; =αtan ;=αcot ;=αsec ;=αcsc ; 如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线; 比较)2 , 0(π ∈x ,x sin ,x tan ,x 的大小关系: 。 (三、同角三角函数的关系与诱导公式: (1)同角三角函数的关系

三角函数恒等变换_题型总结(学生用书)

三角函数恒等变换题型、方法总结 1.两角和与差的三角函数 βαβαβαsin cos cos sin )sin(±=±; βαβαβαsin sin cos cos )cos( =±; tan tan tan()1tan tan αβαβαβ ±±= 。 2.二倍角公式 αααcos sin 22sin =; ααααα2222sin 211cos 2sin cos 2cos -=-=-=; 22tan tan 21tan ααα =-。 3.三角函数式的化简 常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。 (2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。 (1)降幂公式 ααα2sin 21cos sin =;22cos 1sin 2αα-=;2 2cos 1cos 2αα+=。 (2)辅助角公式 ()sin cos sin a x b x x ?+=+, sin cos ??==其中 4.三角函数的求值类型有三类 (1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题; (2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论; (3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。 5.三角等式的证明 (1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”; (2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

三角函数和三角恒等变换知识点及题型分类总结

三角函数知识点总结 1、任意角。 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 3、与角α终边相同的角的集合为 4、 叫做1弧度. 5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 6、弧度制与角度制的换算公式 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则L= . S= 8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是 () 220r r x y =+>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限 余弦为正. 10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、同角三角函数的基本关系:(1) ;(2) 。 12、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ???.()6sin cos 2παα??+= ???,cos sin 2παα??+=- ???. 口诀:奇变偶不变,符号看象限. 重要公式 ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβ αβαβ ++= -(()()tan tan tan 1tan tan αβαβαβ+=+-).

高中数学函数、三角函数、三角恒等变换公式

函数、三角函数、三角恒等变换重要公式 1. B A = {|,}x x A x B ∈∈或 ;B A = {|,}x x A x B ∈∈且; {|,}U C A x x U x U =∈?且 2、 当n 为奇数时, a a n n =;当n 为偶数时,a a n n =. 3、 ⑴m n m n a a =()1,,,0*>∈>m N n m a ; ⑵()01 >= -n a a n n ; 4、 运算性质: ⑴()Q s r a a a a s r s r ∈>=+,,0;⑵()()Q s r a a a rs s r ∈>=,,0;⑶()()Q r b a b a ab r r r ∈>>=,0,0. 5、指数函数解析式:()1,0≠>=a a a y x 6、指数函数性质: 7、指数与对数互化式:log x a a N x N =?=; 8、对数恒等式:log a N a N = 9、基本性质:01log =a ,1log =a a . 10、运算性质:当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=;⑵N M N M a a a log log log -=?? ? ??;⑶M n M a n a log log =. 11、换底公式:a b b c c a log log log = ()0,1,0,1,0>≠>≠>b c c a a . 12、重要公式:log log n m a a m b b n = 13、倒数关系:a b b a log 1 log = ()1,0,1,0≠>≠>b b a a .

三角函数与三角恒等变换-经典测试题-附答案

三角函数与三角恒等变换(A) 一、填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上) 1. 半径是r,圆心角是α(弧度)的扇形的面积为________. 2. 若 ,则tan(π+α)=________. 3. 若α是第四象限的角,则π-α是第________象限的角. 4. 适合 的实数m的取值范围是_________. 5. 若tanα=3,则cos2α+3sin2α=__________. 6. 函数 的图象的一个对称轴方程是___________.(答案不唯一) 7. 把函数 的图象向左平移 个单位,所得的图象对应的函数为偶函数,则 的最小正值为___________. 8. 若方程sin2x+cosx+k=0有解,则常数k的取值范围是__________.

