数列的几种递推公式
- 格式:docx
- 大小:275.53 KB
- 文档页数:9
数列的递推公式与求和公式推导在数学中,数列是指按照一定规律排列的一组数字。
数列中的每个数字称为数列的项,而数列的递推公式和求和公式是用来描述和计算数列的重要工具。
本文将介绍数列的递推公式及其推导方法,以及数列的求和公式的推导过程。
一、数列的递推公式数列的递推公式是指通过已知的前一项或前几项计算下一项的公式。
它描述了数列项之间的关系,使我们可以方便地求得任意项的值。
下面以斐波那契数列为例,介绍数列的递推公式推导。
斐波那契数列是一个经典的数列,它的定义如下:F(1) = 1F(2) = 1F(n) = F(n-1) + F(n-2),其中n>=3。
可以通过观察前几个数来猜测递推公式,但为了证明递推公式的正确性,需要使用数学归纳法。
首先,验证当n=1和n=2时,递推公式成立。
然后,假设当n=k时,递推公式也成立,即F(k) = F(k-1) + F(k-2)。
接下来,我们通过验证n=k+1时递推公式是否成立来证明递推公式的通用正确性。
当n=k+1时,根据斐波那契数列的定义可得:F(k+1) = F(k) + F(k-1) = (F(k-1) + F(k-2)) + F(k-1) = F(k) + 2F(k-1)由假设知F(k) = F(k-1) + F(k-2),代入上式可得:F(k+1) = (F(k-1) + F(k-2)) + 2F(k-1) = F(k-1) + 3F(k-1) = 4F(k-1)因此,当n=k+1时,递推公式也成立。
根据数学归纳法可知,对于任意的n,斐波那契数列的递推公式都成立。
二、数列的求和公式数列的求和公式是指计算数列前n项和的公式。
通过求和公式,我们可以在不一一相加的情况下,直接得到数列的和。
下面以等差数列为例,介绍数列的求和公式推导。
等差数列是指数列中相邻两项的差等于一个常数,记为d。
等差数列的通项公式为:a(n) = a(1) + (n-1)d,其中n为项数。
三大类递推数列通项公式的求法1 一阶线性递推数列求通项问题一阶线性递推数列主要有如下几种形式: (1)1()n n x x f n +=+这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n 项和).当()f n 为常数时,通过累加法可求得等差数列的通项公式.而当()f n 为等差数列时,则1()n n x x f n +=+为二阶等差数列,其通项公式应当为2n x an bn c =++形式,注意与等差数列求和公式一般形式的区别,后者是2n S an bn =+,其常数项一定为0. (2)1()n n x g n x +=这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n 项积). 当()g n 为常数时,用累乘法可求得等比数列的通项公式.(3)1(,0,1)n+n x =qx +d q,d q q ≠≠为常数;这类数列通常可转化为1()n n x p q x p ++=+,或消去常数转化为二阶递推式211()n n n n x x q x x +++-=-.[例1]已知数列n x {}中,11121(2)n n x x x n -==+≥,,求n x {}的通项公式. [解析]解法一.转化为1()n n x p q x p ++=+型递推数列.∵121(2)n n x x n -=+≥,∴112(1)(2)n n x x n -+=+≥,又112x +=,故数列{1n x +}是首项为2,公比为2的等比数列.∴12n n x +=,即21n n x =-.解法二.转化为211()n n n n x x q x x +++-=-型递推数列. ∵n x =2x n-1+1(n ≥2) ① ∴1n x +=2x n +1 ②②-①,得112()n n n n x x x x +--=-(n ≥2),故{1n n x x +-}是首项为x 2-x 1=2,公比为2的等比数列,即11222n n n n x x -+-== ,再用累加法得21n n x =-.解法三.用迭代法.21231221212(21)12212222121n n n n n n n n x x x x x ------=+=++=++=++++=- .当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.[例2]已知函数1()22(1)2f x x x =-+≤≤的反函数为121(),1,()yg x x x g x ===, 321(),,(),,n n x g x x g x -== 求数列n x {}的通项公式. [解析]由已知得1()1(01)2g x x x =-+≤≤,则1111,1(2)2n n x x x n -==-+≥. 令11()2n n x p x p -+=-+=,则11322n n x x p -=--.比较系数,得23p =-.即有1212()(2)323n n x x n --=--≥.∴数列{23n x -}是以12133x -=为首项,12-为公比的等比数列,∴1211()332n n x --=-,故1112()323n n x -=-+.