9. 1-sin10°·sin 30°·sin 50°·sin 70°=__________. 10. 角α的终边过点(4,3),角β的终边过点(-7,1),则sin(α+β)=__________. 11. 函数 的递减区间是___________. 12. 已知函数f(x)是以4为周期的奇函数,且f(-1)=1,那么 __________. 13. 若函数y=sin(x+ )+cos(x+ )是偶函数,则满足条件的 为_______. 14. tan3、tan4、tan5的大小顺序是________. 二、解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)已知 ,求

的值. 16. (本小题满分14分)已知函数f(x)=2sinx(sinx+cosx). (1) 求函数f(x)的最小正周期和最大值; (2) 在给出的直角坐标系中,画出函数y=f(x)在区间 上的图象. 17. (本小题满分14分)求函数y=4sin2x+6cosx-6( )的值域. 18. (本小题满分16分)已知函数 的图象如图所示. (1) 求该函数的解析式; (2) 求该函数的单调递增区间. 19. (本小题满分16分)设函数

三角函数恒等变换含答案及高考题

三角函数恒等变形的基本策略。 (1)常值代换:特别是用“1”的代换,如1=cos 2 θ+sin 2 θ=tanx ·cotx=tan45°等。 (2)项的分拆与角的配凑。如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2 x ;配凑角:α=(α+β)-β,β= 2 β α+- 2 β α-等。 (3)降次与升次。(4)化弦(切)法。 (4)引入辅助角。asin θ+bcos θ=2 2 b a +sin(θ+?),这里辅助角?所在象限由a 、b 的符号确定,?角的值由tan ?= a b 确定。 1.已知tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan == x x x ,又sin 2x +cos 2x =1, 联立得???=+=,1 cos sin cos 2sin 2 2x x x x 解这个方程组得.55cos 5 52sin ,55cos 552sin ??? ????-=-=?? ?????==x x x x 2.求 ) 330cos()150sin()690tan()480sin()210cos()120tan(ο ο ο οοο----的值. 解:原式 ) 30360cos()150sin()30720tan() 120360sin()30180cos()180120tan(o οοοοοοοοοο--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=ο οοοοο 3.若 ,2cos sin cos sin =+-x x x x ,求sin x cos x 的值. 解:法一:因为 ,2cos sin cos sin =+-x x x x 所以sin x -cos x =2(sin x +cos x ), 得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得 ,,?????? ?=-=?? ? ????-==1010cos 10 103sin 1010cos 10103sin x x x x 所以?- =103 cos sin x x 法二:因为,2cos sin cos sin =+-x x x x 所以sin x -cos x =2(sin x +cos x ),

三角函数恒等变换练习题与答案详解.doc

两角和与差的正弦、余弦、正切 1.利用两角和与差的正弦、余弦、正切公式进行三角变换; 2.利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征; 2.灵活使用 (正用、逆用、变形用 )两角和与差的正弦、余弦、 正切公式进行三角变换,三角变换中角的变换技巧是解题的关键. 知识点回顾 1. 两角和与差的余弦、正弦、正切公式 cos(α- β)=cos αcos β+sin αsin β (C α-β) cos(α+ β)=cos_αcos_β- sin_αsin_β (C α+β) sin(α- β)=sin_αcos_β- cos_αsin_β (S α-β) sin(α+ β)=sin_αcos_β+ cos_αsin_β (S α+β) tan α- tan β (T α- β tan( α- β)= 1+ tan αtan β ) tan α+ tan β (T α+ β tan( α+ β)= 1- tan αtan β ) 2. 二倍角公式 sin 2α= 2 sin cos ; cos 2α=cos 2α-sin 2 α=2cos 2α- 1= 1- 2sin 2α; tan 2 α= 2tan α 2 . 1- tan α 3. 在准确熟练地记住公式的基础上, 要灵活运用公式解决问题: 如公式的正用、 逆用和变形用等. 如 T α±β 可变形为 tan α± tan β= tan( α±β)(1tan_ αtan_ β), tan αtan β= 1- tan α+ tan β tan α- tan β = - 1. tan α+β tan α- β 4. 函数 f(α)= acos α+ bsin α(a ,b 为常数 ),可以化为 f(α)= a 2+ b 2sin(α+ φ)或 f(α)= a 2+ b 2 cos(α- φ), 其中 φ 可由 a , b 的值唯一确定. [难点正本 疑点清源 ] 三角变换中的 “三变 ” (1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是 “配凑 ”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有 “切化弦 ”、 “升幂与降幂 ”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有 “常值代 换 ”、 “逆用变用公式 ”、 “通分约分 ”、 “分解与组合 ”、 “配方与平方 ”等. 热身训练 2 1 tan α 1. 已知 sin(α+ β)= , sin(α- β)=- ,则 的值为 _______. 3 5 tan β

三角函数恒等变换

三角函数恒等变换 一、三角函数的诱导公式 1、下列各角的终边与角α的终边的关系 2、六组诱导公式 注:诱导公式可概括为的各三角函数值的化简公式。记忆规律是:奇变偶不变,符号看象限。其中的奇、偶是指的奇数倍和偶数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号。 二、两角和与差的正弦、余弦和正切公式 1、两角和与差的正弦、余弦和正切公式

2、二倍角的正弦、余弦、正切公式 . sin α= 2 2tan 21tan 2 α α +, cos α= 22 1tan 21tan 2 αα -+ 3、形如asin α+bcos α的化简 asin α+bcos α22a b +α+β).其中cos β2 2 a b +,sin β2 2 a b + 三、简单的三角恒等变换 1、用cos α表示sin 2 2α,cos 22α,tan 22 α sin 22α = 1cos 2α -; cos 22α=1cos 2α+; tan 22 α=1cos 1cos αα -+ 注:上述三组公式从左到右起到一个扩角降幂的作用;从右到左起到一个缩角升幂的作用。 2、用cos α表示sin 2α,cos 2α,tan 2 α sin 2α=1cos 2α -± cos 2α=1cos 2 α+±

tan 2α= 3、用sin α,cos α表示tan 2 α tan 2α=sin 1cos 1cos sin αααα -= + 四、常用数据: 30456090、 、、的三角函数值 6sin15cos 75- == ,4 2615cos 75sin +== 3275cot 15tan -== ,3215cot 75tan +== 注: ⑴以上公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如tan()(1tan tan )tan tan αβαβαβ+-=+ 2 21cos 1cos cos ,sin 2 222 α ααα +-= = 等. 从而可做到:正用、逆用、变形用自如使用各公式. ⑵三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备. ⑶三角函数恒等变形的基本策略。 ①常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2 θ=tanx ·cotx=tan45°等。 ②项的分拆与角的配凑。如分拆项:222222sin 2cos (sin cos )cos 1cos x x x x x x +=++=+; 配凑角(常用角变换):2()()ααβαβ=++-、2()()βαβαβ=+--、 2 2 αβ αβ α+-= + 、2 2 αβ αβ β+-= - 、()ααββ=+-等. ③降次与升次。即倍角公式降次与半角公式升次。 ④化弦(切)法。将三角函数利用同角三角函数基本关系化成弦(切)。 ⑤引入辅助角。asin θ+bcos θ=22b a +sin(θ+?),这里辅助角?所在象限由a 、b 的符号确定,?角的值由tan ?=a b 确定。 1、三角函数式的化简 ※相关※ (1)2()k k Z απ+∈,α-,πα±, 2 πα±的三角函数值是化简的主要工具。使用 诱导公式前,要正确分析角的结构特点,然后确定使用的诱导公式; (2)不能直接使用诱导公式的角通过适当的角的变换化为能使用诱导公式的角,如: 52()22 π παπα+=++等。 注:若k πα+出现时,要分k 为奇数和偶数讨论。

高中数学三角函数恒等变形公式

三角函数恒等变形公式 以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)辅助角公式: Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中 sint=B/(A2+B2)^(1/2) cost=A/(A2+B2)^(1/2) tant=B/A Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B 倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α) tan(2α)=2tanα/[1-tan2(α)] 三倍角公式: sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α) cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α) tan(3α)=tan a · tan(π/3+a)· tan(π/3-a) 半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα 降幂公式 sin2(α)=(1-cos(2α))/2=versin(2α)/2 cos2(α)=(1+cos(2α))/2=covers(2α)/2 tan2(α)=(1-cos(2α))/(1+cos(2α)) 万能公式: sinα=2tan(α/2)/[1+tan2(α/2)] cosα=[1-tan2(α/2)]/[1+tan2(α/2)] tanα=2tan(α/2)/[1-tan2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

相关主题
文本预览
相关文档 最新文档