[评析]此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之. (4)1(,nn n cx x c d x d+=+为非零常数);若取倒数,得1111n n d x c x c+=+ ,令1n n y x =,从而转化为(1)型而求之.(5)1(,1,1)n n+n x =qx +d q,d q d ≠≠为非零常数; 这类数列可变换成111n n n n x x q d d d d ++=+ ,令nnnx y d =,则转化为(1)型一阶线性递推公式. [例3]设数列11132(*)n n n n x x x x n N +==+∈.{}满足:,求数列n x {}的通项公式. [解析]∵132n n n x x +=+,两边同除以12n +,得11312222n n n n x x ++=+ .令322nnnx y = ,则有13122n n y y +=+ .于是,得131(1)2n n y y ++=+,∴数列1n y +{}是以首项为37144+=,公比为32的等比数列,故1731()42n n y -+= ,即173()142n n y -=- ,从而2117323n n n x -+=- .[例4]设10132(*)n n n x x x n N --=-∈为常数,且,求数列n x {}的通项公式. [解析]设1132(3)n n n n x p x p --+=-+ ,用1132n n n x x --=-代入,可解出15p =-. ∴35nn x -{}是以公比为-2,首项为00332122555x x x -=--=-1的等比数列. ∴1032(2)(2)55n n n x x --=--, 即1023(2)(2)55n n n x x -=--+03(1)2(1)2(*)5n n n n n x n N --=+-∈ .(6)1(00,0,1)pn+n n x =cx x ,c p p >>>≠这类数列可取对数得1lg lg lg n n x x c +=+,从而转化为等差数列型递推数列. 2 可转化为等差、等比数列或一些特殊数列的二阶递推数列[例5]设数列12215521(*)333n n n n x x x x x x n N ++===-∈.{}满足:,,求数列n x {}的通项公式. [解析]由2152(*)33n n n x x x n N ++=-∈,可得 2111222()(*)333n n n n n n x x x x x x n N ++++=-=-∈.-设11212521333n n n n y x x y y x x +=-=-=-=,则{}是公比为的等比数列,且,故2(*)3n y n N =∈n ().即12(2)3n n x x n --=≥n-1().用累加法得 12111221222()()()()()333n n n n n n n x x x x x x x x ------=-+-++-=+++ , 或11221112()()()222()()1333n n n n n n n x x x x x x x x -----=-+-++-+=++++21()233[1()]2313nn -==--). [例6]在数列12211(*)n n n n x x x x x x n N ++===+∈{}中,已知,,求数列n x {}的通项公式.[解析]可用换元法将其转化为一阶线性递推数列.令11n n n y x a x +=-,使数列n y {}是以2a 为公比的等比数列(1,a a 2待定). 即211211()n n n n x a x a x a x +++-=-,∴212112()n n n x a a x a a x ++=+-.对照已给递推式,有121211a a a a +==-,,即21210a a x x --=、是方程的两个实根.从而1212a a a a ====∴211111(222n n n n x x x x ++++-=-) ①或211111(222n n n n x x x x ++++-=-) ②由式①得111(22n n n x x +-=;由式②得111(22nn n x x +-=.消去111((22n nn n x x +=-1,得]. [例7]在数列12211(*)n n n n x x x x x x n N ++===-∈{}中,已知,,求100x . [解析]由21n n n x x x ++=- ①,得321n n n x x x +++=- ②.式②+式①,得3n n x x +=-,从而有63n n n x x x ++=-=.∴数列n x {}是以6为其周期.故100x =4x =-1.3 特殊的n 阶递推数列[例8]已知数列n x {}满足11231123(1)(2)n n x x x x x n x n -==++++-≥ ,,求n x {}的通项公式. [解析]∵123123(1)(2)n n x x x x n x n -=++++-≥ ①∴1123223(2)(3)n n x x x x n x n --=++++-≥ ② ②-①,得1(3)n n x nx n -=≥.∴1(3)nn x n n x -=≥,故有 1312213n n n n x x x n n x x x ---==-=. ,, 将这几个式子累乘,得22(1)(2)3(1)(2)3nn x n n n x n n n x x =--==--. ,或 又1211(1),11,!(2)2n n x x x x n n =⎧⎪====⎨≥⎪⎩ ,故 .[例9]数列{n x }满足21121,2n n x x x x n x =+++= ,求数列{n x }的同项公式. [解析]由212n n x x x n x +++= ①,得21211(1)(2)n n x x x n x n --+++=-≥ ②. 式①-式②,得221(1)n n n x n x n x -=--,或2221(1)(1)n n n n n x n x x n x --=-=-,故有11(2)1n n x n n x n --=≥+ . ∴12312341234,,,,112n n n n n n n n x x x x n n n n x n x n x n x n -----------====+-- ,322121,43x x x x ==. 将上面几个式子累乘,得121(1)n x x n n=+ ,即1211(2)(1)(1)n x x n n n n n ==≥++ . ∵112x =也满足上式,∴1211(*)(1)(1)n x x n N n n n n==∈++ .。
求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=-逐项相乘得:na a n 11=,即n a =n 1.三、换元法例3已知数列{n a },其中913,3421==a a ,且当n≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b 31()31(9131(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。
)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。
解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。
2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。
类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。
i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。
例2已知a11,anan1n,求an。
解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。
方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。
类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。
anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。
二、数列的递推公式与通项公式、前n 项和公式一、知识点回顾:1、递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
2、数列前n 项和S n 与通项a n 的关系式:a n =⎩⎨⎧--11s s s n n 12=≥n n 。
在数列{a n }中,前n 项和S n 与通项公式a n 的关系,是本讲内容一个重点,要认真掌握之。
注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);若a 1 适合由a n 的表达式,则a n 不必表达成分段形式,可化统一为一个式子。
(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。
3、数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。
⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n nn S n a S S n -==-≥。
一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。
⑶已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。
⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅ (2)n ≥。
数列的递推公式和通项公式总结一、数列的概念1.数列:按照一定顺序排列的一列数。
2.项:数列中的每一个数。
3.项数:数列中数的个数。
4.首项:数列的第一项。
5.末项:数列的最后一项。
6.公差:等差数列中,相邻两项的差。
7.公比:等比数列中,相邻两项的比。
二、数列的递推公式1.等差数列的递推公式:an = a1 + (n-1)d–an:第n项–a1:首项2.等比数列的递推公式:an = a1 * q^(n-1)–an:第n项–a1:首项3.斐波那契数列的递推公式:an = an-1 + an-2–an:第n项–an-1:第n-1项–an-2:第n-2项三、数列的通项公式1.等差数列的通项公式:an = a1 + (n-1)d–an:第n项–a1:首项2.等比数列的通项公式:an = a1 * q^(n-1)–an:第n项–a1:首项3.斐波那契数列的通项公式:an = (1/√5) * [((1+√5)/2)^n - ((1-√5)/2)^n]–an:第n项四、数列的性质1.收敛性:数列的各项逐渐接近某个固定的数。
2.发散性:数列的各项无限增大或无限减小。
3.周期性:数列的各项按照一定周期重复出现。
五、数列的应用1.数学问题:求数列的前n项和、某项的值、数列的收敛性等。
2.实际问题:人口增长、贷款利息计算、等差数列的求和等。
六、数列的分类1.有限数列:项数有限的数列。
2.无限数列:项数无限的数列。
3.交错数列:正负交替出现的数列。
4.非交错数列:同号连续出现的数列。
5.常数数列:所有项都相等的数列。
6.非常数数列:各项不相等的数列。
综上所述,数列的递推公式和通项公式是数列学中的重要知识点,通过这些公式,我们可以求解数列的各种问题。
同时,了解数列的性质和分类,有助于我们更好地理解和应用数列。
习题及方法:1.习题一:已知等差数列的首项为3,公差为2,求第10项的值。
答案:a10 = 3 + (10-1) * 2 = 3 + 18 = 21解题思路:利用等差数列的递推公式an = a1 + (n-1)d,将给定的首项和公差代入公式,求得第10项的值。
递推公式和通项公式递推公式和通项公式是数学中常用的两种表示数列的方式。
数列是按照一定规律排列的一系列数值,比如斐波那契数列、等差数列等都是数学中常见的数列。
递推公式是通过前面的项得出后面的项,而通项公式则是通过数列中任意一项的下标得到这一项的数值。
下面将详细介绍递推公式和通项公式的概念、计算方法以及应用。
一、递推公式递推公式是通过前面的项推导出后面的项的公式,通常用于描述数列的规律。
递推公式的形式可以是直接递推公式和间接递推公式。
1.直接递推公式直接递推公式是根据数列中前面的若干项直接计算出后面其中一项的公式。
以斐波那契数列为例,斐波那契数列的递推公式为:Fn=Fn-1+Fn-2,其中F表示数列中的项数,n表示项数的下标,n-1表示前一项的下标,n-2表示前两项的下标。
根据这个递推公式,可以依次计算出数列中后续的项。
2.间接递推公式间接递推公式是通过数列中前面的项与后面的项的关系间接推导出后面其中一项的公式。
以等差数列为例,等差数列的递推公式为:an = a1+ (n-1)d,其中a表示数列中的项数,n表示项数的下标,a1表示首项,d表示公差。
根据这个递推公式,可以通过首项和公差来计算出数列中后续的项。
二、通项公式通项公式又称为数列的通项公式、一般项公式或通项公式,是通过数列中任意一项的下标得到这一项的数值的公式。
通项公式可以直接计算出数列中任意一项的数值,而不需要通过前面的项来逐步推导。
通项公式的形式可以是显式通项公式和递推通项公式。
1.显式通项公式显式通项公式是通过数列中任意项的位置直接计算该项的数值的公式。
以等差数列为例,等差数列的显式通项公式为:an = a1 + (n-1)d,其中an表示数列中第n项的数值,a1表示首项,d表示公差。
根据这个公式,可以直接计算出数列中任意一项的数值。
2.递推通项公式递推通项公式是通过数列中前面的若干项推导出后面其中一项的数值的公式。
递推通项公式通常是基于递推公式得到的。
数列的求和与递推公式在数学中,数列是由一系列按照特定规律排列的数字组成的序列。
求解数列的和以及找到递推公式是数学中常见的问题,本文将介绍数列求和的方法以及递推公式的推导过程。
一、等差数列的求和与递推公式等差数列是指数列中相邻两项之间的差值保持相等的数列。
设等差数列的首项为a,公差为d,第n项为an。
1.1 求和公式对于等差数列来说,我们可以通过求和的方法来快速计算数列的和。
等差数列的前n项和Sn可以通过下式计算得到:Sn = (n/2) * (a + an)其中,n为项数,a为首项,an为第n项。
1.2 递推公式递推公式是求解等差数列中第n项的常用方法。
根据等差数列的性质,可以得出递推公式为:an = a + (n-1) * d其中,an为第n项,a为首项,d为公差,n为项数。
二、等比数列的求和与递推公式等比数列是指数列中相邻两项之间的比值保持相等的数列。
设等比数列的首项为a,公比为r,第n项为an。
2.1 求和公式对于等比数列而言,我们可以通过求和的公式来计算数列的和。
等比数列的前n项和Sn可以通过下式计算得到:Sn = a * (1 - r^n) / (1 - r)其中,n为项数,a为首项,r为公比。
2.2 递推公式递推公式是求解等比数列中第n项的常用方法。
根据等比数列的定义和性质,可以得出递推公式为:an = a * r^(n-1)其中,an为第n项,a为首项,r为公比,n为项数。
三、斐波那契数列的求和与递推公式斐波那契数列是一种特殊的数列,在数学和自然界中都有广泛的应用。
斐波那契数列的定义如下:首项为1,第二项为1,之后的每一项都是前两项的和。
3.1 求和公式斐波那契数列的前n项和Sn可以通过下式计算得到:Sn = Fn+2 - 1其中,Fn为斐波那契数列的第n项。
3.2 递推公式递推公式是求解斐波那契数列中第n项的常用方法。
根据斐波那契数列的定义和性质,可以得出递推公式为:Fn = Fn-1 + Fn-2其中,Fn为第n项,Fn-1为第n-1项,Fn-2为第n-2项。
数列的几种递推公式一、 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例1:已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
二、 n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
例3:已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。
解:123132231232)2(31)2(32)1(31)1(3a n n n n a n +-•+⨯-⨯•⋅⋅⋅•+---•+---=3437526331348531n n n n n --=⋅⋅⋅⋅=---。
变式:已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥解:由已知,得n n n na a n a a a a +-+⋅⋅⋅+++=-+13211)1(32, 用此式减去已知式,得当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+, 又112==a a ,n a a a aa a a a a n n =⋅⋅⋅====∴-13423121,,4,3,1,1, 将以上n 个式子相乘,得2!n a n =)2(≥n三、 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。
例4.已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即321-=⇒-=+t t a a n n .故递推公式为)3(231+=++n n a a , 令3+=n n a b ,则4311=+=a b ,且23311=++=++n n n n a a b b . 所以{}n b 是以41=b 为首项,2为公比的等比数列, 则11224+-=⨯=n n n b ,所以321-=+n n a .变式:在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________(key:321-=+n n a )四、类型4 nn n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。
(或1nn n a pa rq +=+,其中p ,q, r 均为常数) 。
解法:一般地,要先在原递推公式两边同除以1+n q ,得:q q a q p q a n n n n 111+•=++引入辅助数列{}n b (其中nnn q a b =),得:q b q p b n n 11+=+再待定系数法解决。
例5:已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。
解:在11)21(31+++=n n n a a 两边乘以12+n 得:1)2(32211+•=•++n n n n a a 令nnn a b •=2,则1321+=+n n b b ,解之得:nn b )32(23-= 所以nn nn n b a )31(2)21(32-==五、递推公式为nS 与na 的关系式。
(或()n n S f a =)解法:利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或 与)(1--=n n n S S f S )2(≥n 消去n a进行求解。
例6. 数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与na 的关系;(2)求通项公式na .解:(1)由2214---=n n n a S 得:111214-++--=n n n a S于是)2121()(1211--++-+-=-n n n n n n a a S S ,所以11121-+++-=n n n n a a a n nn a a 21211+=⇒+.(2)应用类型(nn n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ))的方法,上式两边同乘以12+n 得:22211+=++n n n n a a由1214121111=⇒--==-a a S a .于是数列{}n n a 2是以2为首项,2为公差的等差数列,所以n n a n n2)1(222=-+=12-=⇒n n na六、倒数变换:将递推数列1n n n ca a a d+=+(0,0)c d ≠≠,取倒数变成1111n n d a c a c +=+ 的形式的方法叫倒数变换.例7. 已知数列{}n a *()n N ∈中, 11a =,121nn n a a a +=+,求数列{}n a 的通项公式. 【解析】:将121n n n a a a +=+取倒数得: 1112n n a a +=+,1112n na a +-=, ∴1n a ⎧⎫⎨⎬⎩⎭是以111a =为首项,公差为2的等差数列. 112(1)n n a =+-,∴121n a n =-.跟踪训练 已知数列{}n a 中, ,122nn n a a a +=+,求数列{}n a 的通项公式.(1)公式法:必须记住几个常见数列前n 项和2)1(2)(11dn n na a a n S n n -+=+=; ⎪⎩⎪⎨⎧≠--==11)1(111q q q a q na S n n ;1.已知等差数列{}n a 的前n 项和为22(,),n S pn a q p q R n N =-+∈∈ (Ⅰ)求q 的值;(Ⅱ)若a 1与a 5的等差中项为18,b n 满足22log n na b =,求数列的{b n }前n 项和.(Ⅰ)解法一: 当1n =时,112a S p q==-+,当2n ≥时,2212(1)2(1)n n n a S S pn n q p n n q -=-=-+--+--22pn p =--.{}n a 是等差数列,222p q p p ∴-+=--,0q ∴=············4分解法二:当1n =时,112a S p q==-+,当2n ≥时,2212(1)2(1)n n n a S S pn n q p n n q -=-=-+--+--22pm p =--.当3n ≥时,1122[2(1)2]2n a a pn p p n p p--=------=.22232a p q p p q=-++=-+.又222232a p p p =⋅--=-,所以3232p q p -+=-,得0q =.············4分(Ⅱ)解:1512a a a +=,318a ∴=.又362a p p =--,6218p p ∴--=,4p ∴=86n a n ∴=-············8分又22log n n a b =得432n n b -=.12b ∴=,4(1)1414322162n n n n b b --+-===,即{}n b 是等比数列.所以数列{}n b 的前n 项和2(116)2(161)11615n nn T -==--如:求1+1,41+a ,712+a ,…,2311-+-n a n ,…的前n 项和(注:⎪⎪⎩⎪⎪⎨⎧≠-=+=12)13(12)13(a n n a nn S n )(3)裂项法: 如)2(1+=n n a n 求S n常用的裂项有111)1(1+-=+n n n n ; )211(21)2(1+-=+n n n n ;])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n2.已知二次函数()y f x =的图像经过坐标原点,其导函数为'()62f x x =-,数列{}n a 的前n 项和为nS ,点(,)()n n S n N *∈均在函数()y f x =的图像上。
(Ⅰ)、求数列{}n a 的通项公式;(Ⅱ)、设11n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *∈都成立的最小正整数m ;解:(Ⅰ)设这二次函数f(x)=ax 2+bx (a≠0) ,则 f`(x)=2ax+b, 由于f`(x)=6x -2,得a=3 , b=-2, 所以 f(x)=3x 2-2x. 又因为点(,)()n n S n N *∈均在函数()y f x =的图像上,所以n S=3n 2-2n. 当n≥2时,a n =S n -S n -1=(3n 2-2n )-[])1(2)132---n n (=6n -5.当n =1时,a 1=S 1=3×12-2=6×1-5,所以,a n =6n -5 (n N *∈)(Ⅱ)由(Ⅰ)得知13+=n n n a a b =[]5)1(6)56(3---n n =)161561(21+--n n ,故T n =∑=ni ib 1=21⎥⎦⎤⎢⎣⎡+--++-+-)161561(...)13171()711(n n =21(1-161+n ).因此,要使21(1-161+n )<20m (n N *∈)成立的m,必须且仅须满足21≤20m,即m≥10,所以满足要求的最小正整数m 为10.(4)错位相减法:其特点是c n =a n b n 其中{a n }是等差,{b n }是等比 如:求和S n =1+3x+5x 2+7x 3+……+(2n-1)x n -1 注意讨论x ,⎪⎩⎪⎨⎧≠-+++--==+1)1()1()12()12(1212x x x x n x n x n S n n n(5)倒叙相加法:等差数列的求和公式就是用这种方法推导出来